Introduction to Artificial Intelligence. Problem Solving and Search

Size: px
Start display at page:

Download "Introduction to Artificial Intelligence. Problem Solving and Search"

Transcription

1 Introduction to Artificial Intelligence Problem Solving and Search Bernhard Beckert UNIVESITÄT KOBLENZ-LANDAU Wintersemester 2003/2004 B. Beckert: Einführung in die KI / KI für IM p.1

2 Outline Problem solving Problem types Problem formulation Example problems Basic search algorithms B. Beckert: Einführung in die KI / KI für IM p.2

3 Problem solving Offline problem solving Acting only with complete knowledge of problem and solution Online problem solving Acting without complete knowledge Here Here we are concerned with offline problem solving only B. Beckert: Einführung in die KI / KI für IM p.3

4 Example: Travelling in omania Scenario On holiday in omania; currently in Arad Flight leaves tomorrow from Bucharest B. Beckert: Einführung in die KI / KI für IM p.4

5 Example: Travelling in omania Scenario On holiday in omania; currently in Arad Flight leaves tomorrow from Bucharest Goal Be in Bucharest B. Beckert: Einführung in die KI / KI für IM p.4

6 Example: Travelling in omania Scenario On holiday in omania; currently in Arad Flight leaves tomorrow from Bucharest Goal Be in Bucharest Formulate problem States: various cities Actions: drive between cities B. Beckert: Einführung in die KI / KI für IM p.4

7 Example: Travelling in omania Scenario On holiday in omania; currently in Arad Flight leaves tomorrow from Bucharest Goal Be in Bucharest Formulate problem States: various cities Actions: drive between cities Solution Appropriate sequence of cities e.g.: Arad, Sibiu, Fagaras, Bucharest B. Beckert: Einführung in die KI / KI für IM p.4

8 Example: Travelling in omania Oradea Neamt Zerind Arad Iasi Sibiu Fagaras Vaslui Timisoara imnicu Vilcea Lugoj Pitesti Mehadia Urziceni Hirsova Dobreta Craiova Bucharest Giurgiu Eforie B. Beckert: Einführung in die KI / KI für IM p.5

9 Problem types Single-state problem observable (at least the initial state) deterministic static discrete Multiple-state problem partially observable (initial state not observable) deterministic static discrete Contingency problem partially observable (initial state not observable) non-deterministic B. Beckert: Einführung in die KI / KI für IM p.6

10 Example: vacuum-cleaner world Single-state Start in: 5 Solution: B. Beckert: Einführung in die KI / KI für IM p.7

11 Example: vacuum-cleaner world Single-state Start in: 5 Solution: [right, suck] B. Beckert: Einführung in die KI / KI für IM p.7

12 Example: vacuum-cleaner world Single-state Start in: 5 Solution: [right, suck] Multiple-state Start in: {1,2,3,4,5,6,7,8} Solution: B. Beckert: Einführung in die KI / KI für IM p.7

13 Example: vacuum-cleaner world Single-state Start in: 5 Solution: [right, suck] Multiple-state Start in: {1,2,3,4,5,6,7,8} Solution: [right, suck, left, suck] right {2,4,6,8} suck {4,8} left {3,7} suck {7} B. Beckert: Einführung in die KI / KI für IM p.7

14 Example: vacuum-cleaner world 1 2 Contingency Murphy s Law: suck can dirty a clean carpet Local sensing: dirty/not dirty at location only Start in: {1,3} Solution: B. Beckert: Einführung in die KI / KI für IM p.8

15 Example: vacuum-cleaner world 1 2 Contingency Murphy s Law: suck can dirty a clean carpet Local sensing: dirty/not dirty at location only Start in: {1,3} Solution: [suck, right, suck] suck {5,7} right {6,8} suck {6,8} Improvement: [suck, right, if dirt then suck] (decide whether in 6 or 8 using local sensing) B. Beckert: Einführung in die KI / KI für IM p.8

16 Single-state problem formulation Defined by the following four items 1. Initial state Example: Arad 2. Successor function S Example: S(Arad) = { gozerind, Zerind, gosibiu, Sibiu,... } 3. Goal test Example: x = Bucharest (explicit test) nodirt(x) (implicit test) 4. Path cost (optional) Example: sum of distances, number of operators executed, etc. B. Beckert: Einführung in die KI / KI für IM p.9

17 Single-state problem formulation Solution A sequence of operators leading from the initial state to a goal state B. Beckert: Einführung in die KI / KI für IM p.10

18 Selecting a state space Abstraction eal world is absurdly complex State space must be abstracted for problem solving (Abstract) state Set of real states (Abstract) operator Complex combination of real actions Example: Arad Zerind represents complex set of possible routes (Abstract) solution Set of real paths that are solutions in the real world B. Beckert: Einführung in die KI / KI für IM p.11

19 Example: The 8-puzzle Start State Goal State States Actions Goal test Path cost B. Beckert: Einführung in die KI / KI für IM p.12

20 Example: The 8-puzzle Start State Goal State States integer locations of tiles Actions Goal test Path cost B. Beckert: Einführung in die KI / KI für IM p.12

21 Example: The 8-puzzle Start State Goal State States Actions integer locations of tiles left, right, up, down Goal test Path cost B. Beckert: Einführung in die KI / KI für IM p.12

22 Example: The 8-puzzle Start State Goal State States Actions Goal test integer locations of tiles left, right, up, down = goal state? Path cost B. Beckert: Einführung in die KI / KI für IM p.12

23 Example: The 8-puzzle Start State Goal State States Actions Goal test Path cost integer locations of tiles left, right, up, down = goal state? 1 per move B. Beckert: Einführung in die KI / KI für IM p.12

24 Example: Vacuum-cleaner L L S S L L L L S S S S L L S S States Actions Goal test Path cost B. Beckert: Einführung in die KI / KI für IM p.13

25 Example: Vacuum-cleaner L L S S L L L L S S S S L L S S States integer dirt and robot locations Actions Goal test Path cost B. Beckert: Einführung in die KI / KI für IM p.13

26 Example: Vacuum-cleaner L L S S L L L L S S S S L L S S States Actions integer dirt and robot locations left, right, suck, noop Goal test Path cost B. Beckert: Einführung in die KI / KI für IM p.13

27 Example: Vacuum-cleaner L L S S L L L L S S S S L L S S States Actions Goal test integer dirt and robot locations left, right, suck, noop not dirty? Path cost B. Beckert: Einführung in die KI / KI für IM p.13

28 Example: Vacuum-cleaner L L S S L L L L S S S S L L S S States Actions Goal test integer dirt and robot locations left, right, suck, noop not dirty? Path cost 1 per operation (0 for noop) B. Beckert: Einführung in die KI / KI für IM p.13

29 Example: obotic assembly P States Actions Goal test Path cost B. Beckert: Einführung in die KI / KI für IM p.14

30 Example: obotic assembly P States real-valued coordinates of robot joint angles and parts of the object to be assembled Actions Goal test Path cost B. Beckert: Einführung in die KI / KI für IM p.14

31 Example: obotic assembly P States real-valued coordinates of robot joint angles and parts of the object to be assembled Actions continuous motions of robot joints Goal test Path cost B. Beckert: Einführung in die KI / KI für IM p.14

32 Example: obotic assembly P States real-valued coordinates of robot joint angles and parts of the object to be assembled Actions Goal test continuous motions of robot joints assembly complete? Path cost B. Beckert: Einführung in die KI / KI für IM p.14

33 Example: obotic assembly P States real-valued coordinates of robot joint angles and parts of the object to be assembled Actions Goal test Path cost continuous motions of robot joints assembly complete? time to execute B. Beckert: Einführung in die KI / KI für IM p.14

34 Tree search algorithms Offline Simulated exploration of state space in a search tree by generating successors of already-explored states function TEE-SEACH( problem, strategy) returns a solution or failure initialize the search tree using the initial state of problem loop do if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end B. Beckert: Einführung in die KI / KI für IM p.15

35 Tree search: Example Arad Sibiu Timisoara Zerind Arad Fagaras Oradea imnicu Vilcea Arad Lugoj Arad Oradea B. Beckert: Einführung in die KI / KI für IM p.16

36 Tree search: Example Arad Sibiu Timisoara Zerind Arad Fagaras Oradea Arad Lugoj Arad imnicu Vilcea Oradea B. Beckert: Einführung in die KI / KI für IM p.16

37 Tree search: Example Arad Sibiu Timisoara Zerind Arad Fagaras Oradea imnicu Vilcea Arad Lugoj Arad Oradea B. Beckert: Einführung in die KI / KI für IM p.16

38 Implementation: States vs. nodes State A (representation of) a physical configuration Node A data structure constituting part of a search tree (includes parent, children, depth, path cost, etc.) parent State 5 4 Node depth = 6 g = state children B. Beckert: Einführung in die KI / KI für IM p.17

39 Implementation of search algorithms function TEE-SEACH( problem, fringe) returns a solution or failure fringe INSET(MAKE-NODE(INITIAL-STATE[problem]),fringe) loop do if fringe is empty then return failure node EMOVE-FIST(fringe) if GOAL-TEST[problem] applied to STATE(node) succeeds then return node else fringe INSET-ALL(EXPAND(node, problem), fringe) end fringe State Expand queue of nodes not yet considered gives the state that is represented by node creates new nodes by applying possible actions to node B. Beckert: Einführung in die KI / KI für IM p.18

40 Search strategies Strategy Defines the order of node expansion Important properties of strategies completeness time complexity space complexity optimality does it always find a solution if one exists? number of nodes generated/expanded maximum number of nodes in memory does it always find a least-cost solution? Time and space complexity measured in terms of b d maximum branching factor of the search tree depth of a solution with minimal distance to root m maximum depth of the state space (may be ) B. Beckert: Einführung in die KI / KI für IM p.19

41 Uninformed search strategies Uninformed search Use only the information available in the problem definition Frequently used strategies Breadth-first search Uniform-cost search Depth-first search Depth-limited search Iterative deepening search B. Beckert: Einführung in die KI / KI für IM p.20

42 Breadth-first search Idea Expand shallowest unexpanded node Implementation fringe is a FIFO queue, i.e. successors go in at the end of the queue A B C D E F G B. Beckert: Einführung in die KI / KI für IM p.21

43 Breadth-first search Idea Expand shallowest unexpanded node Implementation fringe is a FIFO queue, i.e. successors go in at the end of the queue A B C D E F G B. Beckert: Einführung in die KI / KI für IM p.21

44 Breadth-first search Idea Expand shallowest unexpanded node Implementation fringe is a FIFO queue, i.e. successors go in at the end of the queue A B C D E F G B. Beckert: Einführung in die KI / KI für IM p.21

45 Breadth-first search Idea Expand shallowest unexpanded node Implementation fringe is a FIFO queue, i.e. successors go in at the end of the queue A B C D E F G B. Beckert: Einführung in die KI / KI für IM p.21

46 Breadth-first search: Example omania Arad B. Beckert: Einführung in die KI / KI für IM p.22

47 Breadth-first search: Example omania Arad Zerind Sibiu Timisoara B. Beckert: Einführung in die KI / KI für IM p.22

48 Breadth-first search: Example omania Arad Zerind Sibiu Timisoara Arad Oradea B. Beckert: Einführung in die KI / KI für IM p.22

49 Breadth-first search: Example omania Arad Zerind Sibiu Timisoara Arad Oradea Arad Oradea imnicu Fagaras Vilcea Arad Lugoj B. Beckert: Einführung in die KI / KI für IM p.22

50 Breadth-first search: Properties Complete Time Space Optimal B. Beckert: Einführung in die KI / KI für IM p.23

51 Breadth-first search: Properties Complete Yes (if b is finite) Time Space Optimal B. Beckert: Einführung in die KI / KI für IM p.23

52 Breadth-first search: Properties Complete Yes (if b is finite) Time 1 + b + b 2 + b b d + b(b d 1) O(b d+1 ) i.e. exponential in d Space Optimal B. Beckert: Einführung in die KI / KI für IM p.23

53 Breadth-first search: Properties Complete Yes (if b is finite) Time 1 + b + b 2 + b b d + b(b d 1) O(b d+1 ) Space O(b d+1 ) i.e. exponential in d keeps every node in memory Optimal B. Beckert: Einführung in die KI / KI für IM p.23

54 Breadth-first search: Properties Complete Yes (if b is finite) Time 1 + b + b 2 + b b d + b(b d 1) O(b d+1 ) Space O(b d+1 ) i.e. exponential in d keeps every node in memory Optimal Yes (if cost = 1 per step), not optimal in general B. Beckert: Einführung in die KI / KI für IM p.23

55 Breadth-first search: Properties Complete Yes (if b is finite) Time 1 + b + b 2 + b b d + b(b d 1) O(b d+1 ) Space O(b d+1 ) i.e. exponential in d keeps every node in memory Optimal Yes (if cost = 1 per step), not optimal in general Disadvantage Space is the big problem (can easily generate nodes at 5MB/sec so 24hrs = 430GB) B. Beckert: Einführung in die KI / KI für IM p.23

56 omania with step costs in km Oradea 71 Neamt Zerind Arad Timisoara 111 Lugoj 70 Mehadia Dobreta Sibiu 99 Fagaras 80 imnicu Vilcea 97 Pitesti Bucharest 90 Craiova Giurgiu 87 Iasi Urziceni Vaslui Hirsova 86 Eforie Straight line distance to Bucharest Arad 366 Bucharest 0 Craiova 160 Dobreta 242 Eforie 161 Fagaras 178 Giurgiu 77 Hirsova 151 Iasi 226 Lugoj 244 Mehadia 241 Neamt 234 Oradea 380 Pitesti 98 imnicu Vilcea 193 Sibiu 253 Timisoara 329 Urziceni 80 Vaslui 199 Zerind 374 B. Beckert: Einführung in die KI / KI für IM p.24

57 Uniform-cost search Idea Expand least-cost unexpanded node (costs added up over paths from root to leafs) Implementation fringe is queue ordered by increasing path cost Note Equivalent to depth-first search if all step costs are equal B. Beckert: Einführung in die KI / KI für IM p.25

58 Uniform-cost search Arad B. Beckert: Einführung in die KI / KI für IM p.26

59 Uniform-cost search Arad Zerind Sibiu Timisoara B. Beckert: Einführung in die KI / KI für IM p.26

60 Uniform-cost search Arad Zerind Sibiu Timisoara Arad Oradea B. Beckert: Einführung in die KI / KI für IM p.26

61 Uniform-cost search Arad Zerind Sibiu Timisoara Arad Oradea Arad Lugoj B. Beckert: Einführung in die KI / KI für IM p.26

62 Uniform-cost search: Properties Complete Time Space Optimal B. Beckert: Einführung in die KI / KI für IM p.27

63 Uniform-cost search: Properties Complete Yes (if step costs positive) Time Space Optimal B. Beckert: Einführung in die KI / KI für IM p.27

64 Uniform-cost search: Properties Complete Yes (if step costs positive) Time # of nodes with past-cost less than that of optimal solution Space Optimal B. Beckert: Einführung in die KI / KI für IM p.27

65 Uniform-cost search: Properties Complete Yes (if step costs positive) Time Space # of nodes with past-cost less than that of optimal solution # of nodes with past-cost less than that of optimal solution Optimal B. Beckert: Einführung in die KI / KI für IM p.27

66 Uniform-cost search: Properties Complete Yes (if step costs positive) Time Space Optimal # of nodes with past-cost less than that of optimal solution # of nodes with past-cost less than that of optimal solution Yes B. Beckert: Einführung in die KI / KI für IM p.27

67 Depth-first search Idea Expand deepest unexpanded node Implementation fringe is a LIFO queue (a stack), i.e. successors go in at front of queue Note Depth-first search can perform infinite cyclic excursions Need a finite, non-cyclic search space (or repeated-state checking) B. Beckert: Einführung in die KI / KI für IM p.28

68 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

69 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

70 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

71 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

72 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

73 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

74 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

75 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

76 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

77 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

78 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

79 Depth-first search A B C D E F G H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.29

80 Depth-first search: Example omania Arad B. Beckert: Einführung in die KI / KI für IM p.30

81 Depth-first search: Example omania Arad Zerind Sibiu Timisoara B. Beckert: Einführung in die KI / KI für IM p.30

82 Depth-first search: Example omania Arad Zerind Sibiu Timisoara Arad Oradea B. Beckert: Einführung in die KI / KI für IM p.30

83 Depth-first search: Example omania Arad Zerind Sibiu Timisoara Arad Oradea Zerind Sibiu Timisoara B. Beckert: Einführung in die KI / KI für IM p.30

84 Depth-first search: Properties Complete Time Space Optimal B. Beckert: Einführung in die KI / KI für IM p.31

85 Depth-first search: Properties Complete Yes: if state space finite No: if state contains infinite paths or loops Time Space Optimal B. Beckert: Einführung in die KI / KI für IM p.31

86 Depth-first search: Properties Complete Yes: if state space finite No: if state contains infinite paths or loops Time O(b m ) Space Optimal B. Beckert: Einführung in die KI / KI für IM p.31

87 Depth-first search: Properties Complete Yes: if state space finite No: if state contains infinite paths or loops Time O(b m ) Space O(bm) (i.e. linear space) Optimal B. Beckert: Einführung in die KI / KI für IM p.31

88 Depth-first search: Properties Complete Yes: if state space finite No: if state contains infinite paths or loops Time O(b m ) Space O(bm) (i.e. linear space) Optimal No B. Beckert: Einführung in die KI / KI für IM p.31

89 Depth-first search: Properties Complete Yes: if state space finite No: if state contains infinite paths or loops Time O(b m ) Space O(bm) (i.e. linear space) Optimal No Disadvantage Time terrible if m much larger than d Advantage Time may be much less than breadth-first search if solutions are dense B. Beckert: Einführung in die KI / KI für IM p.31

90 Iterative deepening search Depth-limited search Depth-first search with depth limit B. Beckert: Einführung in die KI / KI für IM p.32

91 Iterative deepening search Depth-limited search Depth-first search with depth limit Iterative deepening search Depth-limit search with ever increasing limits function ITEATIVE-DEEPENING-SEACH( problem) returns a solution or failure inputs: problem /* a problem */ for depth 0 to do result DEPTH-LIMITED-SEACH( problem, depth) if result cutoff then return result end B. Beckert: Einführung in die KI / KI für IM p.32

92 Iterative deepening search with depth limit 0 Limit = 0 A A B. Beckert: Einführung in die KI / KI für IM p.33

93 Iterative deepening search with depth limit 1 Limit = 1 A A A A B C B C B C B C B. Beckert: Einführung in die KI / KI für IM p.34

94 Iterative deepening search with depth limit 2 Limit = 2 A A A A B C B C B C B C D E F G D E F G D E F G D E F G A A A A B C B C B C B C D E F G D E F G D E F G D E F G B. Beckert: Einführung in die KI / KI für IM p.35

95 Iterative deepening search with depth limit 3 Limit = 3 A A A A B C B C B C B C D E F G D E F G D E F G D E F G H I J K L M N O H I J K L M N O H I J K L M N O H I J K L M N O A A A A B C B C B C B C D E F G D E F G D E F G D E F G H I J K L M N O H I J K L M N O H I J K L M N O H I J K L M N O A A A A B C B C B C B C D E F G D E F G D E F G D E F G H I J K L M N O H I J K L M N O H I J K L M N O H I J K L M N O B. Beckert: Einführung in die KI / KI für IM p.36

96 Iterative deepening search: Example omania with l = 0 Arad B. Beckert: Einführung in die KI / KI für IM p.37

97 Iterative deepening search: Example omania with l = 1 Arad B. Beckert: Einführung in die KI / KI für IM p.38

98 Iterative deepening search: Example omania with l = 1 Arad Zerind Sibiu Timisoara B. Beckert: Einführung in die KI / KI für IM p.38

99 Iterative deepening search: Example omania with l = 2 Arad B. Beckert: Einführung in die KI / KI für IM p.39

100 Iterative deepening search: Example omania with l = 2 Arad Zerind Sibiu Timisoara B. Beckert: Einführung in die KI / KI für IM p.39

101 Iterative deepening search: Example omania with l = 2 Arad Zerind Sibiu Timisoara Arad Oradea B. Beckert: Einführung in die KI / KI für IM p.39

102 Iterative deepening search: Example omania with l = 2 Arad Zerind Sibiu Timisoara Arad Oradea Arad Oradea Fagaras imnicu Vilcea B. Beckert: Einführung in die KI / KI für IM p.39

103 Iterative deepening search: Example omania with l = 2 Arad Zerind Sibiu Timisoara Arad Oradea Arad Oradea Fagaras imnicu Vilcea Arad Lugoj B. Beckert: Einführung in die KI / KI für IM p.39

104 Iterative deepening search: Properties Complete Time Space Optimal B. Beckert: Einführung in die KI / KI für IM p.40

105 Iterative deepening search: Properties Complete Yes Time Space Optimal B. Beckert: Einführung in die KI / KI für IM p.40

106 Iterative deepening search: Properties Complete Yes Time (d + 1)b 0 + db 1 + (d 1)b b d O(b d+1 ) Space Optimal B. Beckert: Einführung in die KI / KI für IM p.40

107 Iterative deepening search: Properties Complete Yes Time (d + 1)b 0 + db 1 + (d 1)b b d O(b d+1 ) Space O(bd) Optimal B. Beckert: Einführung in die KI / KI für IM p.40

108 Iterative deepening search: Properties Complete Yes Time (d + 1)b 0 + db 1 + (d 1)b b d O(b d+1 ) Space O(bd) Optimal Yes (if step cost = 1) B. Beckert: Einführung in die KI / KI für IM p.40

109 Iterative deepening search: Properties Complete Yes Time (d + 1)b 0 + db 1 + (d 1)b b d O(b d+1 ) Space O(bd) Optimal Yes (if step cost = 1) (Depth-First) Iterative-Deepening Search often used in practice for search spaces of large, infinite, or unknown depth. B. Beckert: Einführung in die KI / KI für IM p.40

110 Comparison Criterion Breadthfirst Uniformcost Depthfirst Iterative deepening Complete? Yes Yes No Yes Time b d+1 b d b m b d Space b d+1 b d bm bd Optimal? Yes Yes No Yes B. Beckert: Einführung in die KI / KI für IM p.41

111 Comparison Breadth-first search Iterative deepening search B. Beckert: Einführung in die KI / KI für IM p.42

112 Summary Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored Variety of uninformed search strategies Iterative deepening search uses only linear space and not much more time than other uninformed algorithms B. Beckert: Einführung in die KI / KI für IM p.43

Introduction to Artificial Intelligence. Planning

Introduction to Artificial Intelligence. Planning Introduction to Artificial Intelligence Planning Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Wintersemester 2003/2004 B. Beckert: Einführung in die KI / KI für IM p.1 Outline Search vs. planning STRIPS

More information

Hardware Implementation of Viterbi Decoder for Wireless Applications

Hardware Implementation of Viterbi Decoder for Wireless Applications Hardware Implementation of Viterbi Decoder for Wireless Applications Bhupendra Singh 1, Sanjeev Agarwal 2 and Tarun Varma 3 Deptt. of Electronics and Communication Engineering, 1 Amity School of Engineering

More information

Brian Holden Kandou Bus, S.A. IEEE GE Study Group September 2, 2013 York, United Kingdom

Brian Holden Kandou Bus, S.A. IEEE GE Study Group September 2, 2013 York, United Kingdom Simulation results for NRZ, ENRZ & PAM-4 on 16-wire full-sized 400GE backplanes Brian Holden Kandou Bus, S.A. brian@kandou.com IEEE 802.3 400GE Study Group September 2, 2013 York, United Kingdom IP Disclosure

More information

A Fast Constant Coefficient Multiplier for the XC6200

A Fast Constant Coefficient Multiplier for the XC6200 A Fast Constant Coefficient Multiplier for the XC6200 Tom Kean, Bernie New and Bob Slous Xilinx Inc. Abstract. We discuss the design of a high performance constant coefficient multiplier on the Xilinx

More information

TEST PATTERNS COMPRESSION TECHNIQUES BASED ON SAT SOLVING FOR SCAN-BASED DIGITAL CIRCUITS

TEST PATTERNS COMPRESSION TECHNIQUES BASED ON SAT SOLVING FOR SCAN-BASED DIGITAL CIRCUITS TEST PATTERNS COMPRESSION TECHNIQUES BASED ON SAT SOLVING FOR SCAN-BASED DIGITAL CIRCUITS Jiří Balcárek Informatics and Computer Science, 1-st class, full-time study Supervisor: Ing. Jan Schmidt, Ph.D.,

More information

ni.com Digital Signal Processing for Every Application

ni.com Digital Signal Processing for Every Application Digital Signal Processing for Every Application Digital Signal Processing is Everywhere High-Volume Image Processing Production Test Structural Sound Health and Vibration Monitoring RF WiMAX, and Microwave

More information

Instruction Level Parallelism Part III

Instruction Level Parallelism Part III Course on: Advanced Computer Architectures Instruction Level Parallelism Part III Prof. Cristina Silvano Politecnico di Milano email: cristina.silvano@polimi.it 1 Outline of Part III Dynamic Scheduling

More information

NV Series PA Modification for Improved Performance in FM+HD and HD Modes

NV Series PA Modification for Improved Performance in FM+HD and HD Modes NV Series PA Modification for Improved Performance in FM+HD and HD Modes IS10001 Issue 0.3... 02 March 2010 Nautel Limited 10089 Peggy's Cove Road, Hackett's Cove, NS, Canada B3Z 3J4 T.877 6 nautel (628835)

More information

Speech and Speaker Recognition for the Command of an Industrial Robot

Speech and Speaker Recognition for the Command of an Industrial Robot Speech and Speaker Recognition for the Command of an Industrial Robot CLAUDIA MOISA*, HELGA SILAGHI*, ANDREI SILAGHI** *Dept. of Electric Drives and Automation University of Oradea University Street, nr.

More information

Cascadable 4-Bit Comparator

Cascadable 4-Bit Comparator EE 415 Project Report for Cascadable 4-Bit Comparator By William Dixon Mailbox 509 June 1, 2010 INTRODUCTION... 3 THE CASCADABLE 4-BIT COMPARATOR... 4 CONCEPT OF OPERATION... 4 LIMITATIONS... 5 POSSIBILITIES

More information

Introduction to Probability Exercises

Introduction to Probability Exercises Introduction to Probability Exercises Look back to exercise 1 on page 368. In that one, you found that the probability of rolling a 6 on a twelve sided die was 1 12 (or, about 8%). Let s make sure that

More information

Getting Started with the LabVIEW Sound and Vibration Toolkit

Getting Started with the LabVIEW Sound and Vibration Toolkit 1 Getting Started with the LabVIEW Sound and Vibration Toolkit This tutorial is designed to introduce you to some of the sound and vibration analysis capabilities in the industry-leading software tool

More information

Comparative Study of JPEG2000 and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences

Comparative Study of JPEG2000 and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences Comparative Study of and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences Pankaj Topiwala 1 FastVDO, LLC, Columbia, MD 210 ABSTRACT This paper reports the rate-distortion performance comparison

More information

Wire Delay and Switch Logic

Wire Delay and Switch Logic Wire Delay and Switch Logic Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Topics Wire delay Buffer insertion Crosstalk Switch logic

More information

APPLICATION NOTE. Fiber Alignment Now Achievable with Commercial Software

APPLICATION NOTE. Fiber Alignment Now Achievable with Commercial Software APPLICATION NOTE Fiber Alignment Now Achievable with Commercial Software 55 Fiber Alignment Now Achievable with Commercial Software Fiber Alignment Fiber (or optical) alignment s goal is to find the location

More information

ALGEBRAIC PURE TONE COMPOSITIONS CONSTRUCTED VIA SIMILARITY

ALGEBRAIC PURE TONE COMPOSITIONS CONSTRUCTED VIA SIMILARITY ALGEBRAIC PURE TONE COMPOSITIONS CONSTRUCTED VIA SIMILARITY WILL TURNER Abstract. We describe a family of musical compositions constructed by algebraic techniques, based on the notion of similarity between

More information

ACT-R ACT-R. Core Components of the Architecture. Core Commitments of the Theory. Chunks. Modules

ACT-R ACT-R. Core Components of the Architecture. Core Commitments of the Theory. Chunks. Modules ACT-R & A 1000 Flowers ACT-R Adaptive Control of Thought Rational Theory of cognition today Cognitive architecture Programming Environment 2 Core Commitments of the Theory Modularity (and what the modules

More information

Instruction Level Parallelism and Its. (Part II) ECE 154B

Instruction Level Parallelism and Its. (Part II) ECE 154B Instruction Level Parallelism and Its Exploitation (Part II) ECE 154B Dmitri Strukov ILP techniques not covered last week this week next week Scoreboard Technique Review Allow for out of order execution

More information

The Design of Efficient Viterbi Decoder and Realization by FPGA

The Design of Efficient Viterbi Decoder and Realization by FPGA Modern Applied Science; Vol. 6, No. 11; 212 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education The Design of Efficient Viterbi Decoder and Realization by FPGA Liu Yanyan

More information

Example the number 21 has the following pairs of squares and numbers that produce this sum.

Example the number 21 has the following pairs of squares and numbers that produce this sum. by Philip G Jackson info@simplicityinstinct.com P O Box 10240, Dominion Road, Mt Eden 1446, Auckland, New Zealand Abstract Four simple attributes of Prime Numbers are shown, including one that although

More information

Digital Signal Processing Detailed Course Outline

Digital Signal Processing Detailed Course Outline Digital Signal Processing Detailed Course Outline Lesson 1 - Overview Many digital signal processing algorithms emulate analog processes that have been around for decades. Other signal processes are only

More information

A Model of Musical Motifs

A Model of Musical Motifs A Model of Musical Motifs Torsten Anders torstenanders@gmx.de Abstract This paper presents a model of musical motifs for composition. It defines the relation between a motif s music representation, its

More information

Data flow architecture for high-speed optical processors

Data flow architecture for high-speed optical processors Data flow architecture for high-speed optical processors Kipp A. Bauchert and Steven A. Serati Boulder Nonlinear Systems, Inc., Boulder CO 80301 1. Abstract For optical processor applications outside of

More information

HYBRID CONCATENATED CONVOLUTIONAL CODES FOR DEEP SPACE MISSION

HYBRID CONCATENATED CONVOLUTIONAL CODES FOR DEEP SPACE MISSION HYBRID CONCATENATED CONVOLUTIONAL CODES FOR DEEP SPACE MISSION Presented by Dr.DEEPAK MISHRA OSPD/ODCG/SNPA Objective :To find out suitable channel codec for future deep space mission. Outline: Interleaver

More information

Vector-Valued Image Interpolation by an Anisotropic Diffusion-Projection PDE

Vector-Valued Image Interpolation by an Anisotropic Diffusion-Projection PDE Computer Vision, Speech Communication and Signal Processing Group School of Electrical and Computer Engineering National Technical University of Athens, Greece URL: http://cvsp.cs.ntua.gr Vector-Valued

More information

Tomasulo Algorithm. Developed at IBM and first implemented in IBM s 360/91

Tomasulo Algorithm. Developed at IBM and first implemented in IBM s 360/91 Tomasulo Algorithm Developed at IBM and first implemented in IBM s 360/91 IBM wanted to use the existing compiler instead of a specialized compiler for high end machines. Tracks when operands are available

More information

Music Source Separation

Music Source Separation Music Source Separation Hao-Wei Tseng Electrical and Engineering System University of Michigan Ann Arbor, Michigan Email: blakesen@umich.edu Abstract In popular music, a cover version or cover song, or

More information

Auto classification and simulation of mask defects using SEM and CAD images

Auto classification and simulation of mask defects using SEM and CAD images Auto classification and simulation of mask defects using SEM and CAD images Tung Yaw Kang, Hsin Chang Lee Taiwan Semiconductor Manufacturing Company, Ltd. 25, Li Hsin Road, Hsinchu Science Park, Hsinchu

More information

2. AN INTROSPECTION OF THE MORPHING PROCESS

2. AN INTROSPECTION OF THE MORPHING PROCESS 1. INTRODUCTION Voice morphing means the transition of one speech signal into another. Like image morphing, speech morphing aims to preserve the shared characteristics of the starting and final signals,

More information

Lecture 16: Instruction Level Parallelism -- Dynamic Scheduling (OOO) via Tomasulo s Approach

Lecture 16: Instruction Level Parallelism -- Dynamic Scheduling (OOO) via Tomasulo s Approach Lecture 16: Instruction Level Parallelism -- Dynamic Scheduling (OOO) via Tomasulo s Approach CSE 564 Computer Architecture Summer 2017 Department of Computer Science and Engineering Yonghong Yan yan@oakland.edu

More information

ADS Basic Automation solutions for the lighting industry

ADS Basic Automation solutions for the lighting industry ADS Basic Automation solutions for the lighting industry Rethinking productivity means continuously making full use of all opportunities. The increasing intensity of the competition, saturated markets,

More information

Gossip Spread in Social Network Models

Gossip Spread in Social Network Models DRAFT 2016-06-28 Gossip Spread in Social Network Models Tobias Johansson, Kristianstad University Tobias.Johansson@hkr.se Abstract Gossip almost inevitably arises in real social networks. In this article

More information

6.UAP Project. FunPlayer: A Real-Time Speed-Adjusting Music Accompaniment System. Daryl Neubieser. May 12, 2016

6.UAP Project. FunPlayer: A Real-Time Speed-Adjusting Music Accompaniment System. Daryl Neubieser. May 12, 2016 6.UAP Project FunPlayer: A Real-Time Speed-Adjusting Music Accompaniment System Daryl Neubieser May 12, 2016 Abstract: This paper describes my implementation of a variable-speed accompaniment system that

More information

arxiv: v1 [cs.fl] 26 May 2010

arxiv: v1 [cs.fl] 26 May 2010 arxiv:.486v [cs.fl] 6 May A new weakly universal cellular automaton in the 3D hyperbolic space with two states Maurice Margenstern Université Paul Verlaine Metz, IUT de Metz, LITA EA 397, UFR MIM, Campus

More information

Using the MAX3656 Laser Driver to Transmit Serial Digital Video with Pathological Patterns

Using the MAX3656 Laser Driver to Transmit Serial Digital Video with Pathological Patterns Design Note: HFDN-33.0 Rev 0, 8/04 Using the MAX3656 Laser Driver to Transmit Serial Digital Video with Pathological Patterns MAXIM High-Frequency/Fiber Communications Group AVAILABLE 6hfdn33.doc Using

More information

V9A01 Solution Specification V0.1

V9A01 Solution Specification V0.1 V9A01 Solution Specification V0.1 CONTENTS V9A01 Solution Specification Section 1 Document Descriptions... 4 1.1 Version Descriptions... 4 1.2 Nomenclature of this Document... 4 Section 2 Solution Overview...

More information

Lossless Compression Algorithms for Direct- Write Lithography Systems

Lossless Compression Algorithms for Direct- Write Lithography Systems Lossless Compression Algorithms for Direct- Write Lithography Systems Hsin-I Liu Video and Image Processing Lab Department of Electrical Engineering and Computer Science University of California at Berkeley

More information

Display Wall. Morris County Emergency Operations Cente. LED Display Wall. [120 Series] Redundant

Display Wall. Morris County Emergency Operations Cente. LED Display Wall. [120 Series] Redundant Display Wall Morris County Emergency Operations Cente LED Display Wall [120 Series] Redundant New Wide-format LED Display Wall Cubes Guarantee High Performance and Quality Cenace CFE Puebla Mexico Smart

More information

Explorer Edition FUZZY LOGIC DEVELOPMENT TOOL FOR ST6

Explorer Edition FUZZY LOGIC DEVELOPMENT TOOL FOR ST6 fuzzytech ST6 Explorer Edition FUZZY LOGIC DEVELOPMENT TOOL FOR ST6 DESIGN: System: up to 4 inputs and one output Variables: up to 7 labels per input/output Rules: up to 125 rules ON-LINE OPTIMISATION:

More information

Sharif University of Technology. SoC: Introduction

Sharif University of Technology. SoC: Introduction SoC Design Lecture 1: Introduction Shaahin Hessabi Department of Computer Engineering System-on-Chip System: a set of related parts that act as a whole to achieve a given goal. A system is a set of interacting

More information

Matrix Mathematics: Theory, Facts, and Formulas

Matrix Mathematics: Theory, Facts, and Formulas Matrix Mathematics: Theory, Facts, and Formulas Dennis S. Bernstein Click here if your download doesn"t start automatically Matrix Mathematics: Theory, Facts, and Formulas Dennis S. Bernstein Matrix Mathematics:

More information

Investigation of Digital Signal Processing of High-speed DACs Signals for Settling Time Testing

Investigation of Digital Signal Processing of High-speed DACs Signals for Settling Time Testing Universal Journal of Electrical and Electronic Engineering 4(2): 67-72, 2016 DOI: 10.13189/ujeee.2016.040204 http://www.hrpub.org Investigation of Digital Signal Processing of High-speed DACs Signals for

More information

10GBASE-KR Start-Up Protocol

10GBASE-KR Start-Up Protocol 10GBASE-KR Start-Up Protocol 1 Supporters Luke Chang, Intel Justin Gaither, Xilinx Ilango Ganga, Intel Andre Szczepanek, TI Pat Thaler, Agilent Rob Brink, Agere Systems Scope and Purpose This presentation

More information

On-line Multi-label Classification

On-line Multi-label Classification On-line Multi-label Classification A Problem Transformation Approach Jesse Read Supervisors: Bernhard Pfahringer, Geoff Holmes Hamilton, New Zealand Outline Multi label Classification Problem Transformation

More information

Model GS7000 GainMaker Node Forward Local Injection Module Installation Instructions

Model GS7000 GainMaker Node Forward Local Injection Module Installation Instructions Model GS7000 GainMaker Node Forward Local Injection Module Installation Instructions Introduction The Forward Local Injection (FLI) Module is a field installable accessory for the Model GS7000 GainMaker

More information

Synchronous Sequential Design

Synchronous Sequential Design Synchronous Sequential Design SMD098 Computation Structures Lecture 4 1 Synchronous sequential systems Almost all digital systems have some concept of state the outputs of a system depends on the past

More information

Using Embedded Dynamic Random Access Memory to Reduce Energy Consumption of Magnetic Recording Read Channel

Using Embedded Dynamic Random Access Memory to Reduce Energy Consumption of Magnetic Recording Read Channel IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 1, JANUARY 2010 87 Using Embedded Dynamic Random Access Memory to Reduce Energy Consumption of Magnetic Recording Read Channel Ningde Xie 1, Tong Zhang 1, and

More information

Optimization of memory based multiplication for LUT

Optimization of memory based multiplication for LUT Optimization of memory based multiplication for LUT V. Hari Krishna *, N.C Pant ** * Guru Nanak Institute of Technology, E.C.E Dept., Hyderabad, India ** Guru Nanak Institute of Technology, Prof & Head,

More information

TechNote: MuraTool CA: 1 2/9/00. Figure 1: High contrast fringe ring mura on a microdisplay

TechNote: MuraTool CA: 1 2/9/00. Figure 1: High contrast fringe ring mura on a microdisplay Mura: The Japanese word for blemish has been widely adopted by the display industry to describe almost all irregular luminosity variation defects in liquid crystal displays. Mura defects are caused by

More information

Popularity-Aware Rate Allocation in Multi-View Video

Popularity-Aware Rate Allocation in Multi-View Video Popularity-Aware Rate Allocation in Multi-View Video Attilio Fiandrotti a, Jacob Chakareski b, Pascal Frossard b a Computer and Control Engineering Department, Politecnico di Torino, Turin, Italy b Signal

More information

PROTOTYPE OF IOT ENABLED SMART FACTORY. HaeKyung Lee and Taioun Kim. Received September 2015; accepted November 2015

PROTOTYPE OF IOT ENABLED SMART FACTORY. HaeKyung Lee and Taioun Kim. Received September 2015; accepted November 2015 ICIC Express Letters Part B: Applications ICIC International c 2016 ISSN 2185-2766 Volume 7, Number 4(tentative), April 2016 pp. 1 ICICIC2015-SS21-06 PROTOTYPE OF IOT ENABLED SMART FACTORY HaeKyung Lee

More information

The Time Series Forecasting System Charles Hallahan, Economic Research Service/USDA, Washington, DC

The Time Series Forecasting System Charles Hallahan, Economic Research Service/USDA, Washington, DC INTRODUCTION The Time Series Forecasting System Charles Hallahan, Economic Research Service/USDA, Washington, DC The Time Series Forecasting System (TSFS) is a component of SAS/ETS that provides a menu-based

More information

Loudness and Sharpness Calculation

Loudness and Sharpness Calculation 10/16 Loudness and Sharpness Calculation Psychoacoustics is the science of the relationship between physical quantities of sound and subjective hearing impressions. To examine these relationships, physical

More information

Multichannel Satellite Image Resolution Enhancement Using Dual-Tree Complex Wavelet Transform and NLM Filtering

Multichannel Satellite Image Resolution Enhancement Using Dual-Tree Complex Wavelet Transform and NLM Filtering Multichannel Satellite Image Resolution Enhancement Using Dual-Tree Complex Wavelet Transform and NLM Filtering P.K Ragunath 1, A.Balakrishnan 2 M.E, Karpagam University, Coimbatore, India 1 Asst Professor,

More information

UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

UWE has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material. Nash, C. (2016) Manhattan: Serious games for serious music. In: Music, Education and Technology (MET) 2016, London, UK, 14-15 March 2016. London, UK: Sempre Available from: http://eprints.uwe.ac.uk/28794

More information

Leakage Current Reduction in CMOS VLSI Circuits by Input Vector Control

Leakage Current Reduction in CMOS VLSI Circuits by Input Vector Control eakage Current Reduction in CMOS VSI Circuits by Input Vector Control Afshin Abdollahi University of Southern California os Angeles CA 989 afshin@usc.edu Farzan Fallah Fujitsu aboratories of America San

More information

The Turing Test and Its Discontents

The Turing Test and Its Discontents The Turing Test and Its Discontents Administrivia Class Website: http://l3d.cs.colorado.edu/~ctg/classes/issmeth08/issmeth0 8.html Midterm paper (due March 18; 35 percent of grade) Final paper (due May

More information

Proposal for 10Gb/s single-lane PHY using PAM-4 signaling

Proposal for 10Gb/s single-lane PHY using PAM-4 signaling Proposal for 10Gb/s single-lane PHY using PAM-4 signaling Rob Brink, Agere Systems Bill Hoppin, Synopsys Supporters Ted Rado, Analogix John D Ambrosia, Tyco Electronics* * This contributor supports multi-level

More information

for Digital IC's Design-for-Test and Embedded Core Systems Alfred L. Crouch Prentice Hall PTR Upper Saddle River, NJ

for Digital IC's Design-for-Test and Embedded Core Systems Alfred L. Crouch Prentice Hall PTR Upper Saddle River, NJ Design-for-Test for Digital IC's and Embedded Core Systems Alfred L. Crouch Prentice Hall PTR Upper Saddle River, NJ 07458 www.phptr.com ISBN D-13-DflMfla7-l : Ml H Contents Preface Acknowledgments Introduction

More information

Outline. flip-flops registers. sorting words values of numbers given in words. using Python lists towers of Hanoi

Outline. flip-flops registers. sorting words values of numbers given in words. using Python lists towers of Hanoi Outline Digital Systems flip-flops registers 2 Intrinsic Operations sorting words values of numbers given in words 3 queues and stacks using Python lists towers of Hanoi 4 Summary + Assignments MCS 26

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 12: Divider Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements & Agenda Divider Basics Dynamic CMOS

More information

POSITIONING SUBWOOFERS

POSITIONING SUBWOOFERS POSITIONING SUBWOOFERS PRINCIPLE CONSIDERATIONS Lynx Pro Audio / Technical documents When you arrive to a venue and see the Front of House you can find different ways how subwoofers are placed. Sometimes

More information

Configurable Multiple Value Encoders using Semi Floating-Gate

Configurable Multiple Value Encoders using Semi Floating-Gate Configurable Multiple Value Encoders using Semi Floating-Gate Dr. Scient thesis René Jensen May, 16th 2008 ACKNOWLEDGMENTS This thesis has been submitted to the Faculty of Mathematics and Natural Sciences

More information

OUTDOOR LED DISPLAYS

OUTDOOR LED DISPLAYS OUTDOOR LED DISPLAYS OUTDOOR FULL-COLOR DISPLAY PH 10mm Cabinet Module Lamp Specifications Product sizes: P10mm Pixel Pitch Pixel configuration Pixel density Cabinet Dimension Cabinet Resolution Module

More information

Flip-flop Clustering by Weighted K-means Algorithm

Flip-flop Clustering by Weighted K-means Algorithm Flip-flop Clustering by Weighted K-means Algorithm Gang Wu, Yue Xu, Dean Wu, Manoj Ragupathy, Yu-yen Mo and Chris Chu Department of Electrical and Computer Engineering, Iowa State University, IA, United

More information

from ocean to cloud ADAPTING THE C&A PROCESS FOR COHERENT TECHNOLOGY

from ocean to cloud ADAPTING THE C&A PROCESS FOR COHERENT TECHNOLOGY ADAPTING THE C&A PROCESS FOR COHERENT TECHNOLOGY Peter Booi (Verizon), Jamie Gaudette (Ciena Corporation), and Mark André (France Telecom Orange) Email: Peter.Booi@nl.verizon.com Verizon, 123 H.J.E. Wenckebachweg,

More information

Planar LookThru OLED Transparent Display. Content Developer s Guide. 1 TOLED Content Developer s Guide A

Planar LookThru OLED Transparent Display. Content Developer s Guide. 1 TOLED Content Developer s Guide A Planar LookThru OLED Transparent Display Content Developer s Guide 1 TOLED Content Developer s Guide 020-1316-00A Table of Contents How Transparent OLED Works... 3 History and Definitions... 3 Pixel Structure...

More information

Robust Joint Source-Channel Coding for Image Transmission Over Wireless Channels

Robust Joint Source-Channel Coding for Image Transmission Over Wireless Channels 962 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 6, SEPTEMBER 2000 Robust Joint Source-Channel Coding for Image Transmission Over Wireless Channels Jianfei Cai and Chang

More information

BCCU Brightness and Color Control Unit. XMC microcontrollers September 2016

BCCU Brightness and Color Control Unit. XMC microcontrollers September 2016 Brightness and Color Control Unit XMC microcontrollers September 2016 Agenda 1 2 3 4 5 6 7 Overview Key feature: Automatic high frequency brightness modulation Key feature: Automatic exponential dimming

More information

AN ALGORITHM FOR LOCATING FUNDAMENTAL FREQUENCY (F0) MARKERS IN SPEECH

AN ALGORITHM FOR LOCATING FUNDAMENTAL FREQUENCY (F0) MARKERS IN SPEECH AN ALGORITHM FOR LOCATING FUNDAMENTAL FREQUENCY (F0) MARKERS IN SPEECH by Princy Dikshit B.E (C.S) July 2000, Mangalore University, India A Thesis Submitted to the Faculty of Old Dominion University in

More information

San Francisco was because it famous and the stunning setting between the bay and ocean makes it an incredible attractive area to fly over.

San Francisco was because it famous and the stunning setting between the bay and ocean makes it an incredible attractive area to fly over. US Cities X San Francisco Introduction US Cities X is a series of city scenery that should be positioned between the high end city scenery like Manhattan X and the default scenery. It is intended to give

More information

EMPTY and FULL Flag Behaviors of the Axcelerator FIFO Controller

EMPTY and FULL Flag Behaviors of the Axcelerator FIFO Controller Application Note AC228 and FULL Flag Behaviors of the Axcelerator FIFO Controller Introduction The purpose of this application note is to specifically illustrate the following two behaviors of the FULL

More information

Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator

Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator Tutorial: Trak design of an electron injector for a coupled-cavity linear accelerator Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

CS152 Computer Architecture and Engineering Lecture 17 Advanced Pipelining: Tomasulo Algorithm

CS152 Computer Architecture and Engineering Lecture 17 Advanced Pipelining: Tomasulo Algorithm CS152 Computer Architecture and Engineering Lecture 17 Advanced Pipelining: Tomasulo Algorithm 2003-10-23 Dave Patterson (www.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs152/ CS 152 L17 Adv.

More information

C6 A modul and C6 A modul K. The new connection system for a wide variety of applications of course with Cat.6 A

C6 A modul and C6 A modul K. The new connection system for a wide variety of applications of course with Cat.6 A C6 A modul and C6 A modul K The new connection system for a wide variety of applications of course with Cat.6 A Intelligent system solution for structured cabling Nowadays the need for high data transfer

More information

a) (A+B) (C+D) b) AB+CD c) AC+BD d) (A+D) (B+C)

a) (A+B) (C+D) b) AB+CD c) AC+BD d) (A+D) (B+C) 1. Implement XNOR gate using NAND. 2. The output of the following circuit is a) (A+B) (C+D) b) AB+CD c) AC+BD d) (A+D) (B+C) 3. Which of the following memory element can have possible race condition. a)

More information

World s first over-the-air LAA trial. Joint effort by Qualcomm Technologies, Inc. and Deutsche Telekom AG in Nuremberg, Germany during November 2015

World s first over-the-air LAA trial. Joint effort by Qualcomm Technologies, Inc. and Deutsche Telekom AG in Nuremberg, Germany during November 2015 World s first over-the-air LAA trial Joint effort by Qualcomm Technologies, Inc. and Deutsche Telekom AG in Nuremberg, Germany during November 205 Over-the-air trial demonstrates LAA advantages Increased

More information

Visualizing Euclidean Rhythms Using Tangle Theory

Visualizing Euclidean Rhythms Using Tangle Theory POLYMATH: AN INTERDISCIPLINARY ARTS & SCIENCES JOURNAL Visualizing Euclidean Rhythms Using Tangle Theory Jonathon Kirk, North Central College Neil Nicholson, North Central College Abstract Recently there

More information

Modulator Overview System Design vs. Tunnel Topologies. Snowmass Workshop August 16, 2005 Ray Larsen for the SLAC ILC Group

Modulator Overview System Design vs. Tunnel Topologies. Snowmass Workshop August 16, 2005 Ray Larsen for the SLAC ILC Group Modulator Overview System Design vs. Tunnel Topologies Snowmass Workshop August 16, 2005 Ray Larsen for the SLAC ILC Group Outline! I. Modulator Options vs. Topologies! II. Preliminary Cost Estimates!

More information

Low Loss RG 402 Equivalent

Low Loss RG 402 Equivalent 421-671 Low Loss RG 402 Equivalent Section 10 Low Loss RG 402 Equivalent In applications that require the bendability of solid dielectric, but with the low loss that only a low density Teflon dielectric

More information

Supplemental Material: Color Compatibility From Large Datasets

Supplemental Material: Color Compatibility From Large Datasets Supplemental Material: Color Compatibility From Large Datasets Peter O Donovan, Aseem Agarwala, and Aaron Hertzmann Project URL: www.dgp.toronto.edu/ donovan/color/ 1 Unmixing color preferences In the

More information

Dental Laboratory Improves Efficiency Today While Preparing for Tomorrow s Technology

Dental Laboratory Improves Efficiency Today While Preparing for Tomorrow s Technology Dental Laboratory Improves Efficiency Today While Preparing for Tomorrow s Technology Richard Peebles is not equipped with a crystal ball, but that hasn t stopped him from trying to see into the future

More information

Project 6: Latches and flip-flops

Project 6: Latches and flip-flops Project 6: Latches and flip-flops Yuan Ze University epartment of Computer Engineering and Science Copyright by Rung-Bin Lin, 1999 All rights reserved ate out: 06/5/2003 ate due: 06/25/2003 Purpose: This

More information

De-embedding Techniques For Passive Components Implemented on a 0.25 µm Digital CMOS Process

De-embedding Techniques For Passive Components Implemented on a 0.25 µm Digital CMOS Process PIERS ONLINE, VOL. 3, NO. 2, 27 184 De-embedding Techniques For Passive Components Implemented on a.25 µm Digital CMOS Process Marc D. Rosales, Honee Lyn Tan, Louis P. Alarcon, and Delfin Jay Sabido IX

More information

Start with some basics: display devices

Start with some basics: display devices Output Concepts Start with some basics: display devices Just how do we get images onto a screen? Most prevalent device: CRT Cathode Ray Tube AKA TV tube 2 Cathode Ray Tubes Cutting edge 1930 s technology

More information

LOW POWER & AREA EFFICIENT LAYOUT ANALYSIS OF CMOS ENCODER

LOW POWER & AREA EFFICIENT LAYOUT ANALYSIS OF CMOS ENCODER 90 LOW POWER & AREA EFFICIENT LAYOUT ANALYSIS OF CMOS ENCODER Tanuj Yadav Electronics & Communication department National Institute of Teacher s Training and Research Chandigarh ABSTRACT An Encoder is

More information

WATSON BEAT: COMPOSING MUSIC USING FORESIGHT AND PLANNING

WATSON BEAT: COMPOSING MUSIC USING FORESIGHT AND PLANNING WATSON BEAT: COMPOSING MUSIC USING FORESIGHT AND PLANNING Janani Mukundan IBM Research, Austin Richard Daskas IBM Research, Austin 1 Abstract We introduce Watson Beat, a cognitive system that composes

More information

Varieties of Nominalism Predicate Nominalism The Nature of Classes Class Membership Determines Type Testing For Adequacy

Varieties of Nominalism Predicate Nominalism The Nature of Classes Class Membership Determines Type Testing For Adequacy METAPHYSICS UNIVERSALS - NOMINALISM LECTURE PROFESSOR JULIE YOO Varieties of Nominalism Predicate Nominalism The Nature of Classes Class Membership Determines Type Testing For Adequacy Primitivism Primitivist

More information

FS3. Quick Start Guide. Overview. FS3 Control

FS3. Quick Start Guide. Overview. FS3 Control FS3 Quick Start Guide Overview The new FS3 combines AJA's industry-proven frame synchronization with high-quality 4K up-conversion technology to seamlessly integrate SD and HD signals into 4K workflows.

More information

A Pseudorandom Binary Generator Based on Chaotic Linear Feedback Shift Register

A Pseudorandom Binary Generator Based on Chaotic Linear Feedback Shift Register A Pseudorandom Binary Generator Based on Chaotic Linear Feedback Shift Register Saad Muhi Falih Department of Computer Technical Engineering Islamic University College Al Najaf al Ashraf, Iraq saadmuheyfalh@gmail.com

More information

Using on-chip Test Pattern Compression for Full Scan SoC Designs

Using on-chip Test Pattern Compression for Full Scan SoC Designs Using on-chip Test Pattern Compression for Full Scan SoC Designs Helmut Lang Senior Staff Engineer Jens Pfeiffer CAD Engineer Jeff Maguire Principal Staff Engineer Motorola SPS, System-on-a-Chip Design

More information

AltiumLive 2017: Effective Methods for Advanced Routing

AltiumLive 2017: Effective Methods for Advanced Routing AltiumLive 2017: Effective Methods for Advanced Routing Charles Pfeil Senior Product Manager Dave Cousineau Sr. Field Applications Engineer Charles Pfeil Senior Product Manager Over 50 years of experience

More information

ON THE INTERPOLATION OF ULTRASONIC GUIDED WAVE SIGNALS

ON THE INTERPOLATION OF ULTRASONIC GUIDED WAVE SIGNALS ON THE INTERPOLATION OF ULTRASONIC GUIDED WAVE SIGNALS Jennifer E. Michaels 1, Ren-Jean Liou 2, Jason P. Zutty 1, and Thomas E. Michaels 1 1 School of Electrical & Computer Engineering, Georgia Institute

More information

DATA COMPRESSION USING THE FFT

DATA COMPRESSION USING THE FFT EEE 407/591 PROJECT DUE: NOVEMBER 21, 2001 DATA COMPRESSION USING THE FFT INSTRUCTOR: DR. ANDREAS SPANIAS TEAM MEMBERS: IMTIAZ NIZAMI - 993 21 6600 HASSAN MANSOOR - 993 69 3137 Contents TECHNICAL BACKGROUND...

More information

LED Display Wall. Display Wall. [120 Series High-Quality, Durable, Rear-projection Display Wall Cubes ] Redundant

LED Display Wall. Display Wall. [120 Series High-Quality, Durable, Rear-projection Display Wall Cubes ] Redundant Display Wall LED Display Wall Photograph courtesy of Hossana B. Ashagrie, Project Manager, Greater Toronto Airports Authority [120 Series High-Quality, Durable, -projection Display Wall Cubes ] Redundant

More information

IOT TECHNOLOGY AND ITS IMPACT

IOT TECHNOLOGY AND ITS IMPACT Presentation at the ABA National IOT Institute, Jones Day, Washington DC March 30, 2016 IOT TECHNOLOGY AND ITS IMPACT DR. VIJAY K. MADISETTI PROFESSOR OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA TECH

More information

Decade Counters Mod-5 counter: Decade Counter:

Decade Counters Mod-5 counter: Decade Counter: Decade Counters We can design a decade counter using cascade of mod-5 and mod-2 counters. Mod-2 counter is just a single flip-flop with the two stable states as 0 and 1. Mod-5 counter: A typical mod-5

More information

OF AN ADVANCED LUT METHODOLOGY BASED FIR FILTER DESIGN PROCESS

OF AN ADVANCED LUT METHODOLOGY BASED FIR FILTER DESIGN PROCESS IMPLEMENTATION OF AN ADVANCED LUT METHODOLOGY BASED FIR FILTER DESIGN PROCESS 1 G. Sowmya Bala 2 A. Rama Krishna 1 PG student, Dept. of ECM. K.L.University, Vaddeswaram, A.P, India, 2 Assistant Professor,

More information

Mosaic 1.1 Progress Report April, 2010

Mosaic 1.1 Progress Report April, 2010 1 Milestones Achieved Mosaic 1.1 Progress Report April, 2010 A final design review was held for the electrical component of the project. The test Dewar is complete and e2v devices have been installed for

More information

VEHICLE TELEMETRY DATA IN THE VERTICAL BLANKING INTERVAL

VEHICLE TELEMETRY DATA IN THE VERTICAL BLANKING INTERVAL VEHICLE TELEMETRY DATA IN THE VERTICAL BLANKING INTERVAL Thomas J. Ryan Senior Engineer Instrumentation Development Branch BDM Corp. P.O. Box 416 Ft. Ord, Ca., 93941 ABSTRACT This paper describes how three

More information