Aspects of Music. Chord Recognition. Musical Chords. Harmony: The Basis of Music. Musical Chords. Musical Chords. Piece of music. Rhythm.

Size: px
Start display at page:

Download "Aspects of Music. Chord Recognition. Musical Chords. Harmony: The Basis of Music. Musical Chords. Musical Chords. Piece of music. Rhythm."

Transcription

1 Aspects of Music Lecture Music Processing Piece of music hord Recognition Meinard Müller International Audio Laboratories rlangen Melody Rhythm Harmony Harmony: The Basis of Music Pachelbel s anon Musical hords ombination of three or more tones which sound simultaneously hord classes Triads including major, minor, diminished, augmented chords Many other more complex chords such as seventh chords Here: focus on major and minor triads oversong Die ine (Die irma) Musical hords The major chord Musical hords The minor chord Derived from the major scale Derived from the minor scale ---- the root ---- the (major) third ---- the fifth ---- the root b ---- the (minor) third ---- the fifth

2 Musical hords Structure of the 24 major/minor chords hord Recognition Development of automatic methods for the harmonic analysis of audio data Applications in the field of music information retrieval: major minor # D D# # # A A# B music segmentation cover song identification audio matching music structure analysis hord Recognition hord Recognition Signal Result Signal eature xtraction lassification Result Segmentation hord label assignment hroma features Type Resolution ompression Smoothing Pattern matching Template aussian raphical Models hord Recognition Baseline Method for hord Recognition iven: Audio file hord templates 24 major/minor chords Output: Segmentation and chord labeling major # major D major D# major minor # minor B A# A # A:min :min A:min :min A:min :min # D# D #

3 Baseline Method for hord Recognition hord templates 24 major/minor chords Baseline Method for hord Recognition 24 chord templates (12 major, 12 minor) hroma feature extraction (framewise) hroma hord labels Baseline Method for hord Recognition Baseline Method for hord Recognition 24 chord templates (12 major, 12 minor) hroma feature extraction (framewise) 24 chord templates (12 major, 12 minor) hroma feature extraction (framewise) ompute for each frame the distance of the feature vector to the 24 templates ompute for each frame the distance of the feature vector to the 24 templates Selected chord according to template with minimal distance to respective feature vector Problems in hord Recognition Problem: Transitions between subsequent chord xample: hopin Mazurka Op. 68 No.3 Problems in hord Recognition Problem: Monphonic musical passages xample: xcerpt of Wagner s Meistersinger orrect alse positive alse negative hromagram B A# A # # D# D #

4 Problems in hord Recognition Problem: rame-wise chord analysis may not be meaningful xample: Bach: Prelude major, BWV 846 Problems in hord Recognition Problem: Ambiguity of chords A minor major minor Problem: Broken chords A B Measure-wise chord analysis necessary Problems in hord Recognition Problem: Reduction to the 24 major/minor chords makes the recognition of more complex chords difficult/impossible! xample: Prelude major, BWV 846, mm Problems in hord Recognition Problem: Tuning problems xample: xcerpt of Wagner s Meistersinger hromagram (from MIDI) B A# A 1 # # D# D # Problems in hord Recognition Problem: Tuning problems xample: xcerpt of Wagner s Meistersinger Problems in hord Recognition Problem: Tuning problems xample: xcerpt of Wagner s Meistersinger hromagram (from MIDI) B A# 1 Problem: Audio is tuned more than half a semi-tone upwards hromagram (from MIDI) B A# 1 Problem: Audio is tuned more than half a semi-tone upwards A A # # D# # # D# Solution: Adjust frequency binning when computing pitch features. D D # #

5 Problems in hord Recognition Problem: Tuning problems Key Relations: ircle of ifths xample: The Beatles Lovely Rita Without tuning orrect alse positive alse negative With tuning rom Key Relations: ircle of ifths Observation: or tonality reasons, some chord progressions are more likely than others. Idea: Usage of Hidden Markov Models (HMMs) to model chord dependencies Markov Models Description of certain stochastic processes Andrei Markov (Wikipedia) rom Markov Models Description of certain stochastic processes 5 sleep 5 = (S,,P) S: States Processes over discrete time Sequence of random variables X1, X2, Process has to follow Markov property: no memory, only current state known future depends only on present, not on past P(Xn+1 = x Xn = y) = P(Xn+1 = x Xn = y, Xn-1 = y2, ) Andrei Markov (Wikipedia) social activity making music 5 5 coding eating : Transitions P: Transition Note: or each state, the sum of outgoing transition is equal to one. [Radu urticapean]

6 Smell = (S,P,V,B) = (S,P,V,B) S: States S: States P: Transition A P: Transition V: Observations V: Observations 0.4 B: mission D 0.4 B: mission Noise Light [Radu urticapean] 24 major/minor chords = (S,P,V,B) S: States Two computational problems 1. Training: learn model parameters (Baum-Welch Algorithm) 2. valuation: find optimal state sequence (Viterbi Algorithm) Probabilities for having a transition from one chord to another chord P: Transition Training data (chroma + labels) Musical knowledge hroma vectors V: Observations Probability for a chord model to produce a chorma distribution B: mission Training HMM chord models (transitions & emissions) Test data (unseen chroma) valuation Recognized chords (labels of state sequence) Training Training 0, Input: Sequence of features (observations) orresponding ground truth chord labels Input: Sequence of features (observations) orresponding ground truth chord labels Output: mission Transition Output: mission Transition

7 valuation valuation x 1 x 2 x 3 x 4... x 1 x 2 x 3 x ,2 0, Input: Sequence of features mission Transition Input: Sequence of features mission Transition Output: Optimal state sequence (estimated chord progression) Output: Optimal state sequence (estimated chord progression) Importance of hroma eature Variant Importance of hroma eature Variant P Normalized chromagram LP Logarithmic compression NS[1] Quantized chromagram NS[11] Temporal smoothing Importance of hroma eature Variant Importance of hroma eature Variant P RP[1] RP Boosting timbre invariance LP NS[1] RP[11] ISP ISP Instantaneous frequency NS[11] And many more chroma variants!

8 Importance of hroma eature Variant xperiment Importance of hroma eature Variant Dependency on feature type Beatles dataset Three-fold cross validation Measurement: -measure ramewise evaluation, each frame = 100 ms 12 major and 12 minor triads -measure eature type Importance of hroma eature Variant Dependency on logarithmic compression Importance of hroma eature Variant Dependency on smoothing (using RP features) -measure -measure ompression factor Smoothing length hroma Toolbox ross-version Analysis eneral Procedure reely available Matlab toolbox eature types: Pitch, hroma, NS, RP onduct analysis for multiple versions of the same object Relate the versions (using a reference) ompare analysis results accross different versions Look for consistencies and inconsistencies Harmonic analysis Different music recordings Same piece of music Music synchronization Musical score

9 Barwise Synchronization Barwise Synchronization MIDI representation with bar information Time (bars) Barwise Synchronization MIDI representation with bar information Barwise Synchronization Music synchronization Time (bars) Time (seconds) Time (seconds) Barwise Synchronization Transfer bar information to audio domain ross-version Harmonic Analysis hord recognition result Barwise presentation of analysis results is of great benefit! Time (seconds) Time (seconds) Time (bars)

10 ross-version Harmonic Analysis hord recognition result Barwise overlay across different music recordings ross-version Harmonic Analysis ross-version chord recognition result hord labels onsistency Time (seconds) Time (bars) Time (bars) ross-version Harmonic Analysis ross-version chord recognition result ross-version Visualization xample: Bach s Prelude BWV 846 in major (bars 11-15) Highly consistent: -minor Inconsistent: -minor, -major, b -major Time (bars) ross-version Visualization xample: Bach s Prelude BWV 846 in major (bars 11-15) ross-version Visualization xample: Bach s Prelude BWV 846 in major (bars 11-15) Highly consistent: -major Inconsistent!

11 ross-version Visualization xample: Bach s Prelude BWV 846 in major (bars 11-15) ross-version Visualization xample: Bach s Prelude BWV 846 in major (bars 11-15) Highly consistent: D-minor round-truth visualization onvenient tool for manual error analysis and evaluation Quantitative valuation Quantitative valuation xample: Bach s Prelude BWV 846 xample: Beethoven s ifth P/R/ measure -measures for individual recordings: Min: 0.44 Max: 7 Mean: 0 P/R/ measure -measures for individual recordings: Min: 3 Max: 3 Mean: 0.60 Degree of consistency Degree of consistency onsistent regions tend to be classified correctly Precision high Recall not too bad Indication of harmonically stable, well-defined tonal centers onsistent regions tend to be classified correctly Precision high Recall not too bad Indication of harmonically stable, well-defined tonal centers Application: xploring Harmonic Structures xample: Beethoven s Piano Sonata Op. 49 No. 2 Application: xploring Harmonic Structures xample: Beethoven s Piano Sonata Op. 49 No. 2

12 Interface: Interpretation Switcher Absolute mode Reference mode hord annotations for four versions Simultaneous comparison of different version-dependent analysis results (here: chord labels) onclusions & uture Work Importance of feature design step ross-version framework Harmonic analysis Tempo analysis Structure analysis Musically meaningful timeline in bars very convenient! Stabilization of analysis results onsistencies seem to have musical meaning Which meaning Tonal centers Towards interdisciplinary research (MIR + musicology) Visualization as meanigful tool in musicology Helpful for analyis of harmonic relations across entire music corpora Literature Taemin ho, Ron J. Weiss, and Juan Pablo Bello. xploring common variations in state of the art chord recognition systems. Proc. Sound and Music omputing onference (SM), pages 1 8, Barcelona, Spain, Takuya ujishima. Realtime chord recognition of musical sound: A system using common lisp music. Proc. International omputer Music onference (IM), pages , Beijing, Nanzhu Jiang, Peter rosche, Verena Konz, and Meinard Müller. Analyzing chroma feature types for automated chord recognition. Proc. 42nd AS onference, Verena Konz, Meinard Müller, and Sebastian wert. A multi-perspective evaluation framework for chord recognition. Proc. ISMIR, pages 9 14, Utrecht, The Netherlands, Matthias Mauch and Simon Dixon. Simultaneous estimation of chords and musical context from audio. I Transactions on Audio, Speech, and Language Processing, 18(6): , Meinard Müller and Sebastian wert. hroma Toolbox: MATLAB implementations for extracting variants of chroma-based audio features. Proc. ISMIR, pages , Miami, USA, Hélène Papadopoulos and eoffroy Peeters. Joint estimation of chords and downbeats from an audio signal. I Transactions on Audio, Speech, and Language Processing, 19(1): , Alexander Sheh and Daniel P. W. llis. hord segmentation and recognition using M-trained hidden Markov models. Proc. ISMIR, pages , Baltimore, USA, Yushi Ueda, Yuuki Uchiyama, Takuya Nishimoto, Nobutaka Ono, and Shigeki Sagayama. HMMbased approach for automatic chord detection using refined acoustic features. Proc. IASSP, pages , Dallas, USA, 2010.

Chord Recognition. Aspects of Music. Musical Chords. Harmony: The Basis of Music. Musical Chords. Musical Chords. Music Processing.

Chord Recognition. Aspects of Music. Musical Chords. Harmony: The Basis of Music. Musical Chords. Musical Chords. Music Processing. dvanced ourse omputer Science Music Processing Summer Term 2 Meinard Müller, Verena Konz Saarland University and MPI Informatik meinard@mpi-inf.mpg.de hord Recognition spects of Music Melody Piece of music

More information

Chord Classification of an Audio Signal using Artificial Neural Network

Chord Classification of an Audio Signal using Artificial Neural Network Chord Classification of an Audio Signal using Artificial Neural Network Ronesh Shrestha Student, Department of Electrical and Electronic Engineering, Kathmandu University, Dhulikhel, Nepal ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

Lecture 11: Chroma and Chords

Lecture 11: Chroma and Chords LN 4896 MUSI SINL PROSSIN Lecture 11: hroma and hords 1. eatures for Music udio 2. hroma eatures 3. hord Recognition an llis ept. lectrical ngineering, olumbia University dpwe@ee.columbia.edu http://www.ee.columbia.edu/~dpwe/e4896/

More information

Music Representations. Beethoven, Bach, and Billions of Bytes. Music. Research Goals. Piano Roll Representation. Player Piano (1900)

Music Representations. Beethoven, Bach, and Billions of Bytes. Music. Research Goals. Piano Roll Representation. Player Piano (1900) Music Representations Lecture Music Processing Sheet Music (Image) CD / MP3 (Audio) MusicXML (Text) Beethoven, Bach, and Billions of Bytes New Alliances between Music and Computer Science Dance / Motion

More information

EE391 Special Report (Spring 2005) Automatic Chord Recognition Using A Summary Autocorrelation Function

EE391 Special Report (Spring 2005) Automatic Chord Recognition Using A Summary Autocorrelation Function EE391 Special Report (Spring 25) Automatic Chord Recognition Using A Summary Autocorrelation Function Advisor: Professor Julius Smith Kyogu Lee Center for Computer Research in Music and Acoustics (CCRMA)

More information

A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models

A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models Kyogu Lee Center for Computer Research in Music and Acoustics Stanford University, Stanford CA 94305, USA

More information

Sparse Representation Classification-Based Automatic Chord Recognition For Noisy Music

Sparse Representation Classification-Based Automatic Chord Recognition For Noisy Music Journal of Information Hiding and Multimedia Signal Processing c 2018 ISSN 2073-4212 Ubiquitous International Volume 9, Number 2, March 2018 Sparse Representation Classification-Based Automatic Chord Recognition

More information

Computational Modelling of Harmony

Computational Modelling of Harmony Computational Modelling of Harmony Simon Dixon Centre for Digital Music, Queen Mary University of London, Mile End Rd, London E1 4NS, UK simon.dixon@elec.qmul.ac.uk http://www.elec.qmul.ac.uk/people/simond

More information

Music Structure Analysis

Music Structure Analysis Lecture Music Processing Music Structure Analysis Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de Book: Fundamentals of Music Processing Meinard Müller Fundamentals

More information

Music Processing Introduction Meinard Müller

Music Processing Introduction Meinard Müller Lecture Music Processing Introduction Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de Music Music Information Retrieval (MIR) Sheet Music (Image) CD / MP3

More information

Book: Fundamentals of Music Processing. Audio Features. Book: Fundamentals of Music Processing. Book: Fundamentals of Music Processing

Book: Fundamentals of Music Processing. Audio Features. Book: Fundamentals of Music Processing. Book: Fundamentals of Music Processing Book: Fundamentals of Music Processing Lecture Music Processing Audio Features Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de Meinard Müller Fundamentals

More information

Audio Structure Analysis

Audio Structure Analysis Lecture Music Processing Audio Structure Analysis Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de Music Structure Analysis Music segmentation pitch content

More information

Data Driven Music Understanding

Data Driven Music Understanding ata riven Music Understanding an Ellis Laboratory for Recognition and Organization of Speech and udio ept. Electrical Engineering, olumbia University, NY US http://labrosa.ee.columbia.edu/ 1. Motivation:

More information

Audio Structure Analysis

Audio Structure Analysis Advanced Course Computer Science Music Processing Summer Term 2009 Meinard Müller Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Music Structure Analysis Music segmentation pitch content

More information

Beethoven, Bach, and Billions of Bytes

Beethoven, Bach, and Billions of Bytes Lecture Music Processing Beethoven, Bach, and Billions of Bytes New Alliances between Music and Computer Science Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

More information

Audio. Meinard Müller. Beethoven, Bach, and Billions of Bytes. International Audio Laboratories Erlangen. International Audio Laboratories Erlangen

Audio. Meinard Müller. Beethoven, Bach, and Billions of Bytes. International Audio Laboratories Erlangen. International Audio Laboratories Erlangen Meinard Müller Beethoven, Bach, and Billions of Bytes When Music meets Computer Science Meinard Müller International Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de School of Mathematics University

More information

Audio Structure Analysis

Audio Structure Analysis Tutorial T3 A Basic Introduction to Audio-Related Music Information Retrieval Audio Structure Analysis Meinard Müller, Christof Weiß International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de,

More information

Hidden Markov Model based dance recognition

Hidden Markov Model based dance recognition Hidden Markov Model based dance recognition Dragutin Hrenek, Nenad Mikša, Robert Perica, Pavle Prentašić and Boris Trubić University of Zagreb, Faculty of Electrical Engineering and Computing Unska 3,

More information

Music Structure Analysis

Music Structure Analysis Overview Tutorial Music Structure Analysis Part I: Principles & Techniques (Meinard Müller) Coffee Break Meinard Müller International Audio Laboratories Erlangen Universität Erlangen-Nürnberg meinard.mueller@audiolabs-erlangen.de

More information

A DISCRETE MIXTURE MODEL FOR CHORD LABELLING

A DISCRETE MIXTURE MODEL FOR CHORD LABELLING A DISCRETE MIXTURE MODEL FOR CHORD LABELLING Matthias Mauch and Simon Dixon Queen Mary, University of London, Centre for Digital Music. matthias.mauch@elec.qmul.ac.uk ABSTRACT Chord labels for recorded

More information

Characteristics of Polyphonic Music Style and Markov Model of Pitch-Class Intervals

Characteristics of Polyphonic Music Style and Markov Model of Pitch-Class Intervals Characteristics of Polyphonic Music Style and Markov Model of Pitch-Class Intervals Eita Nakamura and Shinji Takaki National Institute of Informatics, Tokyo 101-8430, Japan eita.nakamura@gmail.com, takaki@nii.ac.jp

More information

Music Information Retrieval (MIR)

Music Information Retrieval (MIR) Ringvorlesung Perspektiven der Informatik Wintersemester 2011/2012 Meinard Müller Universität des Saarlandes und MPI Informatik meinard@mpi-inf.mpg.de Priv.-Doz. Dr. Meinard Müller 2007 Habilitation, Bonn

More information

Homework 2 Key-finding algorithm

Homework 2 Key-finding algorithm Homework 2 Key-finding algorithm Li Su Research Center for IT Innovation, Academia, Taiwan lisu@citi.sinica.edu.tw (You don t need any solid understanding about the musical key before doing this homework,

More information

Music Information Retrieval

Music Information Retrieval Music Information Retrieval When Music Meets Computer Science Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de Berlin MIR Meetup 20.03.2017 Meinard Müller

More information

Informed Feature Representations for Music and Motion

Informed Feature Representations for Music and Motion Meinard Müller Informed Feature Representations for Music and Motion Meinard Müller 27 Habilitation, Bonn 27 MPI Informatik, Saarbrücken Senior Researcher Music Processing & Motion Processing Lorentz Workshop

More information

Data Driven Music Understanding

Data Driven Music Understanding Data Driven Music Understanding Dan Ellis Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Engineering, Columbia University, NY USA http://labrosa.ee.columbia.edu/ 1. Motivation:

More information

Further Topics in MIR

Further Topics in MIR Tutorial Automatisierte Methoden der Musikverarbeitung 47. Jahrestagung der Gesellschaft für Informatik Further Topics in MIR Meinard Müller, Christof Weiss, Stefan Balke International Audio Laboratories

More information

MUSI-6201 Computational Music Analysis

MUSI-6201 Computational Music Analysis MUSI-6201 Computational Music Analysis Part 9.1: Genre Classification alexander lerch November 4, 2015 temporal analysis overview text book Chapter 8: Musical Genre, Similarity, and Mood (pp. 151 155)

More information

Music Similarity and Cover Song Identification: The Case of Jazz

Music Similarity and Cover Song Identification: The Case of Jazz Music Similarity and Cover Song Identification: The Case of Jazz Simon Dixon and Peter Foster s.e.dixon@qmul.ac.uk Centre for Digital Music School of Electronic Engineering and Computer Science Queen Mary

More information

Beethoven, Bach und Billionen Bytes

Beethoven, Bach und Billionen Bytes Meinard Müller Beethoven, Bach und Billionen Bytes Automatisierte Analyse von Musik und Klängen Meinard Müller Lehrerfortbildung in Informatik Dagstuhl, Dezember 2014 2001 PhD, Bonn University 2002/2003

More information

AUTOMATED METHODS FOR ANALYZING MUSIC RECORDINGS IN SONATA FORM

AUTOMATED METHODS FOR ANALYZING MUSIC RECORDINGS IN SONATA FORM AUTOMATED METHODS FOR ANALYZING MUSIC RECORDINGS IN SONATA FORM Nanzhu Jiang International Audio Laboratories Erlangen nanzhu.jiang@audiolabs-erlangen.de Meinard Müller International Audio Laboratories

More information

TOWARD AN INTELLIGENT EDITOR FOR JAZZ MUSIC

TOWARD AN INTELLIGENT EDITOR FOR JAZZ MUSIC TOWARD AN INTELLIGENT EDITOR FOR JAZZ MUSIC G.TZANETAKIS, N.HU, AND R.B. DANNENBERG Computer Science Department, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15213, USA E-mail: gtzan@cs.cmu.edu

More information

Transcription of the Singing Melody in Polyphonic Music

Transcription of the Singing Melody in Polyphonic Music Transcription of the Singing Melody in Polyphonic Music Matti Ryynänen and Anssi Klapuri Institute of Signal Processing, Tampere University Of Technology P.O.Box 553, FI-33101 Tampere, Finland {matti.ryynanen,

More information

Meinard Müller. Beethoven, Bach, und Billionen Bytes. International Audio Laboratories Erlangen. International Audio Laboratories Erlangen

Meinard Müller. Beethoven, Bach, und Billionen Bytes. International Audio Laboratories Erlangen. International Audio Laboratories Erlangen Beethoven, Bach, und Billionen Bytes Musik trifft Informatik Meinard Müller Meinard Müller 2007 Habilitation, Bonn 2007 MPI Informatik, Saarbrücken Senior Researcher Music Processing & Motion Processing

More information

Data-Driven Solo Voice Enhancement for Jazz Music Retrieval

Data-Driven Solo Voice Enhancement for Jazz Music Retrieval Data-Driven Solo Voice Enhancement for Jazz Music Retrieval Stefan Balke1, Christian Dittmar1, Jakob Abeßer2, Meinard Müller1 1International Audio Laboratories Erlangen 2Fraunhofer Institute for Digital

More information

Week 14 Query-by-Humming and Music Fingerprinting. Roger B. Dannenberg Professor of Computer Science, Art and Music Carnegie Mellon University

Week 14 Query-by-Humming and Music Fingerprinting. Roger B. Dannenberg Professor of Computer Science, Art and Music Carnegie Mellon University Week 14 Query-by-Humming and Music Fingerprinting Roger B. Dannenberg Professor of Computer Science, Art and Music Overview n Melody-Based Retrieval n Audio-Score Alignment n Music Fingerprinting 2 Metadata-based

More information

Piano Transcription MUMT611 Presentation III 1 March, Hankinson, 1/15

Piano Transcription MUMT611 Presentation III 1 March, Hankinson, 1/15 Piano Transcription MUMT611 Presentation III 1 March, 2007 Hankinson, 1/15 Outline Introduction Techniques Comb Filtering & Autocorrelation HMMs Blackboard Systems & Fuzzy Logic Neural Networks Examples

More information

A probabilistic framework for audio-based tonal key and chord recognition

A probabilistic framework for audio-based tonal key and chord recognition A probabilistic framework for audio-based tonal key and chord recognition Benoit Catteau 1, Jean-Pierre Martens 1, and Marc Leman 2 1 ELIS - Electronics & Information Systems, Ghent University, Gent (Belgium)

More information

Tempo and Beat Analysis

Tempo and Beat Analysis Advanced Course Computer Science Music Processing Summer Term 2010 Meinard Müller, Peter Grosche Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Tempo and Beat Analysis Musical Properties:

More information

Searching for Similar Phrases in Music Audio

Searching for Similar Phrases in Music Audio Searching for Similar Phrases in Music udio an Ellis Laboratory for Recognition and Organization of Speech and udio ept. Electrical Engineering, olumbia University, NY US http://labrosa.ee.columbia.edu/

More information

Music Emotion Recognition. Jaesung Lee. Chung-Ang University

Music Emotion Recognition. Jaesung Lee. Chung-Ang University Music Emotion Recognition Jaesung Lee Chung-Ang University Introduction Searching Music in Music Information Retrieval Some information about target music is available Query by Text: Title, Artist, or

More information

Outline. Why do we classify? Audio Classification

Outline. Why do we classify? Audio Classification Outline Introduction Music Information Retrieval Classification Process Steps Pitch Histograms Multiple Pitch Detection Algorithm Musical Genre Classification Implementation Future Work Why do we classify

More information

Author Index. Absolu, Brandt 165. Montecchio, Nicola 187 Mukherjee, Bhaswati 285 Müllensiefen, Daniel 365. Bay, Mert 93

Author Index. Absolu, Brandt 165. Montecchio, Nicola 187 Mukherjee, Bhaswati 285 Müllensiefen, Daniel 365. Bay, Mert 93 Author Index Absolu, Brandt 165 Bay, Mert 93 Datta, Ashoke Kumar 285 Dey, Nityananda 285 Doraisamy, Shyamala 391 Downie, J. Stephen 93 Ehmann, Andreas F. 93 Esposito, Roberto 143 Gerhard, David 119 Golzari,

More information

TRACKING THE ODD : METER INFERENCE IN A CULTURALLY DIVERSE MUSIC CORPUS

TRACKING THE ODD : METER INFERENCE IN A CULTURALLY DIVERSE MUSIC CORPUS TRACKING THE ODD : METER INFERENCE IN A CULTURALLY DIVERSE MUSIC CORPUS Andre Holzapfel New York University Abu Dhabi andre@rhythmos.org Florian Krebs Johannes Kepler University Florian.Krebs@jku.at Ajay

More information

Music Representations

Music Representations Lecture Music Processing Music Representations Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de Book: Fundamentals of Music Processing Meinard Müller Fundamentals

More information

Topic 11. Score-Informed Source Separation. (chroma slides adapted from Meinard Mueller)

Topic 11. Score-Informed Source Separation. (chroma slides adapted from Meinard Mueller) Topic 11 Score-Informed Source Separation (chroma slides adapted from Meinard Mueller) Why Score-informed Source Separation? Audio source separation is useful Music transcription, remixing, search Non-satisfying

More information

Tempo and Beat Tracking

Tempo and Beat Tracking Tutorial Automatisierte Methoden der Musikverarbeitung 47. Jahrestagung der Gesellschaft für Informatik Tempo and Beat Tracking Meinard Müller, Christof Weiss, Stefan Balke International Audio Laboratories

More information

Singer Traits Identification using Deep Neural Network

Singer Traits Identification using Deep Neural Network Singer Traits Identification using Deep Neural Network Zhengshan Shi Center for Computer Research in Music and Acoustics Stanford University kittyshi@stanford.edu Abstract The author investigates automatic

More information

Subjective Similarity of Music: Data Collection for Individuality Analysis

Subjective Similarity of Music: Data Collection for Individuality Analysis Subjective Similarity of Music: Data Collection for Individuality Analysis Shota Kawabuchi and Chiyomi Miyajima and Norihide Kitaoka and Kazuya Takeda Nagoya University, Nagoya, Japan E-mail: shota.kawabuchi@g.sp.m.is.nagoya-u.ac.jp

More information

Probabilist modeling of musical chord sequences for music analysis

Probabilist modeling of musical chord sequences for music analysis Probabilist modeling of musical chord sequences for music analysis Christophe Hauser January 29, 2009 1 INTRODUCTION Computer and network technologies have improved consequently over the last years. Technology

More information

Music Information Retrieval (MIR)

Music Information Retrieval (MIR) Ringvorlesung Perspektiven der Informatik Sommersemester 2010 Meinard Müller Universität des Saarlandes und MPI Informatik meinard@mpi-inf.mpg.de Priv.-Doz. Dr. Meinard Müller 2007 Habilitation, Bonn 2007

More information

CPU Bach: An Automatic Chorale Harmonization System

CPU Bach: An Automatic Chorale Harmonization System CPU Bach: An Automatic Chorale Harmonization System Matt Hanlon mhanlon@fas Tim Ledlie ledlie@fas January 15, 2002 Abstract We present an automated system for the harmonization of fourpart chorales in

More information

Composer Identification of Digital Audio Modeling Content Specific Features Through Markov Models

Composer Identification of Digital Audio Modeling Content Specific Features Through Markov Models Composer Identification of Digital Audio Modeling Content Specific Features Through Markov Models Aric Bartle (abartle@stanford.edu) December 14, 2012 1 Background The field of composer recognition has

More information

DAY 1. Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval

DAY 1. Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval DAY 1 Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval Jay LeBoeuf Imagine Research jay{at}imagine-research.com Rebecca

More information

Music Synchronization. Music Synchronization. Music Data. Music Data. General Goals. Music Information Retrieval (MIR)

Music Synchronization. Music Synchronization. Music Data. Music Data. General Goals. Music Information Retrieval (MIR) Advanced Course Computer Science Music Processing Summer Term 2010 Music ata Meinard Müller Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Music Synchronization Music ata Various interpretations

More information

Music Information Retrieval for Jazz

Music Information Retrieval for Jazz Music Information Retrieval for Jazz Dan Ellis Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA {dpwe,thierry}@ee.columbia.edu http://labrosa.ee.columbia.edu/

More information

LEARNING AUDIO SHEET MUSIC CORRESPONDENCES. Matthias Dorfer Department of Computational Perception

LEARNING AUDIO SHEET MUSIC CORRESPONDENCES. Matthias Dorfer Department of Computational Perception LEARNING AUDIO SHEET MUSIC CORRESPONDENCES Matthias Dorfer Department of Computational Perception Short Introduction... I am a PhD Candidate in the Department of Computational Perception at Johannes Kepler

More information

Music Segmentation Using Markov Chain Methods

Music Segmentation Using Markov Chain Methods Music Segmentation Using Markov Chain Methods Paul Finkelstein March 8, 2011 Abstract This paper will present just how far the use of Markov Chains has spread in the 21 st century. We will explain some

More information

Music Structure Analysis

Music Structure Analysis Tutorial Automatisierte Methoden der Musikverarbeitung 47. Jahrestagung der Gesellschaft für Informatik Music Structure Analysis Meinard Müller, Christof Weiss, Stefan Balke International Audio Laboratories

More information

Query By Humming: Finding Songs in a Polyphonic Database

Query By Humming: Finding Songs in a Polyphonic Database Query By Humming: Finding Songs in a Polyphonic Database John Duchi Computer Science Department Stanford University jduchi@stanford.edu Benjamin Phipps Computer Science Department Stanford University bphipps@stanford.edu

More information

Lecture 9 Source Separation

Lecture 9 Source Separation 10420CS 573100 音樂資訊檢索 Music Information Retrieval Lecture 9 Source Separation Yi-Hsuan Yang Ph.D. http://www.citi.sinica.edu.tw/pages/yang/ yang@citi.sinica.edu.tw Music & Audio Computing Lab, Research

More information

ANALYZING MEASURE ANNOTATIONS FOR WESTERN CLASSICAL MUSIC RECORDINGS

ANALYZING MEASURE ANNOTATIONS FOR WESTERN CLASSICAL MUSIC RECORDINGS ANALYZING MEASURE ANNOTATIONS FOR WESTERN CLASSICAL MUSIC RECORDINGS Christof Weiß 1 Vlora Arifi-Müller 1 Thomas Prätzlich 1 Rainer Kleinertz 2 Meinard Müller 1 1 International Audio Laboratories Erlangen,

More information

A Study of Synchronization of Audio Data with Symbolic Data. Music254 Project Report Spring 2007 SongHui Chon

A Study of Synchronization of Audio Data with Symbolic Data. Music254 Project Report Spring 2007 SongHui Chon A Study of Synchronization of Audio Data with Symbolic Data Music254 Project Report Spring 2007 SongHui Chon Abstract This paper provides an overview of the problem of audio and symbolic synchronization.

More information

Detecting Musical Key with Supervised Learning

Detecting Musical Key with Supervised Learning Detecting Musical Key with Supervised Learning Robert Mahieu Department of Electrical Engineering Stanford University rmahieu@stanford.edu Abstract This paper proposes and tests performance of two different

More information

Chord Recognition with Stacked Denoising Autoencoders

Chord Recognition with Stacked Denoising Autoencoders Chord Recognition with Stacked Denoising Autoencoders Author: Nikolaas Steenbergen Supervisors: Prof. Dr. Theo Gevers Dr. John Ashley Burgoyne A thesis submitted in fulfilment of the requirements for the

More information

Robert Alexandru Dobre, Cristian Negrescu

Robert Alexandru Dobre, Cristian Negrescu ECAI 2016 - International Conference 8th Edition Electronics, Computers and Artificial Intelligence 30 June -02 July, 2016, Ploiesti, ROMÂNIA Automatic Music Transcription Software Based on Constant Q

More information

Music Processing Audio Retrieval Meinard Müller

Music Processing Audio Retrieval Meinard Müller Lecture Music Processing Audio Retrieval Meinard Müller International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de Book: Fundamentals of Music Processing Meinard Müller Fundamentals

More information

USING MUSICAL STRUCTURE TO ENHANCE AUTOMATIC CHORD TRANSCRIPTION

USING MUSICAL STRUCTURE TO ENHANCE AUTOMATIC CHORD TRANSCRIPTION 10th International Society for Music Information Retrieval Conference (ISMIR 2009) USING MUSICL STRUCTURE TO ENHNCE UTOMTIC CHORD TRNSCRIPTION Matthias Mauch, Katy Noland, Simon Dixon Queen Mary University

More information

The song remains the same: identifying versions of the same piece using tonal descriptors

The song remains the same: identifying versions of the same piece using tonal descriptors The song remains the same: identifying versions of the same piece using tonal descriptors Emilia Gómez Music Technology Group, Universitat Pompeu Fabra Ocata, 83, Barcelona emilia.gomez@iua.upf.edu Abstract

More information

Obtaining General Chord Types from Chroma Vectors

Obtaining General Chord Types from Chroma Vectors Obtaining General Chord Types from Chroma Vectors Marcelo Queiroz Computer Science Department University of São Paulo mqz@ime.usp.br Maximos Kaliakatsos-Papakostas Department of Music Studies Aristotle

More information

Music Alignment and Applications. Introduction

Music Alignment and Applications. Introduction Music Alignment and Applications Roger B. Dannenberg Schools of Computer Science, Art, and Music Introduction Music information comes in many forms Digital Audio Multi-track Audio Music Notation MIDI Structured

More information

A CHROMA-BASED SALIENCE FUNCTION FOR MELODY AND BASS LINE ESTIMATION FROM MUSIC AUDIO SIGNALS

A CHROMA-BASED SALIENCE FUNCTION FOR MELODY AND BASS LINE ESTIMATION FROM MUSIC AUDIO SIGNALS A CHROMA-BASED SALIENCE FUNCTION FOR MELODY AND BASS LINE ESTIMATION FROM MUSIC AUDIO SIGNALS Justin Salamon Music Technology Group Universitat Pompeu Fabra, Barcelona, Spain justin.salamon@upf.edu Emilia

More information

AUTOMATIC MAPPING OF SCANNED SHEET MUSIC TO AUDIO RECORDINGS

AUTOMATIC MAPPING OF SCANNED SHEET MUSIC TO AUDIO RECORDINGS AUTOMATIC MAPPING OF SCANNED SHEET MUSIC TO AUDIO RECORDINGS Christian Fremerey, Meinard Müller,Frank Kurth, Michael Clausen Computer Science III University of Bonn Bonn, Germany Max-Planck-Institut (MPI)

More information

A Study on Music Genre Recognition and Classification Techniques

A Study on Music Genre Recognition and Classification Techniques , pp.31-42 http://dx.doi.org/10.14257/ijmue.2014.9.4.04 A Study on Music Genre Recognition and Classification Techniques Aziz Nasridinov 1 and Young-Ho Park* 2 1 School of Computer Engineering, Dongguk

More information

Analysing Musical Pieces Using harmony-analyser.org Tools

Analysing Musical Pieces Using harmony-analyser.org Tools Analysing Musical Pieces Using harmony-analyser.org Tools Ladislav Maršík Dept. of Software Engineering, Faculty of Mathematics and Physics Charles University, Malostranské nám. 25, 118 00 Prague 1, Czech

More information

AUTOMATIC ACCOMPANIMENT OF VOCAL MELODIES IN THE CONTEXT OF POPULAR MUSIC

AUTOMATIC ACCOMPANIMENT OF VOCAL MELODIES IN THE CONTEXT OF POPULAR MUSIC AUTOMATIC ACCOMPANIMENT OF VOCAL MELODIES IN THE CONTEXT OF POPULAR MUSIC A Thesis Presented to The Academic Faculty by Xiang Cao In Partial Fulfillment of the Requirements for the Degree Master of Science

More information

MUSICAL INSTRUMENT IDENTIFICATION BASED ON HARMONIC TEMPORAL TIMBRE FEATURES

MUSICAL INSTRUMENT IDENTIFICATION BASED ON HARMONIC TEMPORAL TIMBRE FEATURES MUSICAL INSTRUMENT IDENTIFICATION BASED ON HARMONIC TEMPORAL TIMBRE FEATURES Jun Wu, Yu Kitano, Stanislaw Andrzej Raczynski, Shigeki Miyabe, Takuya Nishimoto, Nobutaka Ono and Shigeki Sagayama The Graduate

More information

MODELING CHORD AND KEY STRUCTURE WITH MARKOV LOGIC

MODELING CHORD AND KEY STRUCTURE WITH MARKOV LOGIC MODELING CHORD AND KEY STRUCTURE WITH MARKOV LOGIC Hélène Papadopoulos and George Tzanetakis Computer Science Department, University of Victoria Victoria, B.C., V8P 5C2, Canada helene.papadopoulos@lss.supelec.fr

More information

Probabilistic and Logic-Based Modelling of Harmony

Probabilistic and Logic-Based Modelling of Harmony Probabilistic and Logic-Based Modelling of Harmony Simon Dixon, Matthias Mauch, and Amélie Anglade Centre for Digital Music, Queen Mary University of London, Mile End Rd, London E1 4NS, UK simon.dixon@eecs.qmul.ac.uk

More information

Semi-automated extraction of expressive performance information from acoustic recordings of piano music. Andrew Earis

Semi-automated extraction of expressive performance information from acoustic recordings of piano music. Andrew Earis Semi-automated extraction of expressive performance information from acoustic recordings of piano music Andrew Earis Outline Parameters of expressive piano performance Scientific techniques: Fourier transform

More information

Week 14 Music Understanding and Classification

Week 14 Music Understanding and Classification Week 14 Music Understanding and Classification Roger B. Dannenberg Professor of Computer Science, Music & Art Overview n Music Style Classification n What s a classifier? n Naïve Bayesian Classifiers n

More information

Semantic Segmentation and Summarization of Music

Semantic Segmentation and Summarization of Music [ Wei Chai ] DIGITALVISION, ARTVILLE (CAMERAS, TV, AND CASSETTE TAPE) STOCKBYTE (KEYBOARD) Semantic Segmentation and Summarization of Music [Methods based on tonality and recurrent structure] Listening

More information

Predicting Time-Varying Musical Emotion Distributions from Multi-Track Audio

Predicting Time-Varying Musical Emotion Distributions from Multi-Track Audio Predicting Time-Varying Musical Emotion Distributions from Multi-Track Audio Jeffrey Scott, Erik M. Schmidt, Matthew Prockup, Brandon Morton, and Youngmoo E. Kim Music and Entertainment Technology Laboratory

More information

Notes on David Temperley s What s Key for Key? The Krumhansl-Schmuckler Key-Finding Algorithm Reconsidered By Carley Tanoue

Notes on David Temperley s What s Key for Key? The Krumhansl-Schmuckler Key-Finding Algorithm Reconsidered By Carley Tanoue Notes on David Temperley s What s Key for Key? The Krumhansl-Schmuckler Key-Finding Algorithm Reconsidered By Carley Tanoue I. Intro A. Key is an essential aspect of Western music. 1. Key provides the

More information

Chord Label Personalization through Deep Learning of Integrated Harmonic Interval-based Representations

Chord Label Personalization through Deep Learning of Integrated Harmonic Interval-based Representations Chord Label Personalization through Deep Learning of Integrated Harmonic Interval-based Representations Hendrik Vincent Koops 1, W. Bas de Haas 2, Jeroen Bransen 2, and Anja Volk 1 arxiv:1706.09552v1 [cs.sd]

More information

Recognition and Summarization of Chord Progressions and Their Application to Music Information Retrieval

Recognition and Summarization of Chord Progressions and Their Application to Music Information Retrieval Recognition and Summarization of Chord Progressions and Their Application to Music Information Retrieval Yi Yu, Roger Zimmermann, Ye Wang School of Computing National University of Singapore Singapore

More information

Musical Creativity. Jukka Toivanen Introduction to Computational Creativity Dept. of Computer Science University of Helsinki

Musical Creativity. Jukka Toivanen Introduction to Computational Creativity Dept. of Computer Science University of Helsinki Musical Creativity Jukka Toivanen Introduction to Computational Creativity Dept. of Computer Science University of Helsinki Basic Terminology Melody = linear succession of musical tones that the listener

More information

NOTE-LEVEL MUSIC TRANSCRIPTION BY MAXIMUM LIKELIHOOD SAMPLING

NOTE-LEVEL MUSIC TRANSCRIPTION BY MAXIMUM LIKELIHOOD SAMPLING NOTE-LEVEL MUSIC TRANSCRIPTION BY MAXIMUM LIKELIHOOD SAMPLING Zhiyao Duan University of Rochester Dept. Electrical and Computer Engineering zhiyao.duan@rochester.edu David Temperley University of Rochester

More information

Music Representations

Music Representations Advanced Course Computer Science Music Processing Summer Term 00 Music Representations Meinard Müller Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Music Representations Music Representations

More information

CSC475 Music Information Retrieval

CSC475 Music Information Retrieval CSC475 Music Information Retrieval Symbolic Music Representations George Tzanetakis University of Victoria 2014 G. Tzanetakis 1 / 30 Table of Contents I 1 Western Common Music Notation 2 Digital Formats

More information

CS 591 S1 Computational Audio

CS 591 S1 Computational Audio 4/29/7 CS 59 S Computational Audio Wayne Snyder Computer Science Department Boston University Today: Comparing Musical Signals: Cross- and Autocorrelations of Spectral Data for Structure Analysis Segmentation

More information

MUSIC CONTENT ANALYSIS : KEY, CHORD AND RHYTHM TRACKING IN ACOUSTIC SIGNALS

MUSIC CONTENT ANALYSIS : KEY, CHORD AND RHYTHM TRACKING IN ACOUSTIC SIGNALS MUSIC CONTENT ANALYSIS : KEY, CHORD AND RHYTHM TRACKING IN ACOUSTIC SIGNALS ARUN SHENOY KOTA (B.Eng.(Computer Science), Mangalore University, India) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE

More information

Music Radar: A Web-based Query by Humming System

Music Radar: A Web-based Query by Humming System Music Radar: A Web-based Query by Humming System Lianjie Cao, Peng Hao, Chunmeng Zhou Computer Science Department, Purdue University, 305 N. University Street West Lafayette, IN 47907-2107 {cao62, pengh,

More information

Creating a Feature Vector to Identify Similarity between MIDI Files

Creating a Feature Vector to Identify Similarity between MIDI Files Creating a Feature Vector to Identify Similarity between MIDI Files Joseph Stroud 2017 Honors Thesis Advised by Sergio Alvarez Computer Science Department, Boston College 1 Abstract Today there are many

More information

Music Complexity Descriptors. Matt Stabile June 6 th, 2008

Music Complexity Descriptors. Matt Stabile June 6 th, 2008 Music Complexity Descriptors Matt Stabile June 6 th, 2008 Musical Complexity as a Semantic Descriptor Modern digital audio collections need new criteria for categorization and searching. Applicable to:

More information

A geometrical distance measure for determining the similarity of musical harmony. W. Bas de Haas, Frans Wiering & Remco C.

A geometrical distance measure for determining the similarity of musical harmony. W. Bas de Haas, Frans Wiering & Remco C. A geometrical distance measure for determining the similarity of musical harmony W. Bas de Haas, Frans Wiering & Remco C. Veltkamp International Journal of Multimedia Information Retrieval ISSN 2192-6611

More information

Take a Break, Bach! Let Machine Learning Harmonize That Chorale For You. Chris Lewis Stanford University

Take a Break, Bach! Let Machine Learning Harmonize That Chorale For You. Chris Lewis Stanford University Take a Break, Bach! Let Machine Learning Harmonize That Chorale For You Chris Lewis Stanford University cmslewis@stanford.edu Abstract In this project, I explore the effectiveness of the Naive Bayes Classifier

More information

Music Information Retrieval. Juan Pablo Bello MPATE-GE 2623 Music Information Retrieval New York University

Music Information Retrieval. Juan Pablo Bello MPATE-GE 2623 Music Information Retrieval New York University Music Information Retrieval Juan Pablo Bello MPATE-GE 2623 Music Information Retrieval New York University 1 Juan Pablo Bello Office: Room 626, 6th floor, 35 W 4th Street (ext. 85736) Office Hours: Wednesdays

More information

Audio Feature Extraction for Corpus Analysis

Audio Feature Extraction for Corpus Analysis Audio Feature Extraction for Corpus Analysis Anja Volk Sound and Music Technology 5 Dec 2017 1 Corpus analysis What is corpus analysis study a large corpus of music for gaining insights on general trends

More information

AUDIO-BASED COVER SONG RETRIEVAL USING APPROXIMATE CHORD SEQUENCES: TESTING SHIFTS, GAPS, SWAPS AND BEATS

AUDIO-BASED COVER SONG RETRIEVAL USING APPROXIMATE CHORD SEQUENCES: TESTING SHIFTS, GAPS, SWAPS AND BEATS AUDIO-BASED COVER SONG RETRIEVAL USING APPROXIMATE CHORD SEQUENCES: TESTING SHIFTS, GAPS, SWAPS AND BEATS Juan Pablo Bello Music Technology, New York University jpbello@nyu.edu ABSTRACT This paper presents

More information