MSCI 222C Class Readings Schedule. MSCI 222C - Electronics 11/27/18. Copyright 2018 C.P.Rubenstein Class Seating Chart Mondays

Size: px
Start display at page:

Download "MSCI 222C Class Readings Schedule. MSCI 222C - Electronics 11/27/18. Copyright 2018 C.P.Rubenstein Class Seating Chart Mondays"

Transcription

1 Class Seating Chart Mondays Electronics Door MSCI 222C Fall 2018 Introduction to Electronics Charles Rubenstein, Ph. D. Professor of Engineering & Information Science Session 11: Mon/Tues 11/19/18 & 11/20/18 (H10,Q9,L9) Mondays 1:00-3:50pm; Tuesdays 2:00-4:50pm ARC E-13 1 MONDAY 1pm Sitai Justin Jordan Jane David Ava Luke Toni Aidan Jingyi Khalil Instructor Station Whiteboard and Screen Class Seating Chart Tuesdays TUESDAY 2pm Electronics Door Jairo Yeri Yide Danni Elaine Brandon Leo Andy Stephanie Instructor Station Whiteboard and Screen 3 MSCI 222 Fall Class Schedule & Due Dates MONDAY TUESDAY NOTES 27 August 28 August Session 1. Introduction, Review of Syllabus, Basic Concepts 3, 10 September 11 September NO CLASSES Labor Day / Instructor Unavailable 17 September 4 September Session 2. Basic Electronic Devices (Homework #1 Due) 24 September 18 September Session 3. Semiconductor Materials & Diodes (H2, Q1,L1) 1 October 25 September Session 4. Decimal and Computer Number Systems (H3, Q2,L2) 8 October 2 October Session 5. Transistors as Switches and Amplifiers (H4, Q3,L3) 15 October 9 October Session 6. Analog and Digital Concepts (H5, Q4. L4) 16 October NO Tuesday CLASSES Midterm Break 22 October (*) 23 October (*) Session 7. The Operational Amplifier (H6, Q5, L5) 29 October(**) 30 October (**) Session 8. Digital Integrated Circuit Logic Gates (H7, Q6, L6) 5 November (***) 6 November (***) Session 9. Flip-Flops & "Clocks" (H8, Q7, L7) 12 November 13 November Session 10. Digital Counters (H9, Q8, L8) 19 November 20 November Session 11. Digital Shift Registers (H10, Q9, L9) 26 November 27 November Session 12. Using Analog and Digital IC Circuits Together (Q10, L10) 3 December 4 December Session 13. Interfacing Computers; RFID: Last Day for Labs 10 December 11 December In-class 2.5 hour Final Examination NOTE: 5-minute Quizzes one week after homework due & reviewed session MIDTERM: (*) Distributed; (**) Exam/Draft Paper Due; (***) Reviewed in class In-class Final Exams 10/11 December (Monday 10 December = Conflict Day) 4 MSCI 222C Class Readings Schedule In addition to the Class Notes (222Notes.pdf)!!! Session Due Notes 2 EW1: Pp 1-27; Armstrong: Chapters 1 3 (Pp 1-16) 3 EW1: Pp 28-65; Armstrong: Chapters 4 6 (Pp 17-63) 4 EW1: Pp 66-76; Armstrong: Chapters 7 9 (Pp ) 5 EW1: Pp 77 -End; Armstrong: Chapters (Pp ) 6 EW2: Pp 1-50 and Pg 90; Armstrong: Chapters (Pp ) 7 EW2: Pp 51-79, Review Pg 12; Armstrong: Ch. 14 End (Pp ) 8 EW2: Pp 80 - End, Review Pg 12 (CD4013, CD4017) 9 EW2: Review Pg 12 (CD4013, CD4017) 10 EW2: Review Pg 37 (555 Timer) 11 Review EW1 and EW2 as necessary, Sensors Lab Manual if interested 12 and on Review EW1 and EW2 as necessary EW1 = Basic Electronics: Transistors and Integrated Circuits, Workbook I by Forrest M. Mims, III (ew1.pdf) KEY EW2 = Digital Electronic Projects, Workbook II by Forrest M. Mims, III (ew2.pdf) Armstrong = Man of High Fidelity (armstrong2.pdf) Sensors = Radio Shack Electronic Sensors Lab by Forrest M. Mims, III (sensors.pdf) 5 MSCI 222C Hands-on Lab Modules #01: Measuring Resistance and Voltage #02: Voltage Sources, LEDS, Diodes & Characteristic Curves #03: Capacitors, Time Constants & Transistor Gain #04: Voltage Regulation & Transistor Switching #05: Analog IC Voltage Comparator #06: Basic Digital Logic #07: Set-Reset Latches & Type D Flip-Flops #08: Decade Counter and One Shot Switch Debouncer #09: Three Stage Type D Flip-Flop Shift Register #10: NE555 IC Timer Circuits Optional Labs (Additional Labs may be added or substituted): #A: Sound Detector Circuit (Audio-triggered One-shot) #B: Seven Segment Display Decoder-Driver Circuit 6 1

2 Instructor Contact Information Dr. Charles Rubenstein Professor of Engineering & Information Science Pratt Brooklyn Campus Office: ARC G-49 Fall 2018 Office hours (by appointment *) Mondays: 4:00pm - 5:00 pm = ARC G-49 (or E-13) Tuesdays: 5:00pm - 6:00pm = ARC G-49 (or E-13) (*Please me at least a day in advance if you plan on coming to office hours ) Send me an crubenst@pratt.edu Subject line: 222C or Electronics 7 * Class Session Archives 18fa11.pdf (Class PowerPoint slides)* 18fa11_h.pdf (6-slide/page handout format)* *Power points normally available by Wednesday evening After last class of the session 8 UPDATED: Fall 2018 Tutoring Sessions Fall OPEN LAB TIME - ARC E-13 Mondays 9am - 1pm Wednesdays 12 noon - 5pm Thursdays 12 noon - 5pm Fridays 9am - 5pm BY PRE-ARRANGEMENT ONLY CONTACT: Mrs. Margaret Dy-So, Assistant to the Chairperson Mathematics & Science Department ARC G-41 On pre-arranged day, access to E-13 and the White Console is obtained from Ms. Dy-So or the student assistant in room G Today s Class - Session #11: DUE: Homework Set #10 Readings: Review Pg 12 (CD4013, CD4017) Lecture: Digital Shift Registers 2 Do: Quiz #09, Review Homework Set #10 and Lab #08 Module #09: Three Stage Type D Flip-Flop Shift Register Happy Thanksgiving! November 2018 For Session 12: Readings: EW2: Review Pg 12 (CD4013, CD4017) Lecture: Using Analog and Digital IC Circuits Together 2 Do: Quiz #10, Review Lab #09 Module #10: NE555 IC Timer Circuits Questions?

3 MSCI 222C Electronics Review Kirchhoff s Laws - KCL & KVL Ohms Law Power Law emath Calculations Combining Resistors Time Constants Voltage Divider Equation 13 Kirchhoff s Laws: KCL and KVL KCL: The current going into any point has to be the same as the current going out of the point also called The Law of Conservation of Current KVL: The sum of all the voltages, as you go around a circuit from some fixed point and return there from the opposite direction, and taking polarity into account, is always ZERO also called The Law of Conservation of Voltage 14 OHMS LAW & the POWER LAW There are three common forms for each Equation: Ohms Law: V=IR V = I R R = V / I I = V / R Power Law: P = I V P = I V P = I 2 R P = V 2 / R About Electronics Math Calculations Ohms Law equation: V=IR and I = V / R 1. If R is 1 Ohm = 1 Ω and V is 1 volt: then I = 1 Ampere 2. If R is 1MΩ = 1,000,000 Ω and V is 1 volt: then I = 1 microampere = (1 ua = 1 µa) If R is 1k Ohm = 1kΩ = 1000Ω and V is 1 volt: then I = 1 milliampere ( = 1 ma) This is the most common calculation for our labs 16 Series Resistors CURRENT THROUGH resistors is the same in series circuits Parallel Resistors The VOLTAGE ACROSS Resistors is the same in parallel circuits 1. Resistors in SERIES add R ab = R 1 + R R n 2. For n Like Resistors in SERIES: R ab = n R The Inverse of Resistances in PARALLEL add 1/R ab = 1/R 1 + 1/R /R n 2. For TWO Resistors in Parallel; R ab = R 1 R 2 / (R 1 + R 2 ) 3. For n Equal Resistances in Parallel; R ab = R / n 18 3

4 Simple Series/Parallel Resistor Circuits Time Constant NOTES The time required to charge or discharge a capacitor requires calculating: The Equivalent Resistance of the circuit above: R ab = [ R 1 R 2 / (R 1 + R 2 ) ] + R 3 τ = R C with τ in seconds, R in ohms, C in Farads The Voltage Divider Equation Typical Voltage Dividers Math Analysis Drawing: More Realistic Schematic: Vout = Vin [ R 2 / (R 1 + R 2 ) ] When a voltage is applied to two (or more) resistors in series, the voltage across a particular resistor is the applied voltage times the selected resistor divided by the sum of the resistors 21 Voltage Divider Equation: Vout = Vin [ R 2 / (R 1 + R 2 ) ] 22 About Transistor Calculations The NPN schematic symbol can be divided into: 1. A Base-Emitter circuit where the base-emitter junction forms a silicon diode: and V be = V d = 0.6v NOTES: Non-Inverting NPN Transistor Switch As shown, with switch DOWN: V in = 0 Voltage at the base, V b = 0 And the LED is OFF 2. And a Collector-Emitter circuit where: a. I C = I B h FE b. And the transistor saturation current is calculated as if the C-E junction is a short circuit thus giving a maximum collector current possible: when the transistor is fully on (V CE 0) 23 With the switch in the UP position: V in = +Vcc Voltage at the base, V b = V cc V R1 KVL: LED Voltage, V LED = V cc V R1 V be And the LED is ON NOTE: V CE à zero apx short circuit when transistor is ON ) 24 4

5 NOTES: Inverting NPN Transistor Switch As shown, with switch DOWN: V in = 0, voltage at the base, V b = 0 Note: V CE à apx OPEN circuit And the LED is ON With the switch in the UP position: V in = +Vcc Voltage at the base, V b = 0.6v Note: V CE à apx SHORT circuit And the LED is OFF as V c is at ground 25 LOGIC Gates & Truth Tables Truth Table Review A B AND NAND OR NOR ExOR Bit Binary Decoding Chart ExNOR = = = = = = = = Volt Voltage Regulator Circuit You ALREADY have the 7805 Voltage Regulator connected as a 5 Volt Source (with a 1K Resistor and Green LED): DO NOT REMOVE REGULATOR CIRCUIT!!! You will be using it as the power source for the remainder of the semester Switch Output Bouncing Review A push button switch is a metal piece that can be pressed onto a contact to close the switch allowing current to flow. In inexpensive switches, the metal is not far from the contact and when released may actually bounce up and down giving the appearance of more than one output pulse to a fast (high speed) IC gate: Note that an IC Gate has a threshold voltage above which the Gate sees a Logical Flip-Flop: Review A Flip-Flop normally has TWO outputs, Q and Q-not which is the inverse of the Q output often noted as Q on a schematic diagram. The CD4013 has TWO Type D Flip-Flops in it with the following schematic: Clocking a One Stage Shift Register One Stage Shift Register: The Truth Table for the Flip-Flop outputs is therefore: Q Q-NOT

6 4017 Decade Counter IC - NOTES CD4017 Decade Counter Pulses 1) The 4017 counts, or is clocked by rises of the input clock line 2) Note that CE the "clock enable" line actually disables the clock when high connect it to ground if you don t get the clock to work... 3) IC Pin 14 is marked Clk meaning Clock input pin 4) The ten states of the CD4017 Decade Counter are labeled 0-9 to represent the count of clock pulses after reset. After all CD4017 counters have been reset, input pulses increase the count and set the individual output states 0, 1, 2, 9, then resets and restarts at 0. 5) Your first step in understanding what is going on is to label the diagram and mark each pin with its function (e.g., pin 15 = "reset", pin 11 = "output count 9"). 31 Output pulse widths are equal to the space between rises of the input clock 32 Questions? Homework #09 Quiz Decade Counters When you DO NOT show work, I have to guess. When you DO show work, I can try to see what you are doing and give an O.K Homework QUIZ #09 Homework # a) After all CD4017 counters have been reset, how many input clock pulses are required to get one output pulse? Figure 9.2 The CD4017 Decade Counter with pins 11 and 15 connected together and Output from pin a) In figure 9.2, after the CD4017 counter has been reset, how many input clock pulses are required to get one output pulse? pulse(s) 9.1b) Check one answer: a) The output pulse is very brief, just wide enough to reset the counter. b) The output pulse has a width equal to the space between rises of the input clock. c) The output pulse goes high and stays high. You have five minutes to solve 35 CD4017 with Output from Pin 11 and pins 11 and 15 connected together Pin 11 = 9 Pin 15 = Reset; thus NINE pulse(s): Starts at 0 resets on 9 9.1b) Choose one answer: a) The output pulse is very brief, just wide enough to reset the counter b) The output pulse has a width equal to the space between rises of the input clock c) The output pulse goes high and stays high. 36 6

7 Homework #10 1, 2 MSCI 222 Electronics Homework #10 Review VERY IMPORTANT!!! STUDY THESE PROBLEMS FOR FINAL EXAM!!! 10.1) For binary (base 2) numbers, is the highest weighted bit at extreme Left or extreme Right? Extreme Left 10.2) For decimal (base ten) numbers, is the highest weighted bit at extreme Left or extreme Right? Extreme Left (Hint: If your answers to 10.1 and 10.2 are not both the same, please review this material!) Homework #10 3a PROBLEM Consider a 4-stage shift register made from four D-type flip-flops and sitting horizontally on a table with the serial Data input at the left. Homework #10 3b Consider a 4-stage shift register made from four D-type flip-flops and sitting horizontally on a table with the serial Data input at the left. 10.3) If an experimenter enters a 1 (by holding the Data line high, raising and then lowering the clock input) and then enters a 0, then a 1, then a 0 so that all four flip-flops have outputs that correspond to numbers he entered (1010); 10.3a) where is the last number entered: At the extreme Left or Right? Extreme Left (A out = 0 ) ) If an experimenter enters a 1 (by holding the Data line high, raising and then lowering the clock input) and then enters a 0, then a 1, then a 0 so that all four flip-flops have outputs that correspond to numbers he entered (1010); 10.3b) Convert the binary number in the shift register to decimal (base ten). The binary is 0101 and the decimal number is: 0101 = = = 5 40 Homework #10 3 Consider a 4-stage shift register made from four D-type flip-flops and sitting horizontally on a table with the serial Data input at the left. 10.3c) Repeat the shift register problem of 10.3, but with the experimenter entering a 0 (by holding the Data line low, raising and then lowering the clock input) and then entering a 1, then a 0, then a 1 so that all four flip-flops have outputs that correspond to numbers he entered (0101); Convert the binary number now in the shift register to decimal (base ten). The binary is 1010 and the decimal number is: 1010 = = = Questions? 42 7

8 Module 8 Part 1: CD4017 Decade Counter MSCI 321 Electronics The Numbers on OUTSIDE of the IC rectangle are the Pin Numbers Hands-On Lab Module #08 Review 43 DO NOT DISASSEMBLE USED LATER IN LAB 9 44 CD4017 Decade Counter Pulses Module 8 Pt 2: One-Shot Switch De-bouncer Output pulse widths are equal to the space between rises of the input clock 45 For each S1 pressing there is a single pulse output Using the de-bounced output as the new S1 input to Pin 14 of the CD4017 provides a clean decade counter output and the ability to set up the LED outputs to illustrate Count to N and Halt and Divide by N (see next slides) DO NOT DISASSEMBLE ALSO USED IN LAB 9 46 Count to 5 and HOLD 4017 with Output from Pin 1 (= 5 ) pins 1 and 13 (= CE ) connected together; thus After all 4017 counters have been reset After FIVE pulse(s) the count HOLDS: Starts at 0, CE=1 on 5, counter stops Count to 5 and HOLD Counter Pulses After count is reached output pulse goes high and stays high The output pulse goes high and stays high. (see pulse diagrams, next slide)

9 Count to 5 and RESET 4017 with Output from Pin 1 (= 5 ) pins 1 and 15 (= Reset ) connected together; thus Count to 5 and Reset Counter Pulses After all 4017 counters have been reset After FIVE pulse(s) counter resets: restarts at 0, resets on 5, etc. The output pulse is very brief, just wide enough to reset the counter (see pulse diagrams, next slide) After count is reached, the output pulse is very brief, just wide enough to reset counter Questions? MSCI 222 Electronics Hands-On Lab GENERAL NOTES MSCI 222 Electronics Module #09 Digital Shift Registers A shift register is a sequence of flip-flops (F/F). The output of one F/F being the input to the next Thus flip-flops can be used to store 0 s and 1 s and shift them down a line. CD4013 Dual Type-D Flip-Flop The CD4013 is a CMOS logic integrated circuit containing two D-Type Flip-Flops in a 14-pin DIP package. A clock pulse will store data in the D input. Connecting Clock and Q outputs makes a toggle Flip-Flop for counting circuits. This action could be used for serial to parallel or parallel to serial data conversion. Reading for next week: Review pg. 37 EW2 (re: the NE555 IC) Supply Voltage Range: +3 to +18 volts Note: +Vcc at pin 14 and Common Ground at pin 7 (See Precautions for working with CMOS circuits)

10 Kept FROM Lab Module 8 Part 2 CD4013 One-Shot Switch De-bouncer Circuit MSCI 222 Electronics Hands-On Lab Each time S1 is pressed there is a single pulse output from Pin 1 (Q) You may want to connect it to the Decade Counter s input pin 14 Module # CMOS Precautions!!! CMOS (Complementary Metal-Oxide-Silicon) ICs Please note that CMOS ICs require special handling In industry, a grounding strap is typically used when handling more sensitive CMOS devices to avoid static discharge from your hands getting into a gate input. Our chips are not THAT sensitive 1. ALWAYS insert CMOS ICs into circuits with the power OFF 2. Connect any UNUSED pins that feed logic gates to ground or +Vcc to avoid erroneous outputs 3. The voltage at any CMOS input gate must NOT exceed +Vcc ** CAUTION ** Most electronic component leads have been tinned with a tin-lead coating to make them easier to solder into a circuit. Although we will NOT do soldering in this class, AFTER working with components, please avoid lead poisoning by washing your hands. Thank You! Bill of Materials Module #09 In this Module we will be using: CD4013 Dual Type D Flip-flop ICs (IC1, IC2) Red LED (LED1) 1K Resistor (R3) 4.7 K Resistors (R2, R4) 10K Resistor (R1) 100 µf Capacitor (C1) On Learning Lab Console: (Regulator Circuit) Push Button Switches (Springs: 46/47, 48/49) LED Displays (Springs: 12/11, 14/13, 16/15, 18/17) 59 Lab Module 09 Shift Register Assemble a Three (3) Stage Shift Register with De-bounced Clock from two CD4013 Dual Flip-flop ICs: With S2 (Data) OFF: Pressing S1 Input, Output is always 000 Pressing S2 (Data ON) and then Pressing S1: Output increments for each S1 key press: Output = 100, 110, 111 and so on 60 10

11 Any Questions? Send me an or End

MSCI 222C Fall 2018 Introduction to Electronics

MSCI 222C Fall 2018 Introduction to Electronics MSCI 222C Fall 2018 Introduction to Electronics Charles Rubenstein, Ph. D. Professor of Engineering & Information Science Session 11: Mon/Tues 11/19/18 & 11/20/18 (H10,Q9,L9) Mondays 1:00-3:50pm; Tuesdays

More information

MSCI 222C Class Readings Schedule. MSCI 222C - Electronics 11/20/ Class Seating Chart Mondays Class Seating Chart Tuesdays

MSCI 222C Class Readings Schedule. MSCI 222C - Electronics 11/20/ Class Seating Chart Mondays Class Seating Chart Tuesdays 222-01 Class Seating Chart Mondays Electronics Door MSCI 222C Fall 2018 Introduction to Electronics Charles Rubenstein, Ph. D. Professor of Engineering & Information Science Session 12: Mon/Tues 11/26/18

More information

MSCI 222C Fall 2018 Introduction to Electronics

MSCI 222C Fall 2018 Introduction to Electronics MSCI 222C Fall 2018 Introduction to Electronics Charles Rubenstein, Ph. D. Professor of Engineering & Information Science Session 9: Mon/Tues 11/05/18 & 11/06/18 (H8,Q7,L7) Take Home Midterm EXAM REVIEW

More information

NOTE: Two (2) Double-sided Pages of Handwritten Notes permitted at Final Exam. Not Permitted in Class Class Seating Chart - Spring 2019

NOTE: Two (2) Double-sided Pages of Handwritten Notes permitted at Final Exam. Not Permitted in Class Class Seating Chart - Spring 2019 Not Permitted in Class MSCI 222C Spring 2019 Introduction to Electronics Charles Rubenstein, Ph. D. Professor of Engineering & Information Science Session 9: Mon/Tues 04/08/19 & 04/09/19 Mondays 1:00-3:50pm;

More information

EXPERIMENT #6 DIGITAL BASICS

EXPERIMENT #6 DIGITAL BASICS EXPERIMENT #6 DIGITL SICS Digital electronics is based on the binary number system. Instead of having signals which can vary continuously as in analog circuits, digital signals are characterized by only

More information

16 Stage Bi-Directional LED Sequencer

16 Stage Bi-Directional LED Sequencer 16 Stage Bi-Directional LED Sequencer The bi-directional sequencer uses a 4 bit binary up/down counter (CD4516) and two "1 of 8 line decoders" (74HC138 or 74HCT138) to generate the popular "Night Rider"

More information

Reaction Game Kit MitchElectronics 2019

Reaction Game Kit MitchElectronics 2019 Reaction Game Kit MitchElectronics 2019 www.mitchelectronics.co.uk CONTENTS Schematic 3 How It Works 4 Materials 6 Construction 8 Important Information 9 Page 2 SCHEMATIC Page 3 SCHEMATIC EXPLANATION The

More information

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates, Timers, Flip-Flops & Counters Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates Transistor NOT Gate Let I C be the collector current.

More information

Digital Circuits. Innovation Fellows Program

Digital Circuits. Innovation Fellows Program Innovation Fellows Program Digital Circuits, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Digital Electronics TTL and CMOS Logic National Instrument s

More information

DIGITAL CIRCUIT COMBINATORIAL LOGIC

DIGITAL CIRCUIT COMBINATORIAL LOGIC DIGITAL CIRCUIT COMBINATORIAL LOGIC Logic levels: one zero true false high low CMOS logic levels: 1 => 0.7 V DD 0.4 V DD = noise margin 0 =< 0.3 V DD Positive logic: high = 1 = true low = 0 = false Negative

More information

EECS150 - Digital Design Lecture 2 - CMOS

EECS150 - Digital Design Lecture 2 - CMOS EECS150 - Digital Design Lecture 2 - CMOS January 23, 2003 John Wawrzynek Spring 2003 EECS150 - Lec02-CMOS Page 1 Outline Overview of Physical Implementations CMOS devices Announcements/Break CMOS transistor

More information

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops Objective Construct a two-bit binary decoder. Study multiplexers (MUX) and demultiplexers (DEMUX). Construct an RS flip-flop from discrete gates.

More information

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays Today 3/8/ Lecture 8 Sequential Logic, Clocks, and Displays Flip Flops and Ripple Counters One Shots and Timers LED Displays, Decoders, and Drivers Homework XXXX Reading H&H sections on sequential logic

More information

ECB DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER

ECB DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER ECB2212 - DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER SUBMITTED BY ASHRAF HUSSAIN (160051601105) S SAMIULLAH (160051601059) CONTENTS >AIM >INTRODUCTION

More information

Mission. Lab Project B

Mission. Lab Project B Mission You have been contracted to build a Launch Sequencer (LS) for the Space Shuttle. The purpose of the LS is to control the final sequence of events starting 15 seconds prior to launch. The LS must

More information

Digital Circuits I and II Nov. 17, 1999

Digital Circuits I and II Nov. 17, 1999 Physics 623 Digital Circuits I and II Nov. 17, 1999 Digital Circuits I 1 Purpose To introduce the basic principles of digital circuitry. To understand the small signal response of various gates and circuits

More information

Laboratory 9 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter

Laboratory 9 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter page 1 of 5 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter Introduction In this lab, you will learn about the behavior of the D flip-flop, by employing it in 3 classic circuits:

More information

University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Digital Electronics Laboratory Physics Department Physics 40 Laboratory Experiment 3: CMOS Digital Logic. Introduction The purpose of this lab is to continue

More information

Physics 323. Experiment # 10 - Digital Circuits

Physics 323. Experiment # 10 - Digital Circuits Physics 323 Experiment # 10 - Digital Circuits Purpose This is a brief introduction to digital (logic) circuits using both combinational and sequential logic. The basic building blocks will be the Transistor

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Fundamentals Of Digital Logic 1 Our Goal Understand Fundamentals and basics Concepts How computers work at the lowest level Avoid whenever possible Complexity Implementation

More information

Topics. Microelectronics Revolution. Digital Circuits Part 1 Logic Gates. Introductory Medical Device Prototyping

Topics. Microelectronics Revolution. Digital Circuits Part 1 Logic Gates. Introductory Medical Device Prototyping Introductory Medical Device Prototyping Digital Circuits Part 1 Logic Gates, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Digital Electronics CMOS Logic

More information

ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University

ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University EECTRICA ENGINEERING DEPARTMENT California Polytechnic State University EE 361 NAND ogic Gate, RS Flip-Flop & JK Flip-Flop Pre-lab 7 1. Draw the logic symbol and construct the truth table for a NAND gate.

More information

B. Sc. III Semester (Electronics) - ( ) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791)

B. Sc. III Semester (Electronics) - ( ) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791) B. Sc. III Semester (Electronics) - (2013-14) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791) Section-[A] i. (B) ii. (A) iii. (D) iv. (C) v. (C) vi. (C) vii. (D) viii. (B) Ans-(ix): In JK flip flop

More information

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MDETS UCTECH's Modular Digital Electronics Training System is a modular course covering the fundamentals, concepts, theory and applications of digital electronics.

More information

[2 credit course- 3 hours per week]

[2 credit course- 3 hours per week] Syllabus of Applied Electronics for F Y B Sc Semester- 1 (With effect from June 2012) PAPER I: Components and Devices [2 credit course- 3 hours per week] Unit- I : CIRCUIT THEORY [10 Hrs] Introduction;

More information

EECS 140 Laboratory Exercise 7 PLD Programming

EECS 140 Laboratory Exercise 7 PLD Programming 1. Objectives EECS 140 Laboratory Exercise 7 PLD Programming A. Become familiar with the capabilities of Programmable Logic Devices (PLDs) B. Implement a simple combinational logic circuit using a PLD.

More information

Digital Circuits Part 1 Logic Gates

Digital Circuits Part 1 Logic Gates Introductory Medical Device Prototyping Digital Circuits Part 1 Logic Gates, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Digital Electronics CMOS Logic

More information

Experimental Study to Show the Effect of Bouncing On Digital Systems

Experimental Study to Show the Effect of Bouncing On Digital Systems Journal Name, Vol. 1, Journal of Networks and Telecommunication Systems, Vol. 1 (1), 28-38, September, 2015 ISSN: Pending,, Published online: www.unitedscholars.net/archive Experimental Study to Show the

More information

University of Victoria. Department of Electrical and Computer Engineering. CENG 290 Digital Design I Lab Manual

University of Victoria. Department of Electrical and Computer Engineering. CENG 290 Digital Design I Lab Manual University of Victoria Department of Electrical and Computer Engineering CENG 290 Digital Design I Lab Manual INDEX Introduction to the labs Lab1: Digital Instrumentation Lab2: Basic Digital Components

More information

ME 515 Mechatronics. Introduction to Digital Electronics

ME 515 Mechatronics. Introduction to Digital Electronics ME 55 Mechatronics /5/26 ME 55 Mechatronics Digital Electronics Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 8239 (3627) Email: asangar@pdn.ac.lk Introduction to

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) Subject Code: 17320 Model Answer Page 1 of 32 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the Model answer scheme. 2) The model

More information

Experiment # 9. Clock generator circuits & Counters. Digital Design LAB

Experiment # 9. Clock generator circuits & Counters. Digital Design LAB Digital Design LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering Fall 2012 ECOM 2112: Digital Design LAB Eng: Ahmed M. Ayash Experiment # 9 Clock generator circuits & Counters

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus SOLUTIONS TO INTERNAL ASSESSMENT TEST 3 Date : 8/11/2016 Max Marks: 40 Subject & Code : Analog and Digital Electronics (15CS32) Section: III A and B Name of faculty: Deepti.C Time : 11:30 am-1:00 pm Note:

More information

Laboratory 11. Required Components: Objectives. Introduction. Digital Displays and Logic (modified from lab text by Alciatore)

Laboratory 11. Required Components: Objectives. Introduction. Digital Displays and Logic (modified from lab text by Alciatore) Laboratory 11 Digital Displays and Logic (modified from lab text by Alciatore) Required Components: 2x lk resistors 1x 10M resistor 3x 0.1 F capacitor 1x 555 timer 1x 7490 decade counter 1x 7447 BCD to

More information

Build A Video Switcher

Build A Video Switcher Build A Video Switcher VIDEOSISTEMAS serviciotecnico@videosistemas.com www.videosistemas.com Reprinted with permission from Electronics Now Magazine September 1997 issue Copyright Gernsback Publications,

More information

Introduction. NAND Gate Latch. Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1

Introduction. NAND Gate Latch.  Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1 2007 Introduction BK TP.HCM FLIP-FLOP So far we have seen Combinational Logic The output(s) depends only on the current values of the input variables Here we will look at Sequential Logic circuits The

More information

Introduction to Digital Electronics

Introduction to Digital Electronics Introduction to Digital Electronics by Agner Fog, 2018-10-15. Contents 1. Number systems... 3 1.1. Decimal, binary, and hexadecimal numbers... 3 1.2. Conversion from another number system to decimal...

More information

Logic Circuits. A gate is a circuit element that operates on a binary signal.

Logic Circuits. A gate is a circuit element that operates on a binary signal. Logic Circuits gate is a circuit element that operates on a binary signal. Logic operations typically have three methods of description:. Equation symbol 2. Truth table 3. Circuit symbol The binary levels

More information

DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201)

DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201) DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201) Instructor Name: Student Name: Roll Number: Semester: Batch: Year: Department:

More information

Physics 120 Lab 10 (2018): Flip-flops and Registers

Physics 120 Lab 10 (2018): Flip-flops and Registers Physics 120 Lab 10 (2018): Flip-flops and Registers 10.1 The basic flip-flop: NAND latch This circuit, the most fundamental of flip-flop or memory circuits, can be built with either NANDs or NORs. We will

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. 1 ISSUE NO. : ISSUE DATE: REV. NO. : REV. DATE :

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I The Light Emitting Diode: The light emitting diode (LED) is used as a probe in the digital experiments below. We begin by

More information

INTRODUCTION (EE2499_Introduction.doc revised 1/1/18)

INTRODUCTION (EE2499_Introduction.doc revised 1/1/18) INTRODUCTION (EE2499_Introduction.doc revised 1/1/18) A. PARTS AND TOOLS: This lab involves designing, building, and testing circuits using design concepts from the Digital Logic course EE-2440. A locker

More information

Note 5. Digital Electronic Devices

Note 5. Digital Electronic Devices Note 5 Digital Electronic Devices Department of Mechanical Engineering, University Of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada 1 1. Binary and Hexadecimal Numbers Digital systems perform

More information

Slide 1. Flip-Flops. Cross-NOR SR flip-flop S R Q Q. hold reset set not used. Cross-NAND SR flip-flop S R Q Q. not used reset set hold 1 Q.

Slide 1. Flip-Flops. Cross-NOR SR flip-flop S R Q Q. hold reset set not used. Cross-NAND SR flip-flop S R Q Q. not used reset set hold 1 Q. Slide Flip-Flops Cross-NOR SR flip-flop Reset Set Cross-NAND SR flip-flop Reset Set S R reset set not used S R not used reset set 6.7 Digital ogic Slide 2 Clocked evel-triggered NAND SR Flip-Flop S R SR

More information

ECE 2274 Pre-Lab for Experiment Timer Chip

ECE 2274 Pre-Lab for Experiment Timer Chip ECE 2274 Pre-Lab for Experiment 6 555 Timer Chip Introduction to the 555 Timer The 555 IC is a popular chip for acting as multivibrators. Go to the web to obtain a data sheet to be turn-in with the pre-lab.

More information

PHYS 3322 Modern Laboratory Methods I Digital Devices

PHYS 3322 Modern Laboratory Methods I Digital Devices PHYS 3322 Modern Laboratory Methods I Digital Devices Purpose This experiment will introduce you to the basic operating principles of digital electronic devices. Background These circuits are called digital

More information

Lab 7: Soldering - Traffic Light Controller ReadMeFirst

Lab 7: Soldering - Traffic Light Controller ReadMeFirst Lab 7: Soldering - Traffic Light Controller ReadMeFirst Lab Summary The two-way traffic light controller provides you with a quick project to learn basic soldering skills. Grading for the project has been

More information

CPE 200L LABORATORY 3: SEQUENTIAL LOGIC CIRCUITS UNIVERSITY OF NEVADA, LAS VEGAS GOALS: BACKGROUND: SR FLIP-FLOP/LATCH

CPE 200L LABORATORY 3: SEQUENTIAL LOGIC CIRCUITS UNIVERSITY OF NEVADA, LAS VEGAS GOALS: BACKGROUND: SR FLIP-FLOP/LATCH CPE 200L LABORATORY 3: SEUENTIAL LOGIC CIRCUITS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOALS: Learn to use Function Generator and Oscilloscope on the breadboard.

More information

Chapter 5 Flip-Flops and Related Devices

Chapter 5 Flip-Flops and Related Devices Chapter 5 Flip-Flops and Related Devices Chapter 5 Objectives Selected areas covered in this chapter: Constructing/analyzing operation of latch flip-flops made from NAND or NOR gates. Differences of synchronous/asynchronous

More information

Decade Counters Mod-5 counter: Decade Counter:

Decade Counters Mod-5 counter: Decade Counter: Decade Counters We can design a decade counter using cascade of mod-5 and mod-2 counters. Mod-2 counter is just a single flip-flop with the two stable states as 0 and 1. Mod-5 counter: A typical mod-5

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Chapter 3: Sequential Logic Systems

Chapter 3: Sequential Logic Systems Chapter 3: Sequential Logic Systems 1. The S-R Latch Learning Objectives: At the end of this topic you should be able to: design a Set-Reset latch based on NAND gates; complete a sequential truth table

More information

ELTR 145 (Digital 2), section 1

ELTR 145 (Digital 2), section 1 ELTR 145 (Digital 2), section 1 Recommended schedule Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Topics: Latch circuits uestions: 1 through 10 Lab Exercise: S-R latch from individual gates (question 51) Topics:

More information

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit)

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit) Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6. - Introductory Digital Systems Laboratory (Spring 006) Laboratory - Introduction to Digital Electronics

More information

EECS150 - Digital Design Lecture 3 - Timing

EECS150 - Digital Design Lecture 3 - Timing EECS150 - Digital Design Lecture 3 - Timing September 3, 2002 John Wawrzynek Fall 2002 EECS150 - Lec03-Timing Page 1 Outline Finish up from lecture 2 General Model of Synchronous Systems Performance Limits

More information

successive approximation register (SAR) Q digital estimate

successive approximation register (SAR) Q digital estimate Physics 5 Lab 4 Analog / igital Conversion The goal of this lab is to construct a successive approximation analog-to-digital converter (AC). The block diagram of such a converter is shown below. CLK comparator

More information

BISHOP ANSTEY HIGH SCHOOL & TRINITY COLLEGE EAST SIXTH FORM CXC CAPE PHYSICS, UNIT 2 Ms. S. S. CALBIO NOTES lesson #39

BISHOP ANSTEY HIGH SCHOOL & TRINITY COLLEGE EAST SIXTH FORM CXC CAPE PHYSICS, UNIT 2 Ms. S. S. CALBIO NOTES lesson #39 BISHOP ANSTEY HIGH SCHOOL & TRINITY COLLEGE EAST SIXTH FORM CXC CAPE PHYSICS, UNIT 2 Ms. S. S. CALBIO NOTES lesson #39 Objectives: Students should be able to Thursday 21 st January 2016 @ 10:45 am Module

More information

The outputs are formed by a combinational logic function of the inputs to the circuit or the values stored in the flip-flops (or both).

The outputs are formed by a combinational logic function of the inputs to the circuit or the values stored in the flip-flops (or both). 1 The outputs are formed by a combinational logic function of the inputs to the circuit or the values stored in the flip-flops (or both). The value that is stored in a flip-flop when the clock pulse occurs

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 23 121120 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Combinatorial Logic Sequential Logic 3 Combinatorial Logic Circuits

More information

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset Course Number: ECE 533 Spring 2013 University of Tennessee Knoxville Instructor: Dr. Syed Kamrul Islam Prepared by

More information

Asynchronous (Ripple) Counters

Asynchronous (Ripple) Counters Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory. The chapter about flip-flops introduced

More information

Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers

Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers EEE 304 Experiment No. 07 Name Of The Experiment: Sequential circuit design Latch, Flip-flop and Registers Important: Submit your Prelab at the beginning of the lab. Prelab 1: Construct a S-R Latch and

More information

Flip-Flops A) Synchronization: Clocks and Latches B) Two Stage Latch C) Memory Requires Feedback D) Simple Flip-Flop Gate

Flip-Flops A) Synchronization: Clocks and Latches B) Two Stage Latch C) Memory Requires Feedback D) Simple Flip-Flop Gate Lecture 19: November 5, 2001 Midterm in Class Wed. Nov 7 th Covers Material 6 th -10 th week including W#10 Closed Book, Closed Notes, Bring Calculator, Paper Provided Last Name A-K 2040 Valley LSB; Last

More information

Course Administration

Course Administration EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN Lecture 5: Sequential Logic - 2 Analysis of Clocked Sequential Systems 4/2/2 Avinash Kodi, kodi@ohio.edu Course Administration 2 Hw 2 due on today

More information

Laboratory 8. Digital Circuits - Counter and LED Display

Laboratory 8. Digital Circuits - Counter and LED Display Laboratory 8 Digital Circuits - Counter and Display Required Components: 2 1k resistors 1 10M resistor 3 0.1 F capacitor 1 555 timer 1 7490 decade counter 1 7447 BCD to decoder 1 MAN 6910 or LTD-482EC

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I Tasks marked by an asterisk (*) may be carried out before coming to the lab. The Light Emitting Diode: The light emitting

More information

Laboratory 7. Lab 7. Digital Circuits - Logic and Latching

Laboratory 7. Lab 7. Digital Circuits - Logic and Latching Laboratory 7 igital Circuits - Logic and Latching Required Components: 1 330 resistor 4 resistor 2 0.1 F capacitor 1 2N3904 small signal transistor 1 LE 1 7408 AN gate IC 1 7474 positive edge triggered

More information

Rensselaer Polytechnic Institute Computer Hardware Design ECSE Report. Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory

Rensselaer Polytechnic Institute Computer Hardware Design ECSE Report. Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory RPI Rensselaer Polytechnic Institute Computer Hardware Design ECSE 4770 Report Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory Name: Walter Dearing Group: Brad Stephenson David Bang

More information

PHY 351/651 LABORATORY 9 Digital Electronics The Basics

PHY 351/651 LABORATORY 9 Digital Electronics The Basics PHY 351/651 LABORATORY 9 Digital Electronics The Basics Reading Assignment Horowitz, Hill Chap. 8 Data sheets 74HC10N, 74HC86N, 74HC04N, 74HC03N, 74HC32N, 74HC08N, CD4007UBE, 74HC76N, LM555 Overview Over

More information

7 SEGMENT LED DISPLAY KIT

7 SEGMENT LED DISPLAY KIT ESSENTIAL INFORMATION BUILD INSTRUCTIONS CHECKING YOUR PCB & FAULT-FINDING MECHANICAL DETAILS HOW THE KIT WORKS CREATE YOUR OWN SCORE BOARD WITH THIS 7 SEGMENT LED DISPLAY KIT Version 2.0 Which pages of

More information

Digital Circuits 4: Sequential Circuits

Digital Circuits 4: Sequential Circuits Digital Circuits 4: Sequential Circuits Created by Dave Astels Last updated on 2018-04-20 07:42:42 PM UTC Guide Contents Guide Contents Overview Sequential Circuits Onward Flip-Flops R-S Flip Flop Level

More information

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL 1. A stage in a shift register consists of (a) a latch (b) a flip-flop (c) a byte of storage (d) from bits of storage 2. To serially shift a byte of data into a shift register, there must be (a) one click

More information

Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10

Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10 School Course Name : : ELECTRICAL ENGINEERING 2 ND YEAR ELECTRONIC DESIGN LAB Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10 School of

More information

Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours

Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours Aim To investigate the basic digital circuit building blocks constructed from combinatorial logic or dedicated Integrated

More information

ECE 372 Microcontroller Design

ECE 372 Microcontroller Design E.g. Port A, Port B Used to interface with many devices Switches LEDs LCD Keypads Relays Stepper Motors Interface with digital IO requires us to connect the devices correctly and write code to interface

More information

Practice Homework Problems for Module 3

Practice Homework Problems for Module 3 Practice Homework Problems for Module 3. Given the following state transition diagram, complete the timing chart below. d 0 0 0 0d dd 0 d X Y A B 0 d0 00 0 A B X Y 2. Given the following state transition

More information

Laboratory 10. Required Components: Objectives. Introduction. Digital Circuits - Logic and Latching (modified from lab text by Alciatore)

Laboratory 10. Required Components: Objectives. Introduction. Digital Circuits - Logic and Latching (modified from lab text by Alciatore) Laboratory 10 Digital Circuits - Logic and Latching (modified from lab text by Alciatore) Required Components: 1x 330 resistor 4x 1k resistor 2x 0.F capacitor 1x 2N3904 small signal transistor 1x LED 1x

More information

Lab 7: Soldering - Traffic Light Controller ReadMeFirst

Lab 7: Soldering - Traffic Light Controller ReadMeFirst Lab 7: Soldering - Traffic Light Controller ReadMeFirst Lab Summary The two way traffic light controller provides you with a quick project to learn basic soldering skills. Grading for the project has been

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 26: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Digital Fundamentals CHAPTER 7 Latches, Flip-Flops

More information

Experiment # 4 Counters and Logic Analyzer

Experiment # 4 Counters and Logic Analyzer EE20L - Introduction to Digital Circuits Experiment # 4. Synopsis: Experiment # 4 Counters and Logic Analyzer In this lab we will build an up-counter and a down-counter using 74LS76A - Flip Flops. The

More information

Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

More information

CCE RR REVISED & UN-REVISED KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE G È.G È.G È..

CCE RR REVISED & UN-REVISED KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE G È.G È.G È.. CCE RR REVISED & UN-REVISED O %lo ÆË v ÃO y Æ fio» flms ÿ,» fl Ê«fiÀ M, ÊMV fl 560 003 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE 560 003 G È.G È.G È.. Æ fioê, d È 2018 S.

More information

FLIP-FLOPS AND RELATED DEVICES

FLIP-FLOPS AND RELATED DEVICES C H A P T E R 5 FLIP-FLOPS AND RELATED DEVICES OUTLINE 5- NAND Gate Latch 5-2 NOR Gate Latch 5-3 Troubleshooting Case Study 5-4 Digital Pulses 5-5 Clock Signals and Clocked Flip-Flops 5-6 Clocked S-R Flip-Flop

More information

Analog Circuits Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras. Module - 04 Lecture 12

Analog Circuits Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras. Module - 04 Lecture 12 Analog Circuits Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Module - 04 Lecture 12 So, far we have discussed common source amplifier using an

More information

Laboratory Sequence Circuits

Laboratory Sequence Circuits Laboratory Sequence Circuits Digital Design IE1204/5 Attention! To access the laboratory experiment you must have: booked a lab time in the reservation system (Daisy). completed your personal knowledge

More information

Synchronization circuit with synchronized vertical divider system for 60 Hz TDA2579C

Synchronization circuit with synchronized vertical divider system for 60 Hz TDA2579C FEATURES Synchronization and horizontal part Horizontal sync separator and noise inverter Horizontal oscillator Horizontal output stage Horizontal phase detector (sync to oscillator) Triple current source

More information

Spring 2011 Microprocessors B Course Project (30% of your course Grade)

Spring 2011 Microprocessors B Course Project (30% of your course Grade) Course Project guidelines Spring 2011 Microprocessors B 17.384 Course Project (30% of your course Grade) Overall Guidelines Design a fairly complex system that contains at least one microcontroller (the

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I Tasks marked by an asterisk (*) may be carried out before coming to the lab. The Light Emitting Diode: The light emitting

More information

Counter dan Register

Counter dan Register Counter dan Register Introduction Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory.

More information

Jawaharlal Nehru Engineering College

Jawaharlal Nehru Engineering College Jawaharlal Nehru Engineering College Laboratory Manual DIGITAL LOGIC DESIGN For Second Year Students Manual made by Dr. V. A. More Author JNEC, Aurangabad MGM S Jawaharlal Nehru Engineering College N-6,

More information

AIM: To study and verify the truth table of logic gates

AIM: To study and verify the truth table of logic gates EXPERIMENT: 1- LOGIC GATES AIM: To study and verify the truth table of logic gates LEARNING OBJECTIVE: Identify various Logic gates and their output. COMPONENTS REQUIRED: KL-31001 Digital Logic Lab( Main

More information

SEQUENTIAL LOGIC. Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur

SEQUENTIAL LOGIC. Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur SEQUENTIAL LOGIC Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com OSCILLATORS Oscillators is an amplifier which derives its input from output. Oscillators

More information

Laboratory Sequential Circuits

Laboratory Sequential Circuits Laboratory Sequential Circuits Digital Design IE1204/5 Attention! To access the laboratory experiment you must have: booked a lab time in the reservation system (Daisy). completed your personal knowledge

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Lab Manual for Computer Organization Lab

More information

Other Flip-Flops. Lecture 27 1

Other Flip-Flops. Lecture 27 1 Other Flip-Flops Other types of flip-flops can be constructed by using the D flip-flop and external logic. Two flip-flops less widely used in the design of digital systems are the JK and T flip-flops.

More information

UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MALAYSIA SULIT Faculty of Computing UNIVERSITI TEKNOLOGI MALAYSIA FINAL EXAMINATION SEMESTER I, 2016 / 2017 SUBJECT CODE : SUBJECT NAME : SECTION : TIME : DATE/DAY : VENUES : INSTRUCTIONS : Answer all questions

More information

Chapter 18. DRAM Circuitry Discussion. Block Diagram Description. DRAM Circuitry 113

Chapter 18. DRAM Circuitry Discussion. Block Diagram Description. DRAM Circuitry 113 DRAM Circuitry 113 Chapter 18 DRAM Circuitry 18-1. Discussion In this chapter we describe and build the actual DRAM circuits in our SK68K computer. Since we have already discussed the general principles

More information

Delta-Sigma ADC

Delta-Sigma ADC http://www.allaboutcircuits.com/vol_4/chpt_13/9.html Delta-Sigma ADC One of the more advanced ADC technologies is the so-called delta-sigma, or Σ (using the proper Greek letter notation). In mathematics

More information

Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop. Course project for ECE533

Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop. Course project for ECE533 Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop Course project for ECE533 I. Objective: REPORT-I The objective of this project is to design a 4-bit counter and implement it into a chip

More information