Analog-to-Digital Conversion (Part 2) Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

Size: px
Start display at page:

Download "Analog-to-Digital Conversion (Part 2) Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff"

Transcription

1 Analog-to-Digital Conversion (Part 2)

2 Charge redistribution network Instead of a resistor ladder for the D/A converter, the microcontroller uses an-all capacitor system to generate the known voltages It is like a capacitor ladder, instead of a resistor ladder An advantage is that it allows the unknown voltage to be sampled and held, while the comparisons are taking place Recall basic formulas for capacitors: + + V C V C C Q = CV Q = C V + C 2 V 2

3 Sample and hold Sample mode comparator Total charge is Q s = 6 V x assume V L = Hold mode Q h = ( V i )6 = -6 V i = Q s by charge conservation -6 V i = 6 V x so V i = -V x 3

4 Conversion Now, let s switch the largest capacitor up to V H The total charge on the capacitors is still the same Q = 8(V H V i ) + 8( V i ) = 8 V H 6 V i = 6 V x (charge conservation) so V i = (8/6)V H - V x The comparator compares V i against V L = ; if V i < it outputs a Or, it outputs a if V x > (/2) V H 4

5 Conversion (continued) Let s say that the unknown voltage is V x > (/2) V H Next step is to switch the next largest capacitor up to V H Q = (8+4)(V H V i ) + 4( V i ) = 2 V H 6 V i = 6 V x (charge conservation) so V i = (2/6)V H - V x The comparator compares V i against V L = ; if V i < it outputs a Or, it outputs a if V x > (3/4) V H 5

6 Conversion (continued) Each step switches the next largest capacitor up to V H The output of the comparator determines if the capacitor remains at V H or is returned to V L Continue for a total of n steps (for n bit conversion) Example 3 rd step V i =? Example 4 th step V i =? 6

7 Successive approximation method Analog switches are transistors To get resistance as low as possible, the voltage on the gates must be high To get a high voltage (7 to 8V), a charge pump is used That s why you only turn on the A/D converter if you need it 7

8 Output code Quantization error Statistically, a quantization error of ±½ is better than - error To offset by ½ bit, a fixed capacitor of value ½ is used 2 n - V DD /2 n V DD Voltage Figure 2.3 Output characteristic of an ideal n-bit A/D converter 8

9 8 bit A/D To avoid needing a wide range of capacitor values, the ladder is split into two, with a small capacitor in series 9

10 HCS2 A/D Converter The HCS2 uses a successive approximation A/D converter, with either 8 or bit resolution The highest frequency of the conversion clock is 2 MHz (period is.5 microseconds) A/D conversion time is the sum of the converter time and the sample time At 2 MHz ATD clock frequency, an 8-bit conversion takes 8 clock steps, or 4 microseconds The sample time takes two clock steps (to charge the sample capacitor) and an additional 2, 4, 8, or 6 cycles (to store the charge in the storage node) Table 2.8 ATD conversion timings ATD clock frequency resolution converter time 2+2 sample clocks 2+4 sample clocks 2+8 sample clocks 2+6 sample clocks 2 MHz 2 MHz 5 KHz 5 KHz 8-bit () -bit (2) 8-bit -bit 4 s 5 s 6 s 2 s 2 s 3 s 8 s 2 s 5 s 9 s 2 s 36 s Note.. The fastest 8-bit resolution conversion time is 4 s + 2 s = 6 s. 2. The fastest -bit resolution conversion time is 5 s + 2 s = 7 s.

11 HCS2 A/D Converter You can generate an interrupt when conversion is done, or just poll a flag You can select from among 8 analog inputs Conversion is started by writing a value to a control register The conversion result can be right-justified unsigned, left-justified signed, and left-justified unsigned

12 An HCS2 can have two A/D converters Our chip (the C version) has only one VRH, VRL (reference high and reference low) usually tied to Vcc and gnd VDDA, VSSA are power supply inputs for the A/D (tie to Vcc and gnd) From the MC9S2C Family Reference Manual 2

13 Bus clock Clock prescaler ATD clock Results are always stored in order, in the result registers starting with ATD (ATDDR) Confusing: the result from say, input AN2 doesn t necessarily go into result register ATD 2 Conversion complete interrupt V RH V RL VDDA VSSA AN7/PAD7 AN6/PAD6 AN5/PAD5 AN4/PAD4 AN3/PAD3 AN2/PAD2 AN/PAD AN/PAD Analog MUX Mode and timing control Successive apparoximation Register (SAR) and DAC results ATD ATD ATD 2 ATD 3 ATD 4 ATD 5 ATD 6 ATD 7 sample and hold ATD input enable register Port AD data register + - comparator Figure 2.8 The HCS2 ATD block diagram 3

14 Channel Selection CC, CB, and CA (ATDCTL5) select channel (storing starts conversion) MULT bit: =single input, =multiple inputs SCAN bit: =scan continuously, =do once As each conversion completes and is stored into a result register, the corresponding CCF bit in ATDSTAT is set When all conversions complete, the SCF bit in ATDSTAT is set 4

15 Multiple Inputs 5

16 A/D registers Each A/D module has the following registers: Four control registers: ATDxCTL2 - ATDxCTL5 Two status registers: ATDxSTAT and ATDxSTAT Two testing registers: ATDxTEST and ATDxTEST One input enable register: ATDxDIEN One port data register: PTADx Eight 6-bit result registers ATDxDR~ATDxDR7 where x = or In our chip (the C version) we only have one module, so the x is not needed 6

17 A/D Control Registers ATDCTL2 ADPU power up ATD system AFFC fast flag clear reset: ADPU AFFC AWAI ETRIGLE ETRIGP ETRIGE ASCIE ASCIF ADPU: ATD power down bit = power down ATD = normal ATD operation AFFC: ATD fast flag clear all bit = ATD flag is cleared normally, i.e., read the status register before reading the result register = any access to a result register will cause the associated CCF flag to clear automatically if it is set at the time AWAI: ATD power down in wait mode bit = ATD continues to run when the HCS2 is in wait mode = halt conversion and power down ATD during wait mode ETRIGLE: External trigger level/edge control This bit controls the sensitivity of the external trigger signal. Details are shown in Table 2.. ETRIGP: External trigger polarity This bit controls the polarity of the external trigger signal. See Table 2. for details. ETRIGE: External trigger mode enable = disable external trigger on ATD channel 7 = enable external trigger on ATD channel 7 ASCIE: ATD sequence complete interrupt enable bit = disables ATD interrupt = enables ATD interrupt on sequence complete (ASCIF = ) ASCIF: ATD sequence complete interrupt flag = no ATD interrupt occurred = ATD sequence complete interrupt pending Figure.9 ATD control register 2 (ATDxCTL2, x = or ) 7

18 A/D Control Registers ATDCTL3 (S8C..SC): successive conversions are placed into successive result registers Examples: conversion: result always goes into ATDDR 4 conversions: successive results go into ATDDR..ATDDR3 reset: S8C S4C S2C SC FIFO FRZ FRZ S8C,S4C,S2C,SC: Conversion sequence limit = 8 conversions = conversion = 2 conversions = 3 conversions = 4 conversions = 5 conversions = 6 conversions = 7 conversions xxx = 8 conversions FIFO: Result register FIFO mode = conversion results are placed in the corresponding result register up to the selected sequence length = conversion results are placed in consecutive result registers (wrap around at end) FRZ and FRZ: background debug (freeze) enable bit : continue conversions in active background mode : reserved : finish current conversion, then freeze : freeze immediately when background mode is active Figure. ATD control register 3 (ATDxCTL3, x = or ) 8

19 A/D Control Registers ATDCTL4 PRS3:PRS: The maximum clock is 2 MHz So if we have a 24 MHz E clk, should set this to 5 (24 MHz/6 = 2 MHz) SMP:SMP determine sample time The sample time is 2 clock periods, but you can add time for more accuracy reset: SRES8 SMP SMP PRS4 PRS3 PRS2 PRS PRS SRES8: ATD resolution select bit = -bit operation = 8-bit operation SMP and SMP: select sample time bits These bits are used to select the length of the second phase of the sample time in units of ATD conversion clock cycles. See Table 2.2. PRS4--PRS: ATD clock prescaler bits These five bits are the binary value prescaler value PRS. The ATD conversion clock frequency is calculated as follows: ATDclock = [bus clock] PRS + The ATD conversion frequency must be between 5KHz and 2 MHz. The clock prescaler values are shown in Table 2.3. Figure 2. ATD control register 4 (ATDxCTL4, x = or ) Table 2.2 Sample time select.5 SMP SMP Length of 2nd phase of sample time 2 A/D conversion clock periods 4 A/D conversion clock periods 8 A/D conversion clock periods 6 A/D conversion clock periods 9

20 A/D Control Registers ATDCTL5 Set SCAN= to do continuous conversions Set MULT= to convert only one input CC,CB,CA selects input Table 2.4 Analog input channel select code reset: DJM DSGN SCAN MULT CC CB CA DJM: Result register data justification = left justified data in the result registers = right justified data in the result registers DSGN: Result register data signed or unsigned representation = unsigned data representation in the result registers = signed data representation in the result registers (not available in right justification) SCAN: Enable continuous channel scan bit = single conversion sequence = continuous conversion sequences (scan mode) MULT: Enable multichannel conversion bit = sample only one channel = sample across several channels CC, CB, and CA: Channel select code The channel selection is shown in Table 2.4. Figure 2.2 ATD control register 5 (ATDxCTL5, x = or ) CC CB CA analog input channel AN AN AN2 AN3 AN4 AN5 AN6 AN7 2

21 A/D Status Registers ATDSTAT SCF: Use to check when sequence is complete CC2:CC: indicates the number of the result register that will hold the result reset: SCF ETORF FIFOR CC2 CC CC SCF: Sequence complete flag = conversion sequence not completed = conversion sequence has completed ETORF: External trigger overrun flag = no external trigger overrun has occurred = external trigger overrun has occurred FIFOR: FIFO overrun flag = no overrun has occurred = an overrun has occurred CC2, CC, CC: conversion counter The conversion counter points to the result register that will receive the result of the current conversion. In non-fifo mode, this counter is reset to at the begin and end of the conversion. In FIFO mode, this counter is not reset and will wrap around when its maximum value is reached. Figure 2.3 ATD status register (ATDxSTAT, x = or ) 2

22 A/D Status Registers ATDSTAT Conversion complete flags for all channels You can poll this to find out when conversion is done If fast flag clear is selected, the flag is cleared by reading the result register reset: CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF CCF CCFx: conversion complete flag x (x = 7~) = conversion number x not completed = conversion number x has completed, result in ATDyDRx Figure 2.5 ATD status register (ATDxSTAT, x = or ) 22

23 Summary of A/D Registers Red - used for initialization Green - for interrupt configuration Black = for channel selection and making measurements Results go into ATDDR..ATDDR7 Register ATDCTL2 ADPU AFFC AWAI ETRIGLE ETRIGP ETRIGE ASCIE ASCIF ATDCTL3 S8C S4C S2C SC FIFO FRZ FRZ ATDCTL4 SRES8 SMP SMP PRS4 PRS3 PRS2 PRS PRS ATDCTL5 DJM DSGN SCAN MULT CC CB CA ATDSTAT SCF ETORF FIFOR CC2 CC CC ATDSTAT CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF CCF 23

24 Initialization ADPU bit enables the ATD module (is disabled by default to conserve power) Takes microseconds for the ATD to become operating after setting the ADPU Example: Set up A/D to digitize continuously on channel 2 ATDCTL2 = xc; // turn on ATD and enable fast flag clear ATDCTL3 = x8; // set the ATD for channel conversion ATDCTL4 = x85; // set the ATD for 2 MHz,2 sample clks,8 bits ATDCTL5 = xa2; // right justified, continuous conversions of AD2 /* A/D results appear in ATDDRL */ 24

25 Example Set up A/D to convert and average 4 successive voltage readings on channel 3, using bits ATDCTL2 = xc; // turn on ATD and enable fast flag clear : //wait microseconds to power up ATDCTL3 = x2; ATDCTL4 = x5; // set the ATD for 4 conversions // set the ATD for 2 MHz,2 sample clks, bits // Start the conversion ATDCTL5 = x83; // right justified, single conversion of AD3 while (!(ATDSTAT & x8)) ; // wait for SCF = // Read and average the four measurements result = (ATDDR + ATDDR + ATDDR2 + ATDDR3)/4; 25

26 A to D Converter Types Successive Approximation Tracking A/D Converter Dual-slope A/D Converter Parallel (flash) A/D Converter Two-stage parallel A/D Converter 26

27 Tracking A/D Converter Very fast digitization as long as signal changes slowly 27

28 Dual-Slope A/D Converter Integrate input voltage for a fixed time T Then discharge it, and time how long it takes to reach zero Can be very accurate where speed isn t a concern (e.g., a multimeter) If you have periodic noise (e.g., 6Hz), can cancel it by making T equal to the period 28

29 Flash A/D Converter Very fast, but expensive 29

30 Summary / Questions The HCS2 uses a successive approximation A/D converter. A charge redistribution network (composed of capacitors) is used to generate known voltages. Why does a -bit conversion take longer than an 8- bit conversion? 3

The 9S12 A/D converter Huang Section ATD_10B8C Block User Guide

The 9S12 A/D converter Huang Section ATD_10B8C Block User Guide The 9S2 A/D converter Huang Section 23-24 ATD_B8C Block User Guide Analog/Digital Converters A -bit A/D converter is used to convert an input voltage The reference voltages are V RL = V and V RH = 5V What

More information

The Successive Approximation Converter Concept - 8 Bit, 5 Volt Example

The Successive Approximation Converter Concept - 8 Bit, 5 Volt Example Successive Approximation Converter A successive approximation converter provides a fast conversion of a momentary value of the input signal. It works by first comparing the input with a voltage which is

More information

Analog Input & Output

Analog Input & Output EEL 4744C: Microprocessor Applications Lecture 10 Part 1 Analog Input & Output Dr. Tao Li 1 Read Assignment M&M: Chapter 11 Dr. Tao Li 2 To process continuous signals as functions of time Advantages free

More information

nc... Freescale Semiconductor, I

nc... Freescale Semiconductor, I Application Note Rev. 0, 2/2003 Interfacing to the HCS12 ATD Module by Martyn Gallop, Application Engineering, Freescale, East Kilbride Introduction Many of the HCS12 family of 16-bit microcontrollers

More information

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Analog to Digital Converter

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Analog to Digital Converter ME6405 Introduction to Mechatronics Fall 2006 Instructor: Professor Charles Ume Analog to Digital Converter Analog and Digital Signals Analog signals have infinite states available mercury thermometer

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion What the heck is analog to digital conversion? Why do we care? Analog to Digital Conversion What the heck is analog to digital conversion? Why do we care? A means to convert

More information

Introduction to Embedded Microcomputer Systems Lecture Discrete digital signal. Continuous analog signal

Introduction to Embedded Microcomputer Systems Lecture Discrete digital signal. Continuous analog signal Introduction to Embedded Microcomputer Systems Lecture 22.1 Recap Output compare interrupts Metrowerks Codewarrior Overview to Convertor Transducer: mechanical, electrical Using output compare interrupts

More information

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1 Interfacing Analog to Digital Data Converters A/D D/A Converter 1 In most of the cases, the PPI 8255 is used for interfacing the analog to digital converters with microprocessor. The analog to digital

More information

Point System (for instructor and TA use only)

Point System (for instructor and TA use only) EEL 4744C - Drs. George and Gugel Spring Semester 2002 Final Exam NAME SS# Closed book and closed notes examination to be done in pencil. Calculators are permitted. All work and solutions are to be written

More information

Decade Counters Mod-5 counter: Decade Counter:

Decade Counters Mod-5 counter: Decade Counter: Decade Counters We can design a decade counter using cascade of mod-5 and mod-2 counters. Mod-2 counter is just a single flip-flop with the two stable states as 0 and 1. Mod-5 counter: A typical mod-5

More information

Dual Slope ADC Design from Power, Speed and Area Perspectives

Dual Slope ADC Design from Power, Speed and Area Perspectives Dual Slope ADC Design from Power, Speed and Area Perspectives Isaac Macwan, Xingguo Xiong, Lawrence Hmurcik Department of Electrical & Computer Engineering, University of Bridgeport, Bridgeport, CT 06604

More information

Analog-to-Digital Converter

Analog-to-Digital Converter 5 5.1 Objectives: The TM4C is equipped with an analog-to-digital (ATD) conversion system that samples an analog (continuous) signal at regular intervals and then converts each of these analog samples into

More information

Experiment # 4 Counters and Logic Analyzer

Experiment # 4 Counters and Logic Analyzer EE20L - Introduction to Digital Circuits Experiment # 4. Synopsis: Experiment # 4 Counters and Logic Analyzer In this lab we will build an up-counter and a down-counter using 74LS76A - Flip Flops. The

More information

Hello and welcome to this presentation of the STM32L4 Analog-to-Digital Converter block. It will cover the main features of this block, which is used

Hello and welcome to this presentation of the STM32L4 Analog-to-Digital Converter block. It will cover the main features of this block, which is used Hello and welcome to this presentation of the STM32L4 Analog-to-Digital Converter block. It will cover the main features of this block, which is used to convert the external analog voltage-like sensor

More information

Tutorial Introduction

Tutorial Introduction Tutorial Introduction PURPOSE - To explain how to configure and use the in common applications OBJECTIVES: - Identify the steps to set up and configure the. - Identify techniques for maximizing the accuracy

More information

Converters: Analogue to Digital

Converters: Analogue to Digital Converters: Analogue to Digital Presented by: Dr. Walid Ghoneim References: Process Control Instrumentation Technology, Curtis Johnson Op Amps Design, Operation and Troubleshooting. David Terrell 1 - ADC

More information

successive approximation register (SAR) Q digital estimate

successive approximation register (SAR) Q digital estimate Physics 5 Lab 4 Analog / igital Conversion The goal of this lab is to construct a successive approximation analog-to-digital converter (AC). The block diagram of such a converter is shown below. CLK comparator

More information

Laboratory 9 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter

Laboratory 9 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter page 1 of 5 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter Introduction In this lab, you will learn about the behavior of the D flip-flop, by employing it in 3 classic circuits:

More information

Scans and encodes up to a 64-key keyboard. DB 1 DB 2 DB 3 DB 4 DB 5 DB 6 DB 7 V SS. display information.

Scans and encodes up to a 64-key keyboard. DB 1 DB 2 DB 3 DB 4 DB 5 DB 6 DB 7 V SS. display information. Programmable Keyboard/Display Interface - 8279 A programmable keyboard and display interfacing chip. Scans and encodes up to a 64-key keyboard. Controls up to a 16-digit numerical display. Keyboard has

More information

Notes on Digital Circuits

Notes on Digital Circuits PHYS 331: Junior Physics Laboratory I Notes on Digital Circuits Digital circuits are collections of devices that perform logical operations on two logical states, represented by voltage levels. Standard

More information

SDA 3302 Family. GHz PLL with I 2 C Bus and Four Chip Addresses

SDA 3302 Family. GHz PLL with I 2 C Bus and Four Chip Addresses GHz PLL with I 2 C Bus and Four Chip Addresses Preliminary Data Features 1-chip system for MPU control (I 2 C bus) 4 programmable chip addresses Short pull-in time for quick channel switch-over and optimized

More information

Chapter 11 Sections 1 3 Dr. Iyad Jafar

Chapter 11 Sections 1 3 Dr. Iyad Jafar Data Acquisition and Manipulation Chapter 11 Sections 1 3 Dr. Iyad Jafar Outline Analog and Digital Quantities The Analog to Digital Converter Features of Analog to Digital Converter The Data Acquisition

More information

ADC0804C, ADC BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS

ADC0804C, ADC BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS 8-Bit esolution atiometric Conversion 100-µs Conversion Time 135-ns Access Time No Zero Adjust equirement On-Chip Clock Generator Single 5-V Power Supply Operates With Microprocessor or as Stand-Alone

More information

Implementing a Rudimentary Oscilloscope

Implementing a Rudimentary Oscilloscope EE-3306 HC6811 Lab #4 Implementing a Rudimentary Oscilloscope Objectives The purpose of this lab is to become familiar with the 68HC11 on chip Analog-to-Digital converter. This lab builds on the knowledge

More information

WINTER 14 EXAMINATION

WINTER 14 EXAMINATION Subject Code: 17320 WINTER 14 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems A day of Misc. Topics Mark Brehob University of Michigan Lecture 12: Finish up Analog and Digital converters Finish design rules Quick discussion of MMIO

More information

Data Conversion and Lab (17.368) Fall Lecture Outline

Data Conversion and Lab (17.368) Fall Lecture Outline Data Conversion and Lab (17.368) Fall 2013 Lecture Outline Class # 11 November 14, 2013 Dohn Bowden 1 Today s Lecture Outline Administrative Detailed Technical Discussions Lab Microcontroller and Sensors

More information

Sources of Error in Time Interval Measurements

Sources of Error in Time Interval Measurements Sources of Error in Time Interval Measurements Application Note Some timer/counters available today offer resolution of below one nanosecond in their time interval measurements. Of course, high resolution

More information

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops Objective Construct a two-bit binary decoder. Study multiplexers (MUX) and demultiplexers (DEMUX). Construct an RS flip-flop from discrete gates.

More information

DIGITAL ELECTRONICS MCQs

DIGITAL ELECTRONICS MCQs DIGITAL ELECTRONICS MCQs 1. A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register. A. 1 B. 2 C. 4 D. 8

More information

MBI5152 Application Note

MBI5152 Application Note MBI552 Application Note Forward MBI552 features an embedded 8k-bit SRAM, which can support up to :6 time-multiplexing application. Users only need to send the whole frame data once and to store in the

More information

Flip-flops, like logic gates are defined by their truth table. Flip-flops are controlled by an external clock pulse. C

Flip-flops, like logic gates are defined by their truth table. Flip-flops are controlled by an external clock pulse. C P517/617 Lec10, P1 eview from last week: Flip-Flops: asic counting unit in computer counters shift registers memory Example: S flip-flop or eset-set flip-flop Flip-flops, like logic gates are defined by

More information

16 Stage Bi-Directional LED Sequencer

16 Stage Bi-Directional LED Sequencer 16 Stage Bi-Directional LED Sequencer The bi-directional sequencer uses a 4 bit binary up/down counter (CD4516) and two "1 of 8 line decoders" (74HC138 or 74HCT138) to generate the popular "Night Rider"

More information

Section bit Analog-to-Digital Converter (ADC)

Section bit Analog-to-Digital Converter (ADC) Section 17. 10-bit Analog-to-Digital Converter (ADC) HIGHLIGHTS This section of the manual contains the following major topics: 17 17.1 Introduction...17-2 17.2 Control Registers...17-4 17.3 ADC Operation,

More information

Digital Clock. Perry Andrews. A Project By. Based on the PIC16F84A Micro controller. Revision C

Digital Clock. Perry Andrews. A Project By. Based on the PIC16F84A Micro controller. Revision C Digital Clock A Project By Perry Andrews Based on the PIC16F84A Micro controller. Revision C 23 rd January 2011 Contents Contents... 2 Introduction... 2 Design and Development... 3 Construction... 7 Conclusion...

More information

Simple PICTIC Commands

Simple PICTIC Commands The Simple PICTIC Are you an amateur bit by the Time-Nut bug but can t afford a commercial time interval counter with sub nanosecond resolution and a GPIB interface? Did you find a universal counter on

More information

SPI Serial Communication and Nokia 5110 LCD Screen

SPI Serial Communication and Nokia 5110 LCD Screen 8 SPI Serial Communication and Nokia 5110 LCD Screen 8.1 Objectives: Many devices use Serial Communication to communicate with each other. The advantage of serial communication is that it uses relatively

More information

ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University

ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University EECTRICA ENGINEERING DEPARTMENT California Polytechnic State University EE 361 NAND ogic Gate, RS Flip-Flop & JK Flip-Flop Pre-lab 7 1. Draw the logic symbol and construct the truth table for a NAND gate.

More information

S op o e p C on o t n rol o s L arni n n i g n g O bj b e j ctiv i e v s

S op o e p C on o t n rol o s L arni n n i g n g O bj b e j ctiv i e v s ET 150 Scope Controls Learning Objectives In this lesson you will: learn the location and function of oscilloscope controls. see block diagrams of analog and digital oscilloscopes. see how different input

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

A MISSILE INSTRUMENTATION ENCODER

A MISSILE INSTRUMENTATION ENCODER A MISSILE INSTRUMENTATION ENCODER Item Type text; Proceedings Authors CONN, RAYMOND; BREEDLOVE, PHILLIP Publisher International Foundation for Telemetering Journal International Telemetering Conference

More information

VikiLABS. a g. c dp. Working with 7-segment displays. 1 Single digit displays. July 14, 2017

VikiLABS. a g. c dp. Working with 7-segment displays. 1 Single digit displays.  July 14, 2017 VikiLABS Working with 7-segment displays www.vikipedialabs.com July 14, 2017 Seven segment displays are made up of LEDs combined such that they can be used to display numbers and letters. As their name

More information

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates, Timers, Flip-Flops & Counters Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates Transistor NOT Gate Let I C be the collector current.

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus SOLUTIONS TO INTERNAL ASSESSMENT TEST 3 Date : 8/11/2016 Max Marks: 40 Subject & Code : Analog and Digital Electronics (15CS32) Section: III A and B Name of faculty: Deepti.C Time : 11:30 am-1:00 pm Note:

More information

LCD Triplex Drive with COP820CJ

LCD Triplex Drive with COP820CJ LCD Triplex Drive with COP820CJ INTRODUCTION There are many applications which use a microcontroller in combination with a Liquid Crystal Display. The normal method to control a LCD panel is to connect

More information

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of applications such as home appliances, medical, automotive,

More information

ECE 2274 Pre-Lab for Experiment Timer Chip

ECE 2274 Pre-Lab for Experiment Timer Chip ECE 2274 Pre-Lab for Experiment 6 555 Timer Chip Introduction to the 555 Timer The 555 IC is a popular chip for acting as multivibrators. Go to the web to obtain a data sheet to be turn-in with the pre-lab.

More information

Experiment 13 Sampling and reconstruction

Experiment 13 Sampling and reconstruction Experiment 13 Sampling and reconstruction Preliminary discussion So far, the experiments in this manual have concentrated on communications systems that transmit analog signals. However, digital transmission

More information

B. Sc. III Semester (Electronics) - ( ) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791)

B. Sc. III Semester (Electronics) - ( ) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791) B. Sc. III Semester (Electronics) - (2013-14) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791) Section-[A] i. (B) ii. (A) iii. (D) iv. (C) v. (C) vi. (C) vii. (D) viii. (B) Ans-(ix): In JK flip flop

More information

TXZ Family. Reference Manual 12-bit Analog to Digital Converter (ADC-A) 32-bit RISC Microcontroller. Revision

TXZ Family. Reference Manual 12-bit Analog to Digital Converter (ADC-A) 32-bit RISC Microcontroller. Revision 32-bit RISC Microcontroller TXZ Family Reference Manual (ADC-A) Revision 2.1 2018-06 2018/06/19 1 / 46 Rev. 2.1 2017-2018 Toshiba Electronic Devices & Storage Corporation Contents Preface... 5 Related

More information

FRQM-2 Frequency Counter & RF Multimeter

FRQM-2 Frequency Counter & RF Multimeter FRQM-2 Frequency Counter & RF Multimeter Usage Instructions Firmware v2.09 Copyright 2007-2011 by ASPiSYS Ltd. Distributed by: ASPiSYS Ltd. P.O.Box 14386, Athens 11510 (http://www.aspisys.com) Tel. (+30)

More information

Digital (5hz to 500 Khz) Frequency-Meter

Digital (5hz to 500 Khz) Frequency-Meter Digital (5hz to 500 Khz) Frequency-Meter Posted on April 4, 2008, by Ibrahim KAMAL, in Sensor & Measurement, tagged Based on the famous AT89C52 microcontroller, this 500 Khz frequency-meter will be enough

More information

Microcontrollers and Interfacing week 7 exercises

Microcontrollers and Interfacing week 7 exercises SERIL TO PRLLEL CONVERSION Serial to parallel conversion Microcontrollers and Interfacing week exercises Using many LEs (e.g., several seven-segment displays or bar graphs) is difficult, because only a

More information

Tutorial on Technical and Performance Benefits of AD719x Family

Tutorial on Technical and Performance Benefits of AD719x Family The World Leader in High Performance Signal Processing Solutions Tutorial on Technical and Performance Benefits of AD719x Family AD7190, AD7191, AD7192, AD7193, AD7194, AD7195 This slide set focuses on

More information

Notes on Digital Circuits

Notes on Digital Circuits PHYS 331: Junior Physics Laboratory I Notes on Digital Circuits Digital circuits are collections of devices that perform logical operations on two logical states, represented by voltage levels. Standard

More information

Chapter 29 Analog Digital Converter (ADC)

Chapter 29 Analog Digital Converter (ADC) Chapter 29 Analog Digital Converter (ADC) 29.1 Introduction The analog-to-digital (ADC) converter block consists of two separate analog to digital converters, each with four analog inputs and their own

More information

Fig. 1 Analog pins of Arduino Mega

Fig. 1 Analog pins of Arduino Mega Laboratory 7 Analog signals processing An analog signals is variable voltage over time and is usually the output of a sensor that monitors the environment. Such a signal can be processed and interpreted

More information

A/D and D/A convertor 0(4) 24 ma DC, 16 bits

A/D and D/A convertor 0(4) 24 ma DC, 16 bits A/D and D/A convertor 0(4) 24 ma DC, 6 bits ZAT-DV The board contains independent isolated input A/D convertors for measurement of DC current signals 0(4) ma from technological convertors and sensors and

More information

MSCI 222C Class Readings Schedule. MSCI 222C - Electronics 11/27/18. Copyright 2018 C.P.Rubenstein Class Seating Chart Mondays

MSCI 222C Class Readings Schedule. MSCI 222C - Electronics 11/27/18. Copyright 2018 C.P.Rubenstein Class Seating Chart Mondays 222-01 Class Seating Chart Mondays Electronics Door MSCI 222C Fall 2018 Introduction to Electronics Charles Rubenstein, Ph. D. Professor of Engineering & Information Science Session 11: Mon/Tues 11/19/18

More information

MSCI 222C Fall 2018 Introduction to Electronics

MSCI 222C Fall 2018 Introduction to Electronics MSCI 222C Fall 2018 Introduction to Electronics Charles Rubenstein, Ph. D. Professor of Engineering & Information Science Session 11: Mon/Tues 11/19/18 & 11/20/18 (H10,Q9,L9) Mondays 1:00-3:50pm; Tuesdays

More information

DALHOUSIE UNIVERSITY Department of Electrical & Computer Engineering Digital Circuits - ECED 220. Experiment 4 - Latches and Flip-Flops

DALHOUSIE UNIVERSITY Department of Electrical & Computer Engineering Digital Circuits - ECED 220. Experiment 4 - Latches and Flip-Flops DLHOUSIE UNIVERSITY Department of Electrical & Computer Engineering Digital Circuits - ECED 0 Experiment - Latches and Flip-Flops Objectives:. To implement an RS latch memory element. To implement a JK

More information

PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036

PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 Specifications Document Revision 1.2, February, 2010 Copyright 2010, Measurement Computing Corporation Typical for 25 C unless otherwise specified. Specifications

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) Subject Code: 17320 Model Answer Page 1 of 32 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the Model answer scheme. 2) The model

More information

35058-TE. PLJ-6LED-A LED Frequency Display Module Manual

35058-TE. PLJ-6LED-A LED Frequency Display Module Manual 35058-TE 6-digit LED Frequency Counter Module GREEN DISPLAY LED Frequency Display Module Manual Three Swords Studio Light Rongsheng 2013, March Guangxi Nanning Longan Information including Links and Code

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 6 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays Today 3/8/ Lecture 8 Sequential Logic, Clocks, and Displays Flip Flops and Ripple Counters One Shots and Timers LED Displays, Decoders, and Drivers Homework XXXX Reading H&H sections on sequential logic

More information

SWITCH: Microcontroller Touch-switch Design & Test (Part 2)

SWITCH: Microcontroller Touch-switch Design & Test (Part 2) SWITCH: Microcontroller Touch-switch Design & Test (Part 2) 2 nd Year Electronics Lab IMPERIAL COLLEGE LONDON v2.09 Table of Contents Equipment... 2 Aims... 2 Objectives... 2 Recommended Timetable... 2

More information

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil ADC Peripheral in s Petr Cesak, Jan Fischer, Jaroslav Roztocil Czech Technical University in Prague, Faculty of Electrical Engineering Technicka 2, CZ-16627 Prague 6, Czech Republic Phone: +420-224 352

More information

CPE 310L EMBEDDED SYSTEM DESIGN (CPE)

CPE 310L EMBEDDED SYSTEM DESIGN (CPE) CPE 310L EMBEDDED SYSTEM DESIGN (CPE) LABORATORY 8 ANALOG DIGITAL CONVERTER DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL The goal of this lab is to understand

More information

EXPERIMENT #6 DIGITAL BASICS

EXPERIMENT #6 DIGITAL BASICS EXPERIMENT #6 DIGITL SICS Digital electronics is based on the binary number system. Instead of having signals which can vary continuously as in analog circuits, digital signals are characterized by only

More information

A High-Resolution Flash Time-to-Digital Converter Taking Into Account Process Variability. Nikolaos Minas David Kinniment Keith Heron Gordon Russell

A High-Resolution Flash Time-to-Digital Converter Taking Into Account Process Variability. Nikolaos Minas David Kinniment Keith Heron Gordon Russell A High-Resolution Flash Time-to-Digital Converter Taking Into Account Process Variability Nikolaos Minas David Kinniment Keith Heron Gordon Russell Outline of Presentation Introduction Background in Time-to-Digital

More information

DT9857E. Key Features: Dynamic Signal Analyzer for Sound and Vibration Analysis Expandable to 64 Channels

DT9857E. Key Features: Dynamic Signal Analyzer for Sound and Vibration Analysis Expandable to 64 Channels DT9857E Dynamic Signal Analyzer for Sound and Vibration Analysis Expandable to 64 Channels The DT9857E is a high accuracy dynamic signal acquisition module for noise, vibration, and acoustic measurements

More information

Hello, and welcome to this presentation of the STM32 system window watchdog. It will cover the main features of this peripheral used to detect

Hello, and welcome to this presentation of the STM32 system window watchdog. It will cover the main features of this peripheral used to detect Hello, and welcome to this presentation of the STM32 system window watchdog. It will cover the main features of this peripheral used to detect software faults. 1 The window watchdog is used to detect the

More information

DE2-115/FGPA README. 1. Running the DE2-115 for basic operation. 2. The code/project files. Project Files

DE2-115/FGPA README. 1. Running the DE2-115 for basic operation. 2. The code/project files. Project Files DE2-115/FGPA README For questions email: jeff.nicholls.63@gmail.com (do not hesitate!) This document serves the purpose of providing additional information to anyone interested in operating the DE2-115

More information

Vorne Industries. 87/719 Analog Input Module User's Manual Industrial Drive Itasca, IL (630) Telefax (630)

Vorne Industries. 87/719 Analog Input Module User's Manual Industrial Drive Itasca, IL (630) Telefax (630) Vorne Industries 87/719 Analog Input Module User's Manual 1445 Industrial Drive Itasca, IL 60143-1849 (630) 875-3600 Telefax (630) 875-3609 . 3 Chapter 1 Introduction... 1.1 Accessing Wiring Connections

More information

SignalTap Plus System Analyzer

SignalTap Plus System Analyzer SignalTap Plus System Analyzer June 2000, ver. 1 Data Sheet Features Simultaneous internal programmable logic device (PLD) and external (board-level) logic analysis 32-channel external logic analyzer 166

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 2018 EXAMINATION MODEL ANSWER

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 2018 EXAMINATION MODEL ANSWER Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme. 2) The model answer and the answer written by candidate may

More information

Converting between Analog and Digital Domains

Converting between Analog and Digital Domains Converting between Analog and Digital Domains Chapter 6 Renesas Electronics America Inc. Advanced Embedded Systems using the RX63N Rev. 0.1 00000-A Topics Need Reference voltage Resolution Sample and Hold

More information

Reaction Game Kit MitchElectronics 2019

Reaction Game Kit MitchElectronics 2019 Reaction Game Kit MitchElectronics 2019 www.mitchelectronics.co.uk CONTENTS Schematic 3 How It Works 4 Materials 6 Construction 8 Important Information 9 Page 2 SCHEMATIC Page 3 SCHEMATIC EXPLANATION The

More information

Synthesis Technology E102 Quad Temporal Shifter User Guide Version 1.0. Dec

Synthesis Technology E102 Quad Temporal Shifter User Guide Version 1.0. Dec Synthesis Technology E102 Quad Temporal Shifter User Guide Version 1.0 Dec. 2014 www.synthtech.com/euro/e102 OVERVIEW The Synthesis Technology E102 is a digital implementation of the classic Analog Shift

More information

Copyright 2011 by Enoch Hwang, Ph.D. and Global Specialties. All rights reserved. Printed in Taiwan.

Copyright 2011 by Enoch Hwang, Ph.D. and Global Specialties. All rights reserved. Printed in Taiwan. Copyright 2011 by Enoch Hwang, Ph.D. and Global Specialties All rights reserved. Printed in Taiwan. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form

More information

Midterm Exam 15 points total. March 28, 2011

Midterm Exam 15 points total. March 28, 2011 Midterm Exam 15 points total March 28, 2011 Part I Analytical Problems 1. (1.5 points) A. Convert to decimal, compare, and arrange in ascending order the following numbers encoded using various binary

More information

TV Synchronism Generation with PIC Microcontroller

TV Synchronism Generation with PIC Microcontroller TV Synchronism Generation with PIC Microcontroller With the widespread conversion of the TV transmission and coding standards, from the early analog (NTSC, PAL, SECAM) systems to the modern digital formats

More information

Rensselaer Polytechnic Institute Computer Hardware Design ECSE Report. Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory

Rensselaer Polytechnic Institute Computer Hardware Design ECSE Report. Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory RPI Rensselaer Polytechnic Institute Computer Hardware Design ECSE 4770 Report Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory Name: Walter Dearing Group: Brad Stephenson David Bang

More information

Training Note TR-06RD. Schedules. Schedule types

Training Note TR-06RD. Schedules. Schedule types Schedules General operation of the DT80 data loggers centres on scheduling. Schedules determine when various processes are to occur, and can be triggered by the real time clock, by digital or counter events,

More information

7inch Resistive Touch LCD User Manual

7inch Resistive Touch LCD User Manual 7inch Resistive Touch LCD User Manual Chinese website: www.waveshare.net English website: www.wvshare.com Data download: www.waveshare.net/wiki Shenzhen Waveshare Electronics Ltd. Co. 1 Contents 1. Overview...

More information

Design and Implementation of Timer, GPIO, and 7-segment Peripherals

Design and Implementation of Timer, GPIO, and 7-segment Peripherals Design and Implementation of Timer, GPIO, and 7-segment Peripherals 1 Module Overview Learn about timers, GPIO and 7-segment display; Design and implement an AHB timer, a GPIO peripheral, and a 7-segment

More information

Specifications for Thermopilearrays HTPA8x8, HTPA16x16 and HTPA32x31 Rev.6: Fg

Specifications for Thermopilearrays HTPA8x8, HTPA16x16 and HTPA32x31 Rev.6: Fg Principal Schematic for HTPA16x16: - 1 - Pin Assignment in TO8 for 8x8: Connect all reference voltages via 100 nf capacitors to VSS. Pin Assignment 8x8 Pin Name Description Type 1 VSS Negative power supply

More information

NI-DAQmx Device Considerations

NI-DAQmx Device Considerations NI-DAQmx Device Considerations January 2008, 370738M-01 This help file contains information specific to analog output (AO) Series devices, C Series, B Series, E Series devices, digital I/O (DIO) devices,

More information

Laboratory Exercise 4

Laboratory Exercise 4 Laboratory Exercise 4 Polling and Interrupts The purpose of this exercise is to learn how to send and receive data to/from I/O devices. There are two methods used to indicate whether or not data can be

More information

o The 9S12 has a 16-bit free-running counter to determine the time and event happens, and to make an event happen at a particular time

o The 9S12 has a 16-bit free-running counter to determine the time and event happens, and to make an event happen at a particular time More on Programming the 9S12 in C Huang Sections 5.2 through 5.4 Introduction to the 9S12 Hardware Subsystems Huang Sections 8.2-8.6 ECT_16B8C Block User Guide A summary of 9S12 hardware subsystems Introduction

More information

VIRTUAL INSTRUMENTATION

VIRTUAL INSTRUMENTATION VIRTUAL INSTRUMENTATION Virtual instrument an equimplent that allows accomplishment of measurements using the computer. It looks like a real instrument, but its operation and functionality is essentially

More information

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver EM MICROELECTRONIC - MARIN SA 2, 4 and 8 Mutiplex LCD Driver Description The is a universal low multiplex LCD driver. The version 2 drives two ways multiplex (two blackplanes) LCD, the version 4, four

More information

For Teacher's Use Only Q Total No. Marks. Q No Q No Q No

For Teacher's Use Only Q Total No. Marks. Q No Q No Q No FINALTERM EXAMINATION Spring 2010 CS302- Digital Logic Design (Session - 4) Time: 90 min Marks: 58 For Teacher's Use Only Q 1 2 3 4 5 6 7 8 Total No. Marks Q No. 9 10 11 12 13 14 15 16 Marks Q No. 17 18

More information

MBI5050 Application Note

MBI5050 Application Note MBI5050 Application Note Foreword In contrast to the conventional LED driver which uses an external PWM signal, MBI5050 uses the embedded PWM signal to control grayscale output and LED current, which makes

More information

o The 9S12 has a 16-bit free-running counter to determine the time and event happens, and to make an event happen at a particular time

o The 9S12 has a 16-bit free-running counter to determine the time and event happens, and to make an event happen at a particular time More on Programming the 9S12 in C Huang Sections 5.2 through 5.4 Introduction to the 9S12 Hardware Subsystems Huang Sections 8.2-8.6 ECT_16B8C Block User Guide A summary of 9S12 hardware subsystems Introduction

More information

Come and join us at WebLyceum

Come and join us at WebLyceum Come and join us at WebLyceum For Past Papers, Quiz, Assignments, GDBs, Video Lectures etc Go to http://www.weblyceum.com and click Register In Case of any Problem Contact Administrators Rana Muhammad

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK LOW POWER SAR USING CMOS TECHNOLOGY; VLSI IMPLEMENTATION MS. KRISHNA PRAKASHCHAND

More information

DIGITAL CIRCUIT COMBINATORIAL LOGIC

DIGITAL CIRCUIT COMBINATORIAL LOGIC DIGITAL CIRCUIT COMBINATORIAL LOGIC Logic levels: one zero true false high low CMOS logic levels: 1 => 0.7 V DD 0.4 V DD = noise margin 0 =< 0.3 V DD Positive logic: high = 1 = true low = 0 = false Negative

More information

Triple RTD. On-board Digital Signal Processor. Linearization RTDs 20 Hz averaged outputs 16-bit precision comparator function.

Triple RTD. On-board Digital Signal Processor. Linearization RTDs 20 Hz averaged outputs 16-bit precision comparator function. Triple RTD SMART INPUT MODULE State-of-the-art Electromagnetic Noise Suppression Circuitry. Ensures signal integrity even in harsh EMC environments. On-board Digital Signal Processor. Linearization RTDs

More information