Software Engineering 2DA4. Slides 3: Optimized Implementation of Logic Functions

Size: px
Start display at page:

Download "Software Engineering 2DA4. Slides 3: Optimized Implementation of Logic Functions"

Transcription

1 Software Engineering 2DA4 Slides 3: Optimized Implementation of Logic Functions Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design, 3rd Ed. c R.J. Leduc, M. Lawford 1

2 Motivation: Cost What is the cost of a circuit? x 1 x 2 f f 1 = x 1 x 2 +x 1 x 2 Real cost depends on technology: 7400 chips: takes part of one or more chips CPLD: takes 1 macrocell Custom chip: takes 20 transistors (CMOS) A simple cost metric (ignore cost of inverters): Cost = # gates + # inputs For f 1 : Cost = = 9. Need a method for synthesizing circuits of minimal cost. So far have used algebra. c R.J. Leduc, M. Lawford 2

3 Karnaugh Maps We need a systematic method of optimization. Karnaugh maps were used in past to do optimization by hand. Now CAD tools do this automatically using more sophisticated techniques. Def: A K-map is a type of truth table, organized so that it shows product-terms that can be combined to reduce cost. All minterms that are adjacent in the map can be combined. Two cells are adjacent if the valuation of the input variables for each differ by only 1 bit! Cells labelled xy = 00 and xy = 01 are adjacent but cells labelled xy = 10 and xy = 01 are not. Thus in 3 variable tables, the columns are labeled such that only one variable changes in adjacent columns. c R.J. Leduc, M. Lawford 3

4 Two Variable K-Maps c R.J. Leduc, M. Lawford 4

5 Three Variable K-Maps c R.J. Leduc, M. Lawford 5

6 Four Variable K-Maps c R.J. Leduc, M. Lawford 6

7 Five Variable K-Maps c R.J. Leduc, M. Lawford 7

8 Rules for K-maps (Sum-of-Products) 1. Must cover all squares containing 1s 2. Form largest group of 1s but group must be power of 2 (e.g. 1, 2, 4, 8 groups). Groups contain adjacent cells of ones only (ie. rectangles and squares of 1s). 3. Write Product term for group. Only include variables with constant value in group. 4. It is OK to cover a 1 multiple times. Why largest grouping and as a few groups as possible? To keep cost (#gates + #inputs) down. c R.J. Leduc, M. Lawford 8

9 What if non-unique soln? Literal: Variable in complemented or uncomplemented form. ie. x 1, x 1 Implicant: A product term that indicates an input valuation for when given function equals 1. Most basic implicants are minterms of the function. Prime Implicant: An implicant that can t be combined into another implicant with fewer variables. Cover: Collection of implicants that account for all valuations where f = 1. Canonical sum-of-products an example. Essential Prime Implicant: A prime implicant that contains a 1 square in k-map that is not covered by any other prime implicant. c R.J. Leduc, M. Lawford 9

10 Optimization Method 1. Find set of essential prime implicants. 2. If cover all 1-squares of k-map, then stop. 3. Determine non-essential prime implicants until all 1-squares covered, and minimum cost solution found. May have several variations to select from. c R.J. Leduc, M. Lawford 10

11 Optimization Example c R.J. Leduc, M. Lawford 11

12 Product-of-Sum Optimization Rules for K-maps: 1. Must cover all squares containing 0s 2. Form largest group of 0s but group must be power of 2 (e.g. 1, 2, 4, 8 groups). Groups contain adjacent cells of zeros only (ie. rectangles and squares of 0s). 3. Write sum term for group. Only include variables with constant value in group, and complement input variables. 4. It is OK to cover a 0 multiple times. If asked to find lowest cost circuit, do k-map for both sum-of-product and product-of-sums and choose lowest cost. c R.J. Leduc, M. Lawford 12

13 Don t Care Conditions In a circuit with n inputs, we sometimes know that certain input patterns will never occur. E.g. 1 Circuit with cross-coupled switches that are impossible to simultaneously close (i.e. set to 1) x 1 x 2 f d Here d = don t care (it will never happen). We can arbitrarily make d a 0 or 1. If d = 0, f = x 1 x 2 +x 1 x 2 (cost=9) If d = 1, f = x 1 +x 2 (cost=3) c R.J. Leduc, M. Lawford 13

14 Don t Care Conditions - II We choose the value of d (0 or 1) to minimize the circuit. For k-maps, include a d in a group if can create a larger group, ignore otherwise. You do not have to cover all d items. When circling 1s, including a d in a group sets the function output to 1 for that input combination (i.e. you are choosing d= 1 for that item). Not including the d in some group of 1s, sets the function to zero for that input combination. When circling 0s, including a d in a group sets the function output to 0 for that input combination, else 1. c R.J. Leduc, M. Lawford 14

15 Don t Care Conditions - e.g. 2 For 7-Segment Display, assume we only want to display numbers 0-9. We need 4 inputs. (why?) Also assume that we can guarantee that only 10 input patterns will ever occur. Synthesize a function for segment f. a a f g b f g b e c e c d d decimal point c R.J. Leduc, M. Lawford 15

16 Don t Care Conditions - e.g. 2 - II f e a g d b c f e a g d decimal point b c x 1 x 2 x 3 x 4 Display f d d d d d d c R.J. Leduc, M. Lawford 16

17 Introduction to D Flip-Flops A flip-flop is a storage device. A positive edge triggered D Flip-Flop stores whatever value is at its D input on the rising edge of the clock (when the clock input transitions from low to high). The stored value is assigned to its Q output. A positive edge-triggered D flip-flop ONLY stores a new value on the rising edge of the clock, and ignores changes on its D input otherwise. A negative edge-triggered D Flip-Flop behaves the same except it only stores a value on the negative edge of the clock (when the clock transitions from high to low). c R.J. Leduc, M. Lawford 17

18 Introduction to D Flip-Flops - II Figure shows, from top to bottom, a D latch (ignore for now), a positive edge-triggered D Flip-Flop, and a negative edge-triggered D Flip-Flop. c R.J. Leduc, M. Lawford 18

19 D Flip-Flops with Reset Sometimes want to ensure the D flip-flop has a known value. A RESET (CLEAR) input added to the flip-flop allows us to force stored output to go to zero. Example below has an active high RESET. Reset is asynchronous as it doesn t wait for clock edge to set Q to zero; it takes effect immediately. c R.J. Leduc, M. Lawford 19

20 Data Registers If we combine 4 D flip-flops with reset, we can create a 4 bit data register with reset. c R.J. Leduc, M. Lawford 20

Software Engineering 2DA4. Slides 9: Asynchronous Sequential Circuits

Software Engineering 2DA4. Slides 9: Asynchronous Sequential Circuits Software Engineering 2DA4 Slides 9: Asynchronous Sequential Circuits Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals of

More information

The word digital implies information in computers is represented by variables that take a limited number of discrete values.

The word digital implies information in computers is represented by variables that take a limited number of discrete values. Class Overview Cover hardware operation of digital computers. First, consider the various digital components used in the organization and design. Second, go through the necessary steps to design a basic

More information

EECS 270 Final Exam Spring 2012

EECS 270 Final Exam Spring 2012 EECS 270 Final Exam Spring 2012 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: Page # Points 2 /20 3 /12 4 /10 5 /15

More information

EXPERIMENT: 1. Graphic Symbol: OR: The output of OR gate is true when one of the inputs A and B or both the inputs are true.

EXPERIMENT: 1. Graphic Symbol: OR: The output of OR gate is true when one of the inputs A and B or both the inputs are true. EXPERIMENT: 1 DATE: VERIFICATION OF BASIC LOGIC GATES AIM: To verify the truth tables of Basic Logic Gates NOT, OR, AND, NAND, NOR, Ex-OR and Ex-NOR. APPARATUS: mention the required IC numbers, Connecting

More information

Lecture 8: Sequential Logic

Lecture 8: Sequential Logic Lecture 8: Sequential Logic Last lecture discussed how we can use digital electronics to do combinatorial logic we designed circuits that gave an immediate output when presented with a given set of inputs

More information

Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012

Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012 1 McGill University Faculty of Engineering ECSE-221B Introduction to Computer Engineering Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012 Examiner: Rola Harmouche Date:

More information

EECS 270 Midterm 2 Exam Closed book portion Fall 2014

EECS 270 Midterm 2 Exam Closed book portion Fall 2014 EECS 270 Midterm 2 Exam Closed book portion Fall 2014 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: Page # Points

More information

Where Are We Now? e.g., ADD $S0 $S1 $S2?? Computed by digital circuit. CSCI 402: Computer Architectures. Some basics of Logic Design (Appendix B)

Where Are We Now? e.g., ADD $S0 $S1 $S2?? Computed by digital circuit. CSCI 402: Computer Architectures. Some basics of Logic Design (Appendix B) Where Are We Now? Chapter 1: computer systems overview and computer performance Chapter 2: ISA (machine-spoken language), different formats, and various instructions Chapter 3: We will learn how those

More information

Section 001. Read this before starting!

Section 001. Read this before starting! Points missed: Student's Name: Total score: / points East Tennessee State University epartment of Computer and Information Sciences CSCI 25 (Tarnoff) Computer Organization TEST 2 for Spring Semester, 23

More information

EECS 270 Midterm Exam Spring 2011

EECS 270 Midterm Exam Spring 2011 EES 270 Midterm Exam Spring 2011 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: Page # Points 2 /15 3 /10 4 /6 5 /12

More information

EECS 270 Midterm 1 Exam Closed book portion Winter 2017

EECS 270 Midterm 1 Exam Closed book portion Winter 2017 EES 270 Midterm 1 Exam losed book portion Winter 2017 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. NOTES: 1. This part of

More information

Computer Architecture and Organization

Computer Architecture and Organization A-1 Appendix A - Digital Logic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Appendix A Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

More information

EECS 270 Homework the Last Winter 2017

EECS 270 Homework the Last Winter 2017 EECS 270 Homework the Last Winter 2017 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. NOTES: 1. This is an individual assignment.

More information

COE328 Course Outline. Fall 2007

COE328 Course Outline. Fall 2007 COE28 Course Outline Fall 2007 1 Objectives This course covers the basics of digital logic circuits and design. Through the basic understanding of Boolean algebra and number systems it introduces the student

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 2 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 2 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 2 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

A Review of logic design

A Review of logic design Chapter 1 A Review of logic design 1.1 Boolean Algebra Despite the complexity of modern-day digital circuits, the fundamental principles upon which they are based are surprisingly simple. Boolean Algebra

More information

DIGITAL ELECTRONICS MCQs

DIGITAL ELECTRONICS MCQs DIGITAL ELECTRONICS MCQs 1. A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register. A. 1 B. 2 C. 4 D. 8

More information

1. Convert the decimal number to binary, octal, and hexadecimal.

1. Convert the decimal number to binary, octal, and hexadecimal. 1. Convert the decimal number 435.64 to binary, octal, and hexadecimal. 2. Part A. Convert the circuit below into NAND gates. Insert or remove inverters as necessary. Part B. What is the propagation delay

More information

Using minterms, m-notation / decimal notation Sum = Cout = Using maxterms, M-notation Sum = Cout =

Using minterms, m-notation / decimal notation Sum = Cout = Using maxterms, M-notation Sum = Cout = 1 Review of Digital Logic Design Fundamentals Logic circuits: 1. Combinational Logic: No memory, present output depends only on the present input 2. Sequential Logic: Has memory, present output depends

More information

COMP sequential logic 1 Jan. 25, 2016

COMP sequential logic 1 Jan. 25, 2016 OMP 273 5 - sequential logic 1 Jan. 25, 2016 Sequential ircuits All of the circuits that I have discussed up to now are combinational digital circuits. For these circuits, each output is a logical combination

More information

1. What does the signal for a static-zero hazard look like?

1. What does the signal for a static-zero hazard look like? Sample Problems 1. What does the signal for a static-zero hazard look like? The signal will always be logic zero except when the hazard occurs which will cause it to temporarly go to logic one (i.e. glitch

More information

THE KENYA POLYTECHNIC

THE KENYA POLYTECHNIC THE KENYA POLYTECHNIC ELECTRICAL/ELECTRONICS ENGINEERING DEPARTMENT HIGHER DIPLOMA IN ELECTRICAL ENGINEERING END OF YEAR II EXAMINATIONS NOVEMBER 006 DIGITAL ELECTRONICS 3 HOURS INSTRUCTIONS TO CANDIDATES:

More information

ME 515 Mechatronics. Introduction to Digital Electronics

ME 515 Mechatronics. Introduction to Digital Electronics ME 55 Mechatronics /5/26 ME 55 Mechatronics Digital Electronics Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 8239 (3627) Email: asangar@pdn.ac.lk Introduction to

More information

Chapter 5 Sequential Circuits

Chapter 5 Sequential Circuits Logic and Computer Design Fundamentals Chapter 5 Sequential Circuits Part 2 Sequential Circuit Design Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hyperlinks are active in View Show mode)

More information

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design Flip-Flops and Sequential Circuit Design ECE 52 Summer 29 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 23 121120 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Combinatorial Logic Sequential Logic 3 Combinatorial Logic Circuits

More information

CS 151 Final. Instructions: Student ID. (Last Name) (First Name) Signature

CS 151 Final. Instructions: Student ID. (Last Name) (First Name) Signature CS 151 Final Name Student ID Signature :, (Last Name) (First Name) : : Instructions: 1. Please verify that your paper contains 19 pages including this cover. 2. Write down your Student-Id on the top of

More information

D Latch (Transparent Latch)

D Latch (Transparent Latch) D Latch (Transparent Latch) -One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure that inputs S and R are never equal to 1 at the same time. This is done

More information

Department of CSIT. Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30

Department of CSIT. Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30 Department of CSIT Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30 Section A: (All 10 questions compulsory) 10X1=10 Very Short Answer Questions: Write

More information

ELEN Electronique numérique

ELEN Electronique numérique ELEN0040 - Electronique numérique Patricia ROUSSEAUX Année académique 2014-2015 CHAPITRE 5 Sequential circuits design - Timing issues ELEN0040 5-228 1 Sequential circuits design 1.1 General procedure 1.2

More information

Multi-Level Gate Circuits. Chapter 7 Multi-Level Gate Circuits NAND and NOR Gates. Some Terminologies (Cont.) Some Terminologies

Multi-Level Gate Circuits. Chapter 7 Multi-Level Gate Circuits NAND and NOR Gates. Some Terminologies (Cont.) Some Terminologies Chapter 7 Multi-Level Gate Circuits NAND and NOR Gates iaojun Qi Multi-Level Gate Circuits Design Find the inputs and outputs Find the relationship between inputs and outputs (i.e., For each input combination,

More information

St. MARTIN S ENGINEERING COLLEGE

St. MARTIN S ENGINEERING COLLEGE St. MARTIN S ENGINEERING COLLEGE Dhulapally, Kompally, Secunderabad-500014. Branch Year&Sem Subject Name : Electronics and Communication Engineering : II B. Tech I Semester : SWITCHING THEORY AND LOGIC

More information

Digital Circuit Engineering

Digital Circuit Engineering Digital Circuit Engineering 2nd Distributive ( + A)( + B) = + AB Circuits that work in a sequence of steps Absorption + A = + A A+= THESE CICUITS NEED STOAGE TO EMEMBE WHEE THEY AE STOAGE D MU G M MU S

More information

Introduction to Digital Electronics

Introduction to Digital Electronics Introduction to Digital Electronics by Agner Fog, 2018-10-15. Contents 1. Number systems... 3 1.1. Decimal, binary, and hexadecimal numbers... 3 1.2. Conversion from another number system to decimal...

More information

EECS 270 Group Homework 4 Due Friday. June half credit if turned in by June

EECS 270 Group Homework 4 Due Friday. June half credit if turned in by June EES 270 Group Homework 4 ue Friday. June 1st @9:45am, half credit if turned in by June 1st @4pm. Name: unique name: Name: unique name: Name: unique name: This is a group assignment; all of the work should

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Digital Logic: Recap - Review: truth table => SOP => simplification - dual / complement - Minterm / Maxterm - SOP

More information

MODULE 3. Combinational & Sequential logic

MODULE 3. Combinational & Sequential logic MODULE 3 Combinational & Sequential logic Combinational Logic Introduction Logic circuit may be classified into two categories. Combinational logic circuits 2. Sequential logic circuits A combinational

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 COMP2611: Computer Organization Sequential Logic Time 2 Till now, we have essentially ignored the issue of time. We assume digital circuits: Perform their computations instantaneously Stateless: once

More information

UNIT III. Combinational Circuit- Block Diagram. Sequential Circuit- Block Diagram

UNIT III. Combinational Circuit- Block Diagram. Sequential Circuit- Block Diagram UNIT III INTRODUCTION In combinational logic circuits, the outputs at any instant of time depend only on the input signals present at that time. For a change in input, the output occurs immediately. Combinational

More information

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall Objective: - Dealing with the operation of simple sequential devices. Learning invalid condition in

More information

Sequential Logic Circuits

Sequential Logic Circuits Sequential Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch- Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has memory

More information

CPS311 Lecture: Sequential Circuits

CPS311 Lecture: Sequential Circuits CPS311 Lecture: Sequential Circuits Last revised August 4, 2015 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce

More information

LATCHES & FLIP-FLOP. Chapter 7

LATCHES & FLIP-FLOP. Chapter 7 LATCHES & FLIP-FLOP Chapter 7 INTRODUCTION Latch and flip flops are categorized as bistable devices which have two stable states,called SET and RESET. They can retain either of this states indefinitely

More information

COE 202: Digital Logic Design Sequential Circuits Part 1. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Sequential Circuits Part 1. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Sequential Circuits Part 1 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives Sequential Circuits Memory Elements Latches Flip-Flops Combinational

More information

DIGITAL SYSTEM DESIGN UNIT I (2 MARKS)

DIGITAL SYSTEM DESIGN UNIT I (2 MARKS) DIGITAL SYSTEM DESIGN UNIT I (2 MARKS) 1. Convert Binary number (111101100) 2 to Octal equivalent. 2. Convert Binary (1101100010011011) 2 to Hexadecimal equivalent. 3. Simplify the following Boolean function

More information

MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER CS 203: Switching Theory and Logic Design. Time: 3 Hrs Marks: 100

MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER CS 203: Switching Theory and Logic Design. Time: 3 Hrs Marks: 100 MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER 2016 CS 203: Switching Theory and Logic Design Time: 3 Hrs Marks: 100 PART A ( Answer All Questions Each carries 3 Marks )

More information

Microprocessor Design

Microprocessor Design Microprocessor Design Principles and Practices With VHDL Enoch O. Hwang Brooks / Cole 2004 To my wife and children Windy, Jonathan and Michelle Contents 1. Designing a Microprocessor... 2 1.1 Overview

More information

Chapter 5: Synchronous Sequential Logic

Chapter 5: Synchronous Sequential Logic Chapter 5: Synchronous Sequential Logic NCNU_2016_DD_5_1 Digital systems may contain memory for storing information. Combinational circuits contains no memory elements the outputs depends only on the inputs

More information

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) LATCHES and FLIP-FLOPS In the same way that logic gates are the building blocks of combinatorial circuits, latches

More information

For Teacher's Use Only Q Total No. Marks. Q No Q No Q No

For Teacher's Use Only Q Total No. Marks. Q No Q No Q No FINALTERM EXAMINATION Spring 2010 CS302- Digital Logic Design (Session - 4) Time: 90 min Marks: 58 For Teacher's Use Only Q 1 2 3 4 5 6 7 8 Total No. Marks Q No. 9 10 11 12 13 14 15 16 Marks Q No. 17 18

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL 1. A stage in a shift register consists of (a) a latch (b) a flip-flop (c) a byte of storage (d) from bits of storage 2. To serially shift a byte of data into a shift register, there must be (a) one click

More information

1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. [4] Figure 1.

1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. [4] Figure 1. [Question 1 is compulsory] 1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. Figure 1.1 b) Minimize the following Boolean functions:

More information

UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers.

UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers. UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers. Digital computer is a digital system that performs various computational tasks. The word DIGITAL

More information

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors CSC258 Week 5 1 We are here Assembly Language Processors Arithmetic Logic Units Devices Finite State Machines Flip-flops Circuits Gates Transistors 2 Circuits using flip-flops Now that we know about flip-flops

More information

A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states.

A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. Clocks A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. 1 The length of time the clock is high before changing states is its

More information

Section 6.8 Synthesis of Sequential Logic Page 1 of 8

Section 6.8 Synthesis of Sequential Logic Page 1 of 8 Section 6.8 Synthesis of Sequential Logic Page of 8 6.8 Synthesis of Sequential Logic Steps:. Given a description (usually in words), develop the state diagram. 2. Convert the state diagram to a next-state

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

Chapter 5 Synchronous Sequential Logic

Chapter 5 Synchronous Sequential Logic Chapter 5 Synchronous Sequential Logic Chih-Tsun Huang ( 黃稚存 ) http://nthucad.cs.nthu.edu.tw/~cthuang/ Department of Computer Science National Tsing Hua University Outline Introduction Storage Elements:

More information

Digital Design, Kyung Hee Univ. Chapter 5. Synchronous Sequential Logic

Digital Design, Kyung Hee Univ. Chapter 5. Synchronous Sequential Logic Chapter 5. Synchronous Sequential Logic 1 5.1 Introduction Electronic products: ability to send, receive, store, retrieve, and process information in binary format Dependence on past values of inputs Sequential

More information

1. True/False Questions (10 x 1p each = 10p) (a) I forgot to write down my name and student ID number.

1. True/False Questions (10 x 1p each = 10p) (a) I forgot to write down my name and student ID number. CprE 281: Digital Logic Midterm 2: Friday Oct 30, 2015 Student Name: Student ID Number: Lab Section: Mon 9-12(N) Mon 12-3(P) Mon 5-8(R) Tue 11-2(U) (circle one) Tue 2-5(M) Wed 8-11(J) Wed 6-9(Y) Thur 11-2(Q)

More information

Previous Lecture Sequential Circuits. Slide Summary of contents covered in this lecture. (Refer Slide Time: 01:55)

Previous Lecture Sequential Circuits. Slide Summary of contents covered in this lecture. (Refer Slide Time: 01:55) Previous Lecture Sequential Circuits Digital VLSI System Design Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No 7 Sequential Circuit Design Slide

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science SOLUTIONS

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science SOLUTIONS University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science EECS 5 Fall 25 R. H. Katz SOLUTIONS Problem Set #3: Combinational and Sequential Logic

More information

RELATED WORK Integrated circuits and programmable devices

RELATED WORK Integrated circuits and programmable devices Chapter 2 RELATED WORK 2.1. Integrated circuits and programmable devices 2.1.1. Introduction By the late 1940s the first transistor was created as a point-contact device formed from germanium. Such an

More information

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES 1 Learning Objectives 1. Explain the function of a multiplexer. Implement a multiplexer using gates. 2. Explain the

More information

VU Mobile Powered by S NO Group

VU Mobile Powered by S NO Group Question No: 1 ( Marks: 1 ) - Please choose one A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register.

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - III Sequential Logic I Sequential circuits: latches flip flops analysis of clocked sequential circuits state reduction and assignments Registers and Counters: Registers shift registers ripple counters

More information

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit)

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit) Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6. - Introductory Digital Systems Laboratory (Spring 006) Laboratory - Introduction to Digital Electronics

More information

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP 1 Chapter Overview Latches Gated Latches Edge-triggered flip-flops Master-slave flip-flops Flip-flop operating characteristics Flip-flop applications

More information

Sequential Circuits: Latches & Flip-Flops

Sequential Circuits: Latches & Flip-Flops Sequential Circuits: Latches & Flip-Flops Overview Storage Elements Latches SR, JK, D, and T Characteristic Tables, Characteristic Equations, Eecution Tables, and State Diagrams Standard Symbols Flip-Flops

More information

Rangkaian Sekuensial. Flip-flop

Rangkaian Sekuensial. Flip-flop Rangkaian Sekuensial Rangkaian Sekuensial Flip-flop Combinational versus Sequential Functions Logic functions are categorized as being either combinational (sometimes referred to as combinatorial) or sequential.

More information

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay)  CSC S.J. Park. Announcement Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Computer Architecture (CSC-3501) Lecture 7 (07 Feb 2008) 1 Announcement 2 1 Combinational vs. Sequential Logic Combinational Logic Memoryless Outputs

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 26.3.9. DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: ANALYSIS AND SYNTHESIS OF SYNCHRONOUS SEQUENTIAL CIRCUITS 2nd (Spring) term 25/26 5.

More information

EE6301 DIGITAL LOGIC CIRCUITS UNIT-I NUMBERING SYSTEMS AND DIGITAL LOGIC FAMILIES 1) What are basic properties of Boolean algebra? The basic properties of Boolean algebra are commutative property, associative

More information

Digital Principles and Design

Digital Principles and Design Digital Principles and Design Donald D. Givone University at Buffalo The State University of New York Grauu Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota

More information

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20 Advanced Devices Using a combination of gates and flip-flops, we can construct more sophisticated logical devices. These devices, while more complex, are still considered fundamental to basic logic design.

More information

ECE 555 DESIGN PROJECT Introduction and Phase 1

ECE 555 DESIGN PROJECT Introduction and Phase 1 March 15, 1998 ECE 555 DESIGN PROJECT Introduction and Phase 1 Charles R. Kime Dept. of Electrical and Computer Engineering University of Wisconsin Madison Phase I Due Wednesday, March 24; One Week Grace

More information

Chapter 8 Sequential Circuits

Chapter 8 Sequential Circuits Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By 1 Chapter 8 Sequential Circuits 1 Classification of Combinational Logic 3 Sequential circuits

More information

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of 1 The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of the AND gate, you get the NAND gate etc. 2 One of the

More information

Introduction Actel Logic Modules Xilinx LCA Altera FLEX, Altera MAX Power Dissipation

Introduction Actel Logic Modules Xilinx LCA Altera FLEX, Altera MAX Power Dissipation Outline CPE 528: Session #12 Department of Electrical and Computer Engineering University of Alabama in Huntsville Introduction Actel Logic Modules Xilinx LCA Altera FLEX, Altera MAX Power Dissipation

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053 SET - 1 1. a) What are the characteristics of 2 s complement numbers? b) State the purpose of reducing the switching functions to minimal form. c) Define half adder. d) What are the basic operations in

More information

MUX AND FLIPFLOPS/LATCHES

MUX AND FLIPFLOPS/LATCHES MUX AN FLIPFLOPS/LATCHES BY: SURESH BALPANE Multiplexers 2:1 multiplexer chooses between two inputs S 1 0 Y 0 X 0 0 0 0 0 X 1 1 1 0 X 0 1 1 X 1 1 1 S Y @BALPANECircuits and Slide 2 Gate-Level Mux esign

More information

Department of Computer Science and Engineering Question Bank- Even Semester:

Department of Computer Science and Engineering Question Bank- Even Semester: Department of Computer Science and Engineering Question Bank- Even Semester: 2014-2015 CS6201& DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to IT & CSE, Regulation 2013) UNIT-I 1. Convert the following

More information

DALHOUSIE UNIVERSITY Department of Electrical & Computer Engineering Digital Circuits - ECED 220. Experiment 4 - Latches and Flip-Flops

DALHOUSIE UNIVERSITY Department of Electrical & Computer Engineering Digital Circuits - ECED 220. Experiment 4 - Latches and Flip-Flops DLHOUSIE UNIVERSITY Department of Electrical & Computer Engineering Digital Circuits - ECED 0 Experiment - Latches and Flip-Flops Objectives:. To implement an RS latch memory element. To implement a JK

More information

Sequential Logic. E&CE 223 Digital Circuits and Systems (A. Kennings) Page 1

Sequential Logic. E&CE 223 Digital Circuits and Systems (A. Kennings) Page 1 Sequential Logic E&CE 223 igital Circuits and Systems (A. Kennings) Page 1 Sequential Circuits Have considered only combinational circuits in which circuit outputs are determined entirely by current circuit

More information

ELE2120 Digital Circuits and Systems. Tutorial Note 7

ELE2120 Digital Circuits and Systems. Tutorial Note 7 ELE2120 Digital Circuits and Systems Tutorial Note 7 Outline 1. Sequential Circuit 2. Gated SR Latch 3. Gated D-latch 4. Edge-Triggered D Flip-Flop 5. Asynchronous and Synchronous reset Sequential Circuit

More information

Helping Material of CS302

Helping Material of CS302 ABEL : Advanced Boolean Expression Language; a software compiler language for SPLD programming; a type of hardware description language (HDL) Adder : A digital circuit which forms the sum and carry of

More information

Laboratory Objectives and outcomes for Digital Design Lab

Laboratory Objectives and outcomes for Digital Design Lab Class: SE Department of Information Technology Subject Logic Design Sem : III Course Objectives and outcomes for LD Course Objectives: Students will try to : COB1 Understand concept of various components.

More information

Digital Logic Design Sequential Circuits. Dr. Basem ElHalawany

Digital Logic Design Sequential Circuits. Dr. Basem ElHalawany Digital Logic Design Sequential Circuits Dr. Basem ElHalawany Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs

More information

Digital Logic Design I

Digital Logic Design I Digital Logic Design I Synchronous Sequential Logic Mustafa Kemal Uyguroğlu Sequential Circuits Asynchronous Inputs Combinational Circuit Memory Elements Outputs Synchronous Inputs Combinational Circuit

More information

Flip-Flops. Because of this the state of the latch may keep changing in circuits with feedback as long as the clock pulse remains active.

Flip-Flops. Because of this the state of the latch may keep changing in circuits with feedback as long as the clock pulse remains active. Flip-Flops Objectives The objectives of this lesson are to study: 1. Latches versus Flip-Flops 2. Master-Slave Flip-Flops 3. Timing Analysis of Master-Slave Flip-Flops 4. Different Types of Master-Slave

More information

INTRODUCTION TO SEQUENTIAL CIRCUITS

INTRODUCTION TO SEQUENTIAL CIRCUITS NOTE: Explanation Refer Class Notes Digital Circuits(15EECC203) INTRODUCTION TO SEQUENTIAL CIRCUITS by Nagaraj Vannal, Asst.Professor, School of Electronics Engineering, K.L.E. Technological University,

More information

Other Flip-Flops. Lecture 27 1

Other Flip-Flops. Lecture 27 1 Other Flip-Flops Other types of flip-flops can be constructed by using the D flip-flop and external logic. Two flip-flops less widely used in the design of digital systems are the JK and T flip-flops.

More information

DIGITAL CIRCUIT COMBINATORIAL LOGIC

DIGITAL CIRCUIT COMBINATORIAL LOGIC DIGITAL CIRCUIT COMBINATORIAL LOGIC Logic levels: one zero true false high low CMOS logic levels: 1 => 0.7 V DD 0.4 V DD = noise margin 0 =< 0.3 V DD Positive logic: high = 1 = true low = 0 = false Negative

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING Course Name INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK : SWITCHING THEORY AND LOGIC DESISN Course Code : A40407

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 7 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

Synchronous Sequential Logic

Synchronous Sequential Logic Synchronous Sequential Logic -A Sequential Circuit consists of a combinational circuit to which storage elements are connected to form a feedback path. The storage elements are devices capable of storing

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 27.2.2. DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 6. LECTURE (ANALYSIS AND SYNTHESIS OF SYNCHRONOUS SEQUENTIAL CIRCUITS) 26/27 6. LECTURE Analysis and

More information