Ultrasound Variable-Gain Amplifier MAX2035

Size: px
Start display at page:

Download "Ultrasound Variable-Gain Amplifier MAX2035"

Transcription

1 19-63; Rev 1; 2/9 General Description The 8-channel variable-gain amplifier (VGA) is designed for high linearity, high dynamic range, and low-noise performance targeting ultrasound imaging and Doppler applications. Each amplifier features differential inputs and outputs and a total gain range of typically 5dB. In addition, the VGAs offer very low output-referred noise performance suitable for interfacing with 1-bit ADCs. The VGA is optimized for less than ±.5dB absolute gain error to ensure minimal channel-to-channel ultrasound beamforming focus error. The device s differential outputs are designed to directly drive ultrasound ADCs through an external passive anti-aliasing filter. A switchable clamp is also provided at each amplifier s outputs to limit the output signals, thereby preventing ADC overdrive or saturation. Dynamic performance of the device is optimized to reduce distortion to support second-harmonic imaging. The device achieves a second-harmonic distortion specification of -62dBc at V OUT = 1.5V P-P and f IN = 5MHz, and an ultrasound-specific* two-tone third-order intermodulation distortion specification of -52dBc at V OUT = 1.5V P-P and f IN = 5MHz. The operates from a +5.V power supply, consuming only 127mW/channel. The device is available in a 1-pin TQFP package with an exposed pad. Electrical performance is guaranteed over a C to +7 C temperature range. Ultrasound Imaging Applications Sonar Functional Diagram Features 8-Channel Configuration High Integration for Ultrasound Imaging Applications Pin Compatible with the MAX236 Ultrasound VGA Plus CW Doppler Beamformer Maximum Gain, Gain Range, and Output-Referred Noise Optimized for Interfacing with 1-Bit ADCs Maximum Gain of 39.5dB Total Gain Range of 5dB 6nV/ Hz Ultra-Low Output-Referred Noise at 5MHz Pin-for-Pin 12-Bit Compatibility Supported By MAX237/MAX238 ±.5dB Absolute Gain Error Switchable Output VGA Clamp Eliminating ADC Overdrive Fully Differential VGA Outputs for Direct ADC Drive Variable Gain Range Achieves 5dB Dynamic Range -62dBc HD2 at VOUT = 1.5V P-P and f IN = 5MHz Two-Tone Ultrasound-Specific* IMD3 of -52dBc at V OUT = 1.5VP-P and fin = 5MHz 127mW Consumption per Channel *See the Ultrasound-Specific IMD3 Specification in the Applications Information section. Ordering Information VG_CTL+ VG_CTL- VGIN1+ VGIN8+ VGOUT8- VGIN1- VGIN8- VGA VGA V CC V REF -1.5dB TO +39.5dB 5Ω 5Ω 5Ω 5Ω VG_CLAMP_MODE VGOUT1+ VGOUT8+ VGOUT1- PART TEMP RANGE PIN-PACKAGE CCQ-D C to +7 C 1 TQFP-EP CCQ-TD C to +7 C 1 TQFP-EP CCQ+D C to +7 C 1 TQFP-EP CCQ+TD C to +7 C 1 TQFP-EP EP = Exposed pad. +Denotes a lead(pb)-free/rohs-compliant package. -Denotes a package containing lead(pb). T = Tape and reel. D = Dry packing. PD BIAS CIRCUITRY EXT_RES Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at , or visit Maxim s website at

2 ABSOLUTE MAXIMUM RATINGS V CC, V REF to...-.3v to +5.5V Any Other Pins to...-.3v to (V CC +.3V) VGA Differential Input Voltage (VGIN_+ - VGIN_-)...8.V P-P Analog Gain-Control Input Differential Voltage (VG_CTL+ - VG_CTL-)...8.V P-P Continuous Power Dissipation (T A = +7 C) 1-Pin TQFP (derated 45.5mW/ C above +7 C) mW Operating Temperature Range... C to +7 C Junction Temperature C θ JC (Note 1)...+2 C/W θ JA (Note 1) C/W Storage Temperature Range...-4 C to +15 C Lead Temperature (soldering, 1s)...+3 C Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (Figure 2, V CC = V REF = 4.75V to 5.25V, V CM = (3/5)V REF, V =, PD =, no RF signals applied, capacitance to at each of the VGA differential outputs is 6pF, differential capacitance across the VGA outputs is 1pF, R L = 1kΩ, T A = C to +7 C. Typical values are at V CC = V REF = 5V, T A = +25 C, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDTIONS MIN TYP MAX UNITS Supply Voltage Range V CC V V CC External Reference Voltage Range Total Power-Supply Current V REF (Note 3) V Refers to V CC supply PD = current plus V REF current PD = V CC Supply Current I VCC ma V REF Current I REF ma Current Consumption per Amplifier Channel Refers to V CC supply current ma Differential Analog Control Minimum gain +2 Voltage Range Maximum gain -2 ma V P-P Differential Analog Control Common-Mode Voltage Analog Control Input Source/Sink Current V CM V ma LOGIC INPUTS CMOS Input-High Voltage V IH 2.3 V CMOS Input-Low Voltage V IL.8 V 2

3 AC ELECTRICAL CHARACTERISTICS (Figure 2, V CC = V REF = 4.75V to 5.25V, V CM = (3/5)V REF, V =, PD =, no RF signals applied, capacitance to at each of the VGA differential outputs is 6pF, differential capacitance across the VGA outputs is 1pF, R L = 1kΩ, T A = C to +7 C. Typical values are at V CC = V REF = 5V, T A = +25 C, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Large-Signal Bandwidth f -3dB 3dB bandwidth, V OUT = 1.5V P-P, gain = 2dB Differential output capacitance is 1pF, capacitance to at each single-ended outp ut i s 6p F, R L = 1kΩ No capacitive load, R L = 1kΩ Differential Input Resistance R IN Ω Input Effective Capacitance C IN f RF = 1MHz, each input to ground 15 pf Differential Output Resistance R OUT 1 Ω Maximum Gain 39.5 db Minimum Gain -1.5 db Gain Range 5 db Absolute Gain Error T A = +25 C, -2.V < V G_CTL < -1.8V, V REF = 5V ±.6 T A = +25 C, -1.8V < VG_CTL < +1.2V, V RE F = 5V ±.5 T A = + 25 C, + 1.2V < V G_CTL < +2.V, V REF = 5V ±1.2 VGA Gain Response Time 5dB gain change to within 1dB final value 1 µs Input-Referred Noise Output-Referred Noise Second Harmonic Third-Order Intermodulation Distortion HD2 IMD3 VG_CTL set for maximum gain, no input signal VG_CTL set for +2dB of gain No input signal 6 V OUT = 1.5V P-P, 1kHz offset MHz db 2 nv/ Hz 12 VG_CLAMP_MODE = 1, VG_CTL set for +2dB of gain, f RF = 5MHz, V OUT = 1.5V P-P VG_CLAMP_MODE = 1, VG_CTL set for +2dB of gain, f RF = 1MHz, V OUT = 1.5V P-P -62 VG_CLT set for +2dB of gain, f RF1 = 5MHz, f RF2 = 5.1MHz, V OUT = 1.5V P-P, V REF = 5V (Note 4) nv/ Hz dbc dbc 3

4 AC ELECTRICAL CHARACTERISTICS (continued) (Figure 2, V CC = V REF = 4.75V to 5.25V, V CM = (3/5)V REF, V =, PD =, no RF signals applied, capacitance to at each of the VGA differential outputs is 6pF, differential capacitance across the VGA outputs is 1pF, R L = 1kΩ, T A = C to +7 C. Typical values are at V CC = V REF = 5V, T A = +25 C, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Channel-to-Channel Crosstalk Maximum Output Voltage at Clamp ON Maximum Output Voltage at Clamp OFF V OUT = 1V P-P differential, f RF = 1MHz, VG_CTL set for +2dB of gain VG_CLAMP_MODE =, VG_CTL set for +2dB of gain, 35mV P-P differential input VG_CLAMP_MODE = 1, VG_CTL set for +2dB of gain, 35mV P-P differential input -8 db Note 2: Specifications at T A = +25 C and T A = +7 C are guaranteed by production test. Specifications at T A = C are guaranteed by design and characterization. Note 3: Noise performance of the device is dependent on the noise contribution from the supply to V REF. Use a low-noise supply for V REF. V CC and V REF can be connected together to share the same supply voltage if the supply for V CC exhibits low noise. Note 4: See the Ultrasound-Specific IMD3 Specification section V P-P d i ffer enti al V P-P d i ffer enti al Typical Operating Characteristics (Figure 2, V CC = V REF = 4.75V to 5.25V, V =, PD =, VG_CLAMP_MODE = 1, f RF = 5MHz, capacitance to at each of the VGA differential outputs is 6pF, differential capacitance across the VGA outputs is 1pF, R L = 1kΩ, T A = C to +7 C. Typical values are at V CC = V REF = 5V, V CM = 3.V, T A = +25 C, unless otherwise noted.) OVERDRIVE PHASE DELAY (ns) OVERDRIVE PHASE DELAY 5. V IN1 = 35mV P-P DIFFERENTIAL 4.5 V IN2 = 87.5mV P-P DIFFERENTIAL 4. GAIN = 2dB toc1 PSMR (dbc) POWER-SUPPLY MODULATION RATIO V OUT = 1.5V P-P DIFFERENTIAL V MOD = 5mV P-P, f CARRIER = 5MHz, GAIN = 2dB FREQUENCY (khz) toc2 IMD3 (dbc) TWO-TONE ULTRASOUND-SPECIFIC IMD3 vs. GAIN V OUT = 1V P-P DIFFERENTIAL GAIN = 2dB f = 1MHz f = 2MHz, 5MHz toc3 4

5 Typical Operating Characteristics (continued) (Figure 2, V CC = V REF = 4.75V to 5.25V, V =, PD =, VG_CLAMP_MODE = 1, f RF = 5MHz, capacitance to at each of the VGA differential outputs is 6pF, differential capacitance across the VGA outputs is 1pF, R L = 1kΩ, T A = C to +7 C. Typical values are at V CC = V REF = 5V, V CM = 3.V, T A = +25 C, unless otherwise noted.) HD2 (dbc) SECOND-HARMONIC DISTORTION vs. GAIN V OUT = 1V P-P DIFFERENTIAL f = 2MHz f = 12MHz f = 5MHz toc4 HD3 (dbc) THIRD-HARMONIC DISTORTION vs. GAIN V OUT = 1V P-P DIFFERENTIAL f = 12MHz f = 2MHz f = 5MHz toc5 OVERLOAD RECOVERY TIME toc6 f = 5MHz DIFFERENTIAL INPUT 2mV/div OVERLOAD RECOVERY TIME toc7 f = 5MHz DIFFERENTIAL INPUT 2mV/div DIFFERENTIAL OUTPUT 5mV/div DIFFERENTIAL OUTPUT 5mV/div OUTPUT OVERLOAD TO 1V P-P OUTPUT OVERLOAD TO 1mV P-P CHANNEL-TO-CHANNEL CROSSTALK vs. GAIN V OUT = 1.5V P-P DIFFERENTIAL f = 1MHz, ADJACENT CHANNELS toc CHANNEL-TO-CHANNEL CROSSTALK V OUT = 1V P-P DIFFERENTIAL GAIN = 2dB, ADJACENT CHANNELS toc9 CROSSTALK (db) CROSSTALK (db)

6 Typical Operating Characteristics (continued) (Figure 2, V CC = V REF = 4.75V to 5.25V, V =, PD =, VG_CLAMP_MODE = 1, f RF = 5MHz, capacitance to at each of the VGA differential outputs is 6pF, differential capacitance across the VGA outputs is 1pF, R L = 1kΩ, T A = C to +7 C. Typical values are at V CC = V REF = 5V, V CM = 3.V, T A = +25 C, unless otherwise noted.) OUTPUT-REFERRED NOISE VOLTAGE (nv/ Hz) OUTPUT-REFERRED NOISE VOLTAGE vs. GAIN f = 5MHz LARGE-SIGNAL BANDWIDTH V OUT = 1.5V P-P DIFFERENTIAL VG_CTL = -.8V P-P DIFFERENTIAL toc1 toc GAIN vs. DIFFERENTIAL ANALOG CONTROL VOLTAGE (VG_CTL) f = 5MHz VG_CTL (V P-P DIFFERENTIAL) LARGE-SIGNAL BANDWIDTH 3 V OUT = 1.5V P-P DIFFERENTIAL 25 VG_CTL = +.2V P-P DIFFERENTIAL toc11 toc LARGE-SIGNAL BANDWIDTH LARGE-SIGNAL BANDWIDTH V OUT = 1.5V P-P DIFFERENTIAL VG_CTL = -2V P-P DIFFERENTIAL V OUT = 1.5V P-P DIFFERENTIAL VG_CTL = +1.2V P-P DIFFERENTIAL toc12 toc LARGE-SIGNAL BANDWIDTH V OUT = 1.5V P-P DIFFERENTIAL VG_CTL = +1.7V P-P DIFFERENTIAL toc LARGE-SIGNAL BANDWIDTH V OUT = 1V P-P DIFFERENTIAL VG_CTL = +2V P-P DIFFERENTIAL toc17 HARMONIC DISTORTION (dbc) HARMONIC DISTORTION vs. DIFFERENTIAL OUTPUT VOLTAGE f = 5MHz, GAIN = 2dB THIRD HARMONIC SECOND HARMONIC DIFFERENTIAL OUTPUT VOLTAGE (V P-P ) toc18 6

7 Typical Operating Characteristics (continued) (Figure 2, V CC = V REF = 4.75V to 5.25V, V =, PD =, VG_CLAMP_MODE = 1, f RF = 5MHz, capacitance to at each of the VGA differential outputs is 6pF, differential capacitance across the VGA outputs is 1pF, R L = 1kΩ, T A = C to +7 C. Typical values are at V CC = V REF = 5V, V CM = 3.V, T A = +25 C, unless otherwise noted.) HARMONIC DISTORTION (dbc) HARMONIC DISTORTION vs. DIFFERENTIAL OUTPUT LOAD RESISTANCE V OUT = 1V P-P DIFFERENTIAL f = 5MHz, GAIN = 2dB THIRD HARMONIC SECOND HARMONIC DIFFERENTIAL OUTPUT LOAD (Ω) toc19 HARMONIC DISTORTION (dbc) HARMONIC DISTORTION vs. DIFFERENTIAL OUTPUT LOAD CAPACITANCE V OUT = 1V P-P DIFFERENTIAL f = 5MHz, GAIN = 2dB THIRD HARMONIC SECOND HARMONIC DIFFERENTIAL OUTPUT LOAD (pf) toc2 HARMONIC DISTORTION (dbc) HARMONIC DISTORTION V OUT = 1V P-P DIFFERENTIAL GAIN = 2dB THIRD HARMONIC SECOND HARMONIC toc21 IMD3 (dbc) OFFSET VOLTAGE (mv) TWO-TONE ULTRASOUND-SPECIFIC IMD3 V OUT = 1V P-P DIFFERENTIAL GAIN = 2dB OUTPUT COMMON-MODE OFFSET VOLTAGE vs. GAIN toc22 toc24 % OF UNITS ZOUT (Ω) GAIN ERROR HISTOGRAM SAMPLE SIZE = 188 UNITS f IN_ = 5MHz, GAIN = 2dB GAIN ERROR (db) DIFFERENTIAL OUTPUT IMPEDANCE MAGNITUDE toc23 toc25 7

8 PIN NAME FUNCTION 1, 2, 5, 6, 7, 1, 11, 12, 19, 2, 21, 24, 25, 26, 29, 3, 31, 34, 35, 36, 41, 43, 44, 45, 47, 48, 51, 55, 58, 59, 64, 65, 66, 69, 73, 76, 79, 8, 81, 83, 84, 85, 88 92, 96, 97, 98 Ground 3 VGIN3- VGA Channel 3 Inverting Differential Input 4 VGIN3+ VGA Channel 3 Noninverting Differential Input 8 VGIN4- VGA Channel 4 Inverting Differential Input 9 VGIN4+ VGA Channel 4 Noninverting Differential Input 13 EXT_C1 External Compensation. Connect a 4.7µF capacitor to ground. 14 EXT_C2 External Compensation. Connect a 4.7µF capacitor to ground. 15 EXT_C3 External Compensation. Connect a 4.7µF capacitor to ground. 16, 39, 42, 46, 54, 72, 82, 87 V CC Pin Description 5V Power Supply. Bypass each V CC supply to ground with.1µf capacitors as close to the pins as possible. 17 VGIN5- VGA Channel 5 Inverting Differential Input 18 VGIN5+ VGA Channel 5 Noninverting Differential Input 22 VGIN6- VGA Channel 6 Inverting Differential Input 23 VGIN6+ VGA Channel 6 Noninverting Differential Input 27 VGIN7- VGA Channel 7 Inverting Differential Input 28 VGIN7+ VGA Channel 7 Noninverting Differential Input 32 VGIN8- VGA Channel 8 Inverting Differential Input 33 VGIN8+ VGA Channel 8 Noninverting Differential Input 37, 93 VREF 5V Reference Supply. Bypass to with a.1µf capacitor as close to the pins as possible. Note that noise performance of the device is dependent on the noise contribution from the supply to V REF. Use a low-noise supply for V REF. V CC and V REF can be connected together to share the same supply voltage if the supply for V CC exhibits low noise. 38 EXT_RES External Resistor. Connect a 7.5kΩ resistor to ground. 4 PD Power-Down Switch. Drive PD high to set the device in power-down mode. Drive PD low for normal operation. 49 VGOUT8+ VGA Channel 8 Noninverting Differential Output 5 VGOUT8- VGA Channel 8 Inverting Differential Output 52 VGOUT7+ VGA Channel 7 Noninverting Differential Output 53 VGOUT7- VGA Channel 7 Inverting Differential Output 56 VGOUT6+ VGA Channel 6 Noninverting Differential Output 57 VGOUT6- VGA Channel 6 Inverting Differential Output 6 VGOUT5+ VGA Channel 5 Noninverting Differential Output 8

9 PIN NAME FUNCTION 61 VGOUT5- VGA Channel 5 Inverting Differential Output 62 VG_CTL- VGA Analog Gain-Control Inverting Input 63 VG_CTL+ VGA Analog Gain-Control Noninverting Input 67 VGOUT4+ VGA Channel 4 Noninverting Differential Output 68 VGOUT4- VGA Channel 4 Inverting Differential Output 7 VGOUT3+ VGA Channel 3 Noninverting Differential Output 71 VGOUT3- VGA Channel 3 Inverting Differential Output 74 VGOUT2+ VGA Channel 2 Noninverting Differential Output 75 VGOUT2- VGA Channel 2 Inverting Differential Output 77 VGOUT1+ VGA Channel 1 Noninverting Differential Output 78 VGOUT1- VGA Channel 1 Inverting Differential Output 86 V G_C LAMP _M OD E Pin Description (continued) V GA C l am p M od e E nab l e. D r i ve V G _C LAM P _M OD E l ow to enab l e V GA cl am p i ng. V G A outp ut w i l l b e cl am p ed at typ i cal l y 2.2V P - P d i ffer enti al. D r i ve V G_C LAM P _M O D E hi g h to d i sab l e V G A cl am p m od e. 94 VGIN1- VGA Channel 1 Inverting Differential Input 95 VGIN1+ VGA Channel 1 Noninverting Differential Input 99 VGIN2- VGA Channel 2 Inverting Differential Input 1 VGIN2+ VGA Channel 2 Noninverting Differential Input EP Exposed Pad. Internally connected to. Solder the exposed pad to the ground plane using multiple vias. Detailed Description The s VGAs are optimized for high linearity, high dynamic range, and low output-noise performance, making this component ideal for ultrasoundimaging applications. The VGA paths also exhibit a channel-to-channel crosstalk of -8dB at 1MHz and an absolute gain error of less than ±.5dB for minimal channel-to-channel focusing error in an ultrasound system. Each VGA path includes circuitry for adjusting analog gain, an output buffer with differential output ports (VGOUT_+, VGOUT_-) for driving ADCs, and differential input ports (VGIN_+, VGIN_-) that are ideal for directly interfacing to the MAX234 quad LNA. See the Functional Diagram for details. The VGA has an adjustable gain range from -1.5dB to +39.5dB, achieving a total dynamic range of typically 5dB. The VGA gain can be adjusted with the differential gain-control input VG_CTL+ and VG_CTL-. Set the differential gain-control input voltage at -2V for maximum gain and +2V for minimum gain. The differential analog control common-mode voltage is typically 3.V. VGA Clamp A clamp is provided to limit the VGA output signals to avoid overdriving the ADC or to prevent ADC saturation. Set VG_CLAMP_MODE low to clamp the VGA differential outputs at 2.2V P-P. Set the VG_CLAMP_MODE high to disable the clamp. Power Down The device can also be powered down with PD. Set PD to logic-high for power-down mode. In power-down mode, the device draws a total supply current of 27mA. Set PD to a logic-low for normal operation Overload Recovery The device is also optimized for quick overload recovery for operation under the large input signal conditions that are typically found in ultrasound input buffer imaging applications. See the Typical Operating Characteristics for an illustration of the rapid recovery time from a transmit-related overload. 9

10 Applications Information External Compensation External compensation is required for bypassing internal biasing circuitry. Connect, as close as possible, individual 4.7µF capacitors from each pin EXT_C1, EXT_C2, and EXT_C3 (pin 13, 14, 15) to ground. External Bias Resistor An external resistor at EXT_RES is required to set the bias for the internal biasing circuitry. Connect, as close as possible, a 7.5kΩ resistor from EXT_RES (pin 38) to ground. Analog Input and Output Coupling In typical applications, the is being driven from a low-noise amplifier (such as the MAX234) and is typically driving a discrete differential anti-alias filter into an ADC (such as the MAX1434 octal ADC). The differential input impedance of the is typically 2Ω. The differential outputs are capable of driving a differential load resistance of 1kΩ. The output impedance is 1Ω differential. The differential outputs have a common-mode bias of approximately 3V. AC-couple these differential outputs if the next stage has a different common-mode input range. Ultrasound-Specific IMD3 Specification Unlike typical communications specs, the two input tones are not equal in magnitude for the ultrasoundspecific IMD3 two-tone specification. In this measurement, f 1 represents reflections from tissue and f 2 represents reflections from blood. The latter reflections are typically 25dB lower in magnitude, and hence the measurement is defined with one input tone 25dB lower than the other. The IMD3 product of interest (f 1 - (f 2 - f 1 )) presents itself as an undesired Doppler error signal in ultrasound applications. See Figure 1. PCB Layout The pin configuration of the is optimized to facilitate a very compact physical layout of the device and its associated discrete components. A typical application for this device might incorporate several devices in close proximity to handle multiple channels of signal processing. The exposed pad (EP) of the s TQFP-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. ULTRASOUND IMD3-25dB f 1 - (f 2 - f 1 ) f 1 f 2 f 2 + (f 2 - f 1 ) Figure 1. Ultrasound IMD3 Measurement Technique 1

11 +V MAX234 SINGLE CHANNEL Z IN CONTROL D2, D1, D VG_CTL+ SINGLE CHANNEL VG_CTL- V IN 18nF 1nF 1nF 1nF VGOUT_+ VGOUT_- VGIN_+ VGIN_- VGA 5Ω 5Ω 1nF 1nF TO A SINGLE CHANNEL OF MAX1434 ADC -V 1nF Figure 2. Typical per-channel Ultrasound-Imaging Application Pin Configuration TOP VIEW VGIN8-26 VGIN7-27 VGIN VGIN VGIN1- VGIN2- VGOUT8- VREF EXT_RES VCC VGIN1+ VGIN PD 4 41 VCC VCC VGOUT8+ VREF VCC VG_CLAMP_MODE VCC VGOUT VGOUT VGOUT2- VGIN VGOUT2+ VGIN V CC VGOUT3- VGOUT3+ VGIN4- VGIN VGOUT4- VGOUT EXT_C1 EXT_C2 EXT_C VG_CTL+ VG_CTL- VGOUT5- V CC 16 6 VGOUT5+ VGIN5- VGIN VGOUT VGOUT6+ VGIN6- VGIN *EP V CC VGOUT7- VGOUT7+ *EP = EXPOSED PAD TQFP (14mm x 14mm) 11

12 Chip Information PROCESS: Silicon Complementary Bipolar Package Information For the latest package outline information and land patterns, go to PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 1 TQFP-EP C1E

13 REVISION NUMBER REVISION DATE DESCRIPTION Revision History PAGES CHANGED 1/6 Initial release 1 2/9 Updated various sections 1 7, 9, 12 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 12 San Gabriel Drive, Sunnyvale, CA Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.

14 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Maxim Integrated: CCQ+T

MAX11503 BUFFER. Σ +6dB BUFFER GND *REMOVE AND SHORT FOR DC-COUPLED OPERATION

MAX11503 BUFFER. Σ +6dB BUFFER GND *REMOVE AND SHORT FOR DC-COUPLED OPERATION 19-4031; Rev 0; 2/08 General Description The is a low-power video amplifier with a Y/C summer and chroma mute. The device accepts an S-video or Y/C input and sums the luma (Y) and chroma (C) signals into

More information

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals 9-4457; Rev ; 2/9 Quadruple, 2:, Mux Amplifiers for General Description The MAX954/MAX9542 are quadruple-channel, 2: video mux amplifiers with input sync tip clamps. These devices select between two video

More information

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer

Low-Cost, 900MHz, Low-Noise Amplifier and Downconverter Mixer 19-193; Rev 1; 1/ EVALUATION KIT AVAILABLE Low-Cost, 9MHz, Low-Noise Amplifier General Description The s low-noise amplifier (LNA) and downconverter mixer comprise the major blocks of an RF front-end receiver.

More information

4-Channel Video Filter for RGB and CVBS Video

4-Channel Video Filter for RGB and CVBS Video 19-2951; Rev 2; 2/7 4-Channel Video Filter for RGB and CVBS Video General Description The 4-channel, buffered video reconstruction filter is ideal for anti-aliasing and DAC-smoothing video applications

More information

4-Channel Video Reconstruction Filter

4-Channel Video Reconstruction Filter 19-2948; Rev 1; 1/5 EVALUATION KIT AVAILABLE 4-Channel Video Reconstruction Filter General Description The 4-channel, buffered video reconstruction filter is ideal for anti-aliasing and DAC-smoothing video

More information

Component Analog TV Sync Separator

Component Analog TV Sync Separator 19-4103; Rev 1; 12/08 EVALUATION KIT AVAILABLE Component Analog TV Sync Separator General Description The video sync separator extracts sync timing information from standard-definition (SDTV), extendeddefinition

More information

EVALUATION KIT AVAILABLE Multirate SMPTE SD/HD Cable Driver with Selectable Slew Rate TOP VIEW +3.3V. 10nF IN+ IN- MAX3812 SD/HD GND RSET +3.

EVALUATION KIT AVAILABLE Multirate SMPTE SD/HD Cable Driver with Selectable Slew Rate TOP VIEW +3.3V. 10nF IN+ IN- MAX3812 SD/HD GND RSET +3. 19-3571; Rev ; 2/5 EVALUATION KIT AVAILABLE Multirate SMPTE SD/HD Cable Driver General Description The is a multirate SMPTE cable driver designed to operate at data rates up to 1.485Gbps, driving one or

More information

EVALUATION KIT AVAILABLE +3.0V to +5.5V, 125Mbps to 266Mbps Limiting Amplifiers with Loss-of-Signal Detector V CC FILTER.

EVALUATION KIT AVAILABLE +3.0V to +5.5V, 125Mbps to 266Mbps Limiting Amplifiers with Loss-of-Signal Detector V CC FILTER. 19-1314; Rev 5; 8/06 EVALUATION KIT AVAILABLE +3.0V to +5.5V, 125Mbps to 266Mbps General Description The MAX3969 is a recommended upgrade for the MAX3964 and MAX3968. The limiting amplifier, with 2mVP-P

More information

EVALUATION KIT AVAILABLE 12.5Gbps Settable Receive Equalizer +2.5V +3.3V V CC1 V CC. 30in OF FR-4 STRIPLINE OR MICROSTRIP TRANSMISSION LINE SDI+ SDI-

EVALUATION KIT AVAILABLE 12.5Gbps Settable Receive Equalizer +2.5V +3.3V V CC1 V CC. 30in OF FR-4 STRIPLINE OR MICROSTRIP TRANSMISSION LINE SDI+ SDI- 19-2713; Rev 1; 11/03 EVALUATION KIT AVAILABLE 12.5Gbps Settable Receive Equalizer General Description The driver with integrated analog equalizer compensates up to 20dB of loss at 5GHz. It is designed

More information

Video Filter Amplifier with SmartSleep and Y/C Mixer Circuit

Video Filter Amplifier with SmartSleep and Y/C Mixer Circuit 19-535; Rev 2; 2/9 Video Filter Amplifier with SmartSleep General Description The video filter amplifier with SmartSleep and Y/C mixer is ideal for portable media players (PMPs), portable DVD players,

More information

Ruggedized Quad SAS/SATA Redriver/Equalizer with Extended Operating Temperature

Ruggedized Quad SAS/SATA Redriver/Equalizer with Extended Operating Temperature General Description The quad-channel redriver is designed to redrive two full lanes of SAS or SATA signals up to 6.GT/s (gigatransfers per second) and operates from a single +3.3V supply. The features

More information

MAX7461 Loss-of-Sync Alarm

MAX7461 Loss-of-Sync Alarm General Description The single-channel loss-of-sync alarm () provides composite video sync detection in NTSC, PAL, and SECAM standard-definition television (SDTV) systems. The s advanced detection circuitry

More information

Graphics Video Sync Adder/Extractor

Graphics Video Sync Adder/Extractor 19-0602; Rev 2; 1/07 EVALUATION KIT AVAILABLE Graphics Video Sync Adder/Extractor General Description The chipset provides a 3-wire (RGB) interface for 5-wire (RGBHV) video by adding and extracting the

More information

10 GHz to 26 GHz, GaAs, MMIC, Double Balanced Mixer HMC260ALC3B

10 GHz to 26 GHz, GaAs, MMIC, Double Balanced Mixer HMC260ALC3B Data Sheet FEATURES Passive; no dc bias required Conversion loss 8 db typical for 1 GHz to 18 GHz 9 db typical for 18 GHz to 26 GHz LO to RF isolation: 4 db Input IP3: 19 dbm typical for 18 GHz to 26 GHz

More information

6 GHz to 26 GHz, GaAs MMIC Fundamental Mixer HMC773A

6 GHz to 26 GHz, GaAs MMIC Fundamental Mixer HMC773A FEATURES Conversion loss: 9 db typical Local oscillator (LO) to radio frequency (RF) isolation: 37 db typical LO to intermediate frequency (IF) isolation: 37 db typical RF to IF isolation: db typical Input

More information

All-In-One Ruggedized 5GT/s 2:1/1:2 PCIe Mux and Redriver with Equalization

All-In-One Ruggedized 5GT/s 2:1/1:2 PCIe Mux and Redriver with Equalization All-In-One Ruggedized 5GT/s 2:1/1:2 PCIe Mux and General Description The MAX14982 integrates MUX and redriver functionalities, offering an all-in-one solution capable of switching between multiple hosts

More information

Features. Parameter Min. Typ. Max. Min. Typ. Max. Units

Features. Parameter Min. Typ. Max. Min. Typ. Max. Units v. DOWNCONVERTER, - GHz Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radios Military Radar, EW & ELINT Satellite Communications Maritime & Mobile Radios Features Conversion

More information

TITLE MICROCIRCUIT, LINEAR, 400 MHz TO 6 GHz BROADBAND QUADRATURE MODULATOR, MONOLITHIC SILICON REVISIONS LTR DESCRIPTION DATE APPROVED REV PAGE REV

TITLE MICROCIRCUIT, LINEAR, 400 MHz TO 6 GHz BROADBAND QUADRATURE MODULATOR, MONOLITHIC SILICON REVISIONS LTR DESCRIPTION DATE APPROVED REV PAGE REV REVISIONS LTR DESCRIPTION DTE PPROVED Prepared in accordance with SME Y14.24 Vendor item drawing REV PGE REV PGE REV STTUS OF PGES REV PGE 1 2 3 4 5 6 7 8 9 10 11 PMIC N/ PREPRED BY Phu H. Nguyen DL LND

More information

Features. = +25 C, Vs = 5V, Vpd = 5V

Features. = +25 C, Vs = 5V, Vpd = 5V v1.117 HMC326MS8G / 326MS8GE AMPLIFIER, 3. - 4. GHz Typical Applications The HMC326MS8G / HMC326MS8GE is ideal for: Microwave Radios Broadband Radio Systems Wireless Local Loop Driver Amplifier Functional

More information

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V *

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V * Typical Applications The is Ideal for: Cellular/3G & LTE/WiMAX/4G Basestations & Repeaters GSM, CDMA & OFDM Transmitters and Receivers Features High Input IP3: +38 dbm 8 db Conversion Loss @ 0 dbm LO Optimized

More information

PART. Maxim Integrated Products 1

PART. Maxim Integrated Products 1 9-646; Rev 0; /00 General Description The MAX94 evaluation kit (EV kit) is assembled with a MAX94 and the basic components necessary to evaluate the -bit analog-to-digital converter (ADC). Connectors for

More information

LMH0344 3Gbps HD/SD SDI Adaptive Cable Equalizer

LMH0344 3Gbps HD/SD SDI Adaptive Cable Equalizer 3Gbps HD/SD SDI Adaptive Cable Equalizer General Description The 3Gbps HD/SD SDI Adaptive Cable Equalizer is designed to equalize data transmitted over cable (or any media with similar dispersive loss

More information

Features. PFD Output Voltage 2000 mv, Pk - Pk. PFD Gain Gain = Vpp / 2π Rad khz 100 MHz Square Wave Ref.

Features. PFD Output Voltage 2000 mv, Pk - Pk. PFD Gain Gain = Vpp / 2π Rad khz 100 MHz Square Wave Ref. HMC98LP5 / 98LP5E Typical Applications The HMC98LP5(E) is ideal for: Satellite Communication Systems Point-to-Point Radios Military Applications Sonet Clock Generation Functional Diagram Features Ultra

More information

SUNSTAR 微波光电 TEL: FAX: v HMC750LP4 / 750LP4E 12.5 Gbps LIMITING AMPLIFIER

SUNSTAR 微波光电   TEL: FAX: v HMC750LP4 / 750LP4E 12.5 Gbps LIMITING AMPLIFIER Typical Applications The HMC75LP4(E) is ideal for: OC-192 Receivers Gbps Ethernet Receivers Gbps Fiber Channel Receivers Broadband Test & Measurement Functional Diagram Features Electrical Specifications,

More information

SDA 3302 Family. GHz PLL with I 2 C Bus and Four Chip Addresses

SDA 3302 Family. GHz PLL with I 2 C Bus and Four Chip Addresses GHz PLL with I 2 C Bus and Four Chip Addresses Preliminary Data Features 1-chip system for MPU control (I 2 C bus) 4 programmable chip addresses Short pull-in time for quick channel switch-over and optimized

More information

OBSOLETE HMC215LP4 / 215LP4E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram

OBSOLETE HMC215LP4 / 215LP4E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram v1.111 LO AMPLIFIER, 1.7-4. GHz Typical Applications The HMC215LP4 / HMC215LP4E is ideal for Wireless Infrastructure Applications: PCS / 3G Infrastructure Base Stations & Repeaters WiMAX & WiBro ISM &

More information

ML6428. S-Video Filter and 75Ω Line Drivers with Summed Composite Output. Features. General Description. Block Diagram Σ BUFFER.

ML6428. S-Video Filter and 75Ω Line Drivers with Summed Composite Output. Features. General Description. Block Diagram Σ BUFFER. www.fairchildsemi.com ML S-Video Filter and Line Drivers with Summed Composite Output Features.MHz Y and C filters, with CV out for NTSC or PAL cable line driver for Y, C, CV, and TV modulator db stopband

More information

Features. Parameter Min. Typ. Max. Units

Features. Parameter Min. Typ. Max. Units HMCBLPE v.. -. GHz Typical Applications The HMCBLPE is ideal for: Point-to-Point and Point-to-Multi-Point Radios Military Radar, EW & ELINT Satellite Communications Features Conversion Gain: db Image Rejection:

More information

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V *

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V * Typical Applications The is Ideal for: Cellular/3G & LTE/WiMAX/4G Basestations & Repeaters GSM, CDMA & OFDM Transmitters and Receivers Features High Input IP3: +38 dbm 8 db Conversion Loss @ 0 dbm LO Optimized

More information

MAX3748H Compact, Low-Power, 155Mbps to 4.25Gbps Limiting Amplifier

MAX3748H Compact, Low-Power, 155Mbps to 4.25Gbps Limiting Amplifier 19-5954; Rev ; 7/11 E V A L U A T I O N K I T A V A I L A B L E MAX3748H General Description The MAX3748H multirate limiting amplifier functions as a data quantizer for SONET, Fibre Channel, and Gigabit

More information

OUTPOL V CC CAZ1 CAZ2 OUT+ 50Ω MAX3748 RSSI TH GND DISABLE LOS R TH

OUTPOL V CC CAZ1 CAZ2 OUT+ 50Ω MAX3748 RSSI TH GND DISABLE LOS R TH 19-2717; Rev 6; 6/11 EVALUATION KIT AVAILABLE Compact 155Mbps to 4.25Gbps General Description The multirate limiting amplifier functions as a data quantizer for SONET, Fibre Channel, and Gigabit Ethernet

More information

10mm x 10mm. 20m (24AWG) 15m (28AWG) 0.01μF TX_IN1 V CC[1:4] TX_OUT1 TX_OUT2 TX TX_IN3 TX_IN2 TX_OUT3 TX_OUT4 SERDES TX_IN4 RX_OUT1 RX_IN1 RX_OUT2

10mm x 10mm. 20m (24AWG) 15m (28AWG) 0.01μF TX_IN1 V CC[1:4] TX_OUT1 TX_OUT2 TX TX_IN3 TX_IN2 TX_OUT3 TX_OUT4 SERDES TX_IN4 RX_OUT1 RX_IN1 RX_OUT2 19-2928; Rev 1; 2/07 2.5Gbps 3.2Gbps 4x InfiniBand 10Gbase-CX4 20 24AWG 15 28AWG 0.5 FR4 0.5 FR4 10mm x 10mm 68 QFN 0 C +85 C 4x InfiniBand (4 x 2.5Gbps) 10Gbase-CX4 (4 x 3.125Gbps) 10G XAUI (4 x 3.1875Gbps)

More information

1.5 GHz to 4.5 GHz, GaAs, MMIC, Double Balanced Mixer HMC213BMS8E

1.5 GHz to 4.5 GHz, GaAs, MMIC, Double Balanced Mixer HMC213BMS8E FEATURES Passive: no dc bias required Conversion loss: 1 db typical Input IP3: 21 dbm typical RoHS compliant, ultraminiature package: 8-lead MSOP APPLICATIONS Base stations Personal Computer Memory Card

More information

RST RST WATCHDOG TIMER N.C.

RST RST WATCHDOG TIMER N.C. 19-3899; Rev 1; 11/05 Microprocessor Monitor General Description The microprocessor (µp) supervisory circuit provides µp housekeeping and power-supply supervision functions while consuming only 1/10th

More information

TGA2807-SM TGA2807. CATV Ultra Linear Gain Amplifier. Applications. Ordering Information. CATV EDGE QAM Cards CMTS Equipment

TGA2807-SM TGA2807. CATV Ultra Linear Gain Amplifier. Applications. Ordering Information. CATV EDGE QAM Cards CMTS Equipment Applications CATV EDGE QAM Cards CMTS Equipment 28-pin 5x5 mm QFN Package Product Features Functional Block Diagram 40-000 MHz Bandwidth DOCSIS 3.0 Compliant ACPR: -69 dbc at 6 dbmv Pout Pdiss:.9 W.5 db

More information

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver EM MICROELECTRONIC - MARIN SA 2, 4 and 8 Mutiplex LCD Driver Description The is a universal low multiplex LCD driver. The version 2 drives two ways multiplex (two blackplanes) LCD, the version 4, four

More information

Features. = +25 C, Vdd = +7V, Idd = 820 ma [1]

Features. = +25 C, Vdd = +7V, Idd = 820 ma [1] Typical Applications The is ideal for use as a power amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment & Sensors Military End-Use Space Functional Diagram Features Saturated

More information

TSH MHz Single Supply Video Buffer with Low In/Out Rail. Pin Connections (top view) Description. Applications. Order Codes

TSH MHz Single Supply Video Buffer with Low In/Out Rail. Pin Connections (top view) Description. Applications. Order Codes TSH34 3MHz Single Supply Video Buffer with Low In/Out Rail Bandwidth: 3MHz Single supply operation down to 3V Low input & output rail Very low harmonic distortion Slew rate: 78V/µs Voltage input noise:

More information

SA9504 Dual-band, PCS(CDMA)/AMPS LNA and downconverter mixers

SA9504 Dual-band, PCS(CDMA)/AMPS LNA and downconverter mixers INTEGRATED CIRCUITS Supersedes data of 1999 Aug 4 1999 Oct 8 DESCRIPTION The is an integrated receiver front-end for 900 MHz Cellular (AMPS) and 1.9 GHz PCS (CDMA) phones. This dual-band receiver circuit

More information

CMD197C GHz Distributed Driver Amplifier

CMD197C GHz Distributed Driver Amplifier Features Functional Block Diagram Wide bandwidth High linearity Single positive supply voltage On chip bias choke Pb-free RoHs compliant 4x4 mm SMT package Description The CMD197C4 is a wideband GaAs MMIC

More information

HMC613LC4B POWER DETECTORS - SMT. SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), GHz

HMC613LC4B POWER DETECTORS - SMT. SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), GHz v.54 HMC6LC4B AMPLIFIER (SDLVA),. - GHz Typical Applications The HMC6LC4B is ideal for: EW, ELINT & IFM Receivers DF Radar Systems ECM Systems Broadband Test & Measurement Power Measurement & Control Circuits

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK Typical Applications The is ideal

More information

RGB Encoder For the availability of this product, please contact the sales office. VIDEO OUT Y/C MIX DELAY CLAMP

RGB Encoder For the availability of this product, please contact the sales office. VIDEO OUT Y/C MIX DELAY CLAMP MATRIX Description The CXA1645P/M is an encoder IC that converts analog RGB signals to a composite video signal. This IC has various pulse generators necessary for encoding. Composite video outputs and

More information

General purpose low noise wideband amplifier for frequencies between DC and 750 MHz

General purpose low noise wideband amplifier for frequencies between DC and 750 MHz Rev. 3 3 October 2016 Product data sheet 1. Product profile 1.1 General description Silicon Monolithic Microwave Integrated Circuit (MMIC) wideband amplifier with internal matching circuit in a 6-pin SOT363

More information

Features. Parameter Min. Typ. Max. Units

Features. Parameter Min. Typ. Max. Units Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radios Military Radar, EW & ELINT Satellite Communications Features Conversion Gain: db Image Rejection: dbc Input Third-Order

More information

QPC6222SR GENERAL PURPOSE DPDT TRANSFER SWITCH. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information

QPC6222SR GENERAL PURPOSE DPDT TRANSFER SWITCH. Product Overview. Key Features. Functional Block Diagram. Applications. Ordering Information Product Overview The is a dual-pole double-throw transfer switch designed for general purpose switching applications where RF port transfer (port swapping) control is needed. The low insertion loss along

More information

Features. = +25 C, IF = 100 MHz, LO = 0 dbm, Vcc1, 2, 3, = +5V, G_Bias = +3.5V*

Features. = +25 C, IF = 100 MHz, LO = 0 dbm, Vcc1, 2, 3, = +5V, G_Bias = +3.5V* v3.1 LO AMPLIFIER, 7 - MHz Typical Applications The HMC684LP4(E) is Ideal for: Cellular/3G & LTE/WiMAX/4G Basestations & Repeaters GSM, CDMA & OFDM Transmitters and Receivers Features High Input IP3: +32

More information

GaAs MMIC Double Balanced Mixer

GaAs MMIC Double Balanced Mixer Page 1 The is a highly linear passive GaAs double balanced MMIC mixer suitable for both up and down-conversion applications. As with all Marki Microwave mixers, it features excellent conversion loss, isolation

More information

Features. = +25 C, As a Function of LO Drive & Vdd. IF = 1 GHz LO = -4 dbm & Vdd = +4V

Features. = +25 C, As a Function of LO Drive & Vdd. IF = 1 GHz LO = -4 dbm & Vdd = +4V v4.414 Typical Applications Features The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use Functional Diagram Integrated LO Amplifier: -4

More information

Standard-Definition Video Filter Amplifiers with

Standard-Definition Video Filter Amplifiers with 19-867; Rev ; 9/7 EVALUATION KIT AVAILABLE Standard-Definition Video Filter Amplifiers with General Description The are low-power video amplifiers with integrated reconstruction filters. Specially suited

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v4.414 Typical Applications Features

More information

GaAs, MMIC Fundamental Mixer, 2.5 GHz to 7.0 GHz HMC557A

GaAs, MMIC Fundamental Mixer, 2.5 GHz to 7.0 GHz HMC557A FEATURES Conversion loss: db LO to RF isolation: db LO to IF isolation: 3 db Input third-order intercept (IP3): 1 dbm Input second-order intercept (IP2): dbm LO port return loss: dbm RF port return loss:

More information

UPC2757TB / UPC2758TB

UPC2757TB / UPC2758TB BIPOLAR ANALOG INTEGRATED CIRCUIT / V, SUPER MINIMOLD SI MMIC DOWNCONVERTER FEATURES HIGH-DENSITY SURFACE MOUNTING: pin super minimold or SOT- package WIDEBAND OPERATION: RF =. GHz to. GHz = MHz to MHz

More information

RF V W-CDMA BAND 2 LINEAR PA MODULE

RF V W-CDMA BAND 2 LINEAR PA MODULE 3 V W-CDMA BAND 2 LINEAR PA MODULE Package Style: Module, 10-Pin, 3 mm x 3 mm x 1.0 mm Features HSDPA and HSPA+ Compliant Low Voltage Positive Bias Supply (3.0 V to 4.35 V) +28.5 dbm Linear Output Power

More information

TGC2610-SM 10 GHz 15.4 GHz Downconverter

TGC2610-SM 10 GHz 15.4 GHz Downconverter Applications VSAT Point-to-Point Radio Test Equipment & Sensors -pin 5x5 mm QFN package Product Features Functional Block Diagram RF Frequency Range: 15. GHz IF Frequency: DC GHz LO Frequency: 19 GHz LO

More information

Data Sheet. MGA GHz WLAN Power Amplifier Module. Description. Features. Component Image. Applications. Pin Configuration

Data Sheet. MGA GHz WLAN Power Amplifier Module. Description. Features. Component Image. Applications. Pin Configuration MGA-43024 2.4 GHz WLAN Power Amplifier Module Data Sheet Description Avago Technologies MGA-43024 is a fully matched power amplifier for use in the WLAN band (2401-2484 MHz). High linear output power at

More information

TGL2209 SM 8 12 GHz 50 Watt VPIN Limiter

TGL2209 SM 8 12 GHz 50 Watt VPIN Limiter Product Overview The Qorvo is a high power, X-band GaAs VPIN limiter capable of protecting sensitive receive channel components against high power incident signals. The does not require DC bias, and achieves

More information

TGL2210-SM_EVB GHz 100 Watt VPIN Limiter. Product Overview. Key Features. Applications. Functional Block Diagram. Ordering Information

TGL2210-SM_EVB GHz 100 Watt VPIN Limiter. Product Overview. Key Features. Applications. Functional Block Diagram. Ordering Information .5 6 GHz Watt VPIN Limiter Product Overview The Qorvo is a high-power receive protection circuit (limiter) operating from.5-6ghz. Capable of withstanding up to W incident power levels, the allows < dbm

More information

HMC576LC3B MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications

HMC576LC3B MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications v2.514 Typical Applications The is suitable for: Clock Generation Applications: SONET OC-192 & SDH STM-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Functional Diagram Features

More information

INTEGRATED CIRCUITS DATA SHEET. TDA4510 PAL decoder. Product specification File under Integrated Circuits, IC02

INTEGRATED CIRCUITS DATA SHEET. TDA4510 PAL decoder. Product specification File under Integrated Circuits, IC02 INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC02 March 1986 GENERAL DESCRIPTION The is a colour decoder for the PAL standard, which is pin sequent compatible with multistandard decoder

More information

GaAs MMIC Double Balanced Mixer

GaAs MMIC Double Balanced Mixer Page 1 The is a passive GaAs double balanced MMIC mixer suitable for both up and down-conversion applications. As with all Marki Microwave mixers, it features excellent conversion loss, isolation and spurious

More information

RFOUT/ VC2 31 C/W T L =85 C

RFOUT/ VC2 31 C/W T L =85 C 850MHz 1 Watt Power Amplifier with Active Bias SPA-2118(Z) 850MHz 1 WATT POWER AMPLIFIER WITH ACTIVE BIAS RoHS Compliant and Pb-Free Product (Z Part Number) Package: ESOP-8 Product Description RFMD s SPA-2118

More information

CDK3402/CDK bit, 100/150MSPS, Triple Video DACs

CDK3402/CDK bit, 100/150MSPS, Triple Video DACs CDK3402/CDK3403 8-bit, 100/150MSPS, Triple Video DACs FEATURES n 8-bit resolution n 150 megapixels per second n ±0.2% linearity error n Sync and blank controls n 1.0V pp video into 37.5Ω or load n Internal

More information

CXA1645P/M. RGB Encoder

CXA1645P/M. RGB Encoder MATRIX CXA1645P/M RGB Encoder Description The CXA1645P/M is an encoder IC that converts analog RGB signals to a composite video signal. This IC has various pulse generators necessary for encoding. Composite

More information

General purpose low noise wideband amplifier for frequencies between DC and 2.2 GHz

General purpose low noise wideband amplifier for frequencies between DC and 2.2 GHz Rev. 5 29 May 2015 Product data sheet 1. Product profile 1.1 General description Silicon Monolitic Microwave Integrated Circuit (MMIC) wideband amplifier with internal matching circuit in a 6-pin SOT363

More information

HMC814LC3B FREQ. MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications

HMC814LC3B FREQ. MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications Typical Applications The is ideal for: Clock Generation Applications: SONET OC-192 & SDH STM-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Sensors Functional Diagram Features High

More information

300MHz Single Supply Video Amplifier with Low In/Out Rail -IN -IN +IN +IN -VCC. Part Number Temperature Range Package Packaging Marking TSH341ILT

300MHz Single Supply Video Amplifier with Low In/Out Rail -IN -IN +IN +IN -VCC. Part Number Temperature Range Package Packaging Marking TSH341ILT 3MHz Single Supply Video Amplifier with Low In/Out Rail Bandwidth: 3MHz Single supply operation down to 3V Low input & output rail Very low harmonic distortion Slew rate: 4V/µs Voltage Input noise: 7nV/

More information

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC

More information

DATASHEET ISL Features. Applications. Ordering Information. Block Diagram. Pinout. Triple Channel SD Video Driver with LPF

DATASHEET ISL Features. Applications. Ordering Information. Block Diagram. Pinout. Triple Channel SD Video Driver with LPF Triple Channel SD Video Driver with LPF NOT RECOMMENDED FOR NEW DESIGNS NO RECOMMENDED REPLACEMENT contact our Technical Support Center at 1-888-INTERSIL or www.intersil.com/tsc DATASHEET FN6319 Rev 2.

More information

Absolute Maximum Ratings Parameter Rating Unit Max Supply Current (I C1 ) at V CC typ. 150 ma Max Supply Current (I C2 ) at V CC typ. 750 ma Max Devic

Absolute Maximum Ratings Parameter Rating Unit Max Supply Current (I C1 ) at V CC typ. 150 ma Max Supply Current (I C2 ) at V CC typ. 750 ma Max Devic 850MHz 1 Watt Power Amplifier with Active Bias SPA2118Z 850MHz 1 WATT POWER AMPLIFIER WITH ACTIVE BIAS Package: Exposed Pad SOIC-8 Product Description RFMD s SPA2118Z is a high efficiency GaAs Heterojunction

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) OCTAL BUS TRANSCEIVER/REGISTER WITH 3 STATE OUTPUTS HIGH SPEED: f MAX = 60 MHz (TYP.) at V CC = 4.5V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS : V IH = 2V (MIN.)

More information

HMC581LP6 / 581LP6E MIXERS - SMT. HIGH IP3 RFIC DUAL DOWNCONVERTER, MHz. Typical Applications. Features. Functional Diagram

HMC581LP6 / 581LP6E MIXERS - SMT. HIGH IP3 RFIC DUAL DOWNCONVERTER, MHz. Typical Applications. Features. Functional Diagram Typical Applications The HMC1LP6 / HMC1LP6E is ideal for Wireless Infrastructure Applications: GSM, GPRS & EDGE CDMA & W-CDMA Cellular / 3G Infrastructure Functional Diagram Features +26 dbm Input IP3

More information

OBSOLETE HMC908LC5 MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT. GaAs MMIC I/Q DOWNCONVERTER 9-12 GHz. Typical Applications. Functional Diagram

OBSOLETE HMC908LC5 MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT. GaAs MMIC I/Q DOWNCONVERTER 9-12 GHz. Typical Applications. Functional Diagram v3.1 HMC98LC Typical Applications The HMC98LC is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Maritime & Mobile Radio Functional Diagram

More information

DATASHEET EL1883. Features. Applications. Ordering Information. Demo Board. Pinout. Sync Separator with Horizontal Output. FN7010 Rev 2.

DATASHEET EL1883. Features. Applications. Ordering Information. Demo Board. Pinout. Sync Separator with Horizontal Output. FN7010 Rev 2. DATASHEET EL883 Sync Separator with Horizontal Output FN7 Rev 2. The EL883 video sync separator is manufactured using Elantec s high performance analog CMOS process. This device extracts sync timing information

More information

FMS6417A Selectable RGB (YUV) HD/SD Video Filter Driver with Y, C, Composite, and Modulator Outputs

FMS6417A Selectable RGB (YUV) HD/SD Video Filter Driver with Y, C, Composite, and Modulator Outputs FMS6417A Selectable RGB (YUV) HD/SD Video Filter Driver with Y, C, Composite, and Modulator Outputs Features YUV/RGB filters 2:1 Mux inputs for multiple RGB/YUV inputs Selectable 8MHz or 3MHz 6th order

More information

The Hmc869LC5 is ideal for: Point-to-Point and Point-to-Multi-Point Radio. Parameter Min. Typ. Max. Units

The Hmc869LC5 is ideal for: Point-to-Point and Point-to-Multi-Point Radio. Parameter Min. Typ. Max. Units Typical Applications The Hmc86LC is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Functional Diagram Features Electrical Specifications, T

More information

LMH0002 SMPTE 292M / 259M Serial Digital Cable Driver

LMH0002 SMPTE 292M / 259M Serial Digital Cable Driver SMPTE 292M / 259M Serial Digital Cable Driver General Description The SMPTE 292M / 259M serial digital cable driver is a monolithic, high-speed cable driver designed for use in SMPTE 292M / 259M serial

More information

1 Watt High Linearity, High Gain InGaP HBT Amplifier. Product Description

1 Watt High Linearity, High Gain InGaP HBT Amplifier. Product Description Product Features 18 24 MHz 24.7 db Gain +3 dbm P1dB +46 dbm Output IP3 +V Single Positive Supply Internal Active Bias Lead-free/ RoHS-compliant SOIC-8 & 4xmm DFN Package Applications Mobile Infrastructure

More information

EL4583. Features. Sync Separator, 50% Slice, S-H, Filter, H OUT. Applications. Ordering Information. Pinout FN Data Sheet March 28, 2013

EL4583. Features. Sync Separator, 50% Slice, S-H, Filter, H OUT. Applications. Ordering Information. Pinout FN Data Sheet March 28, 2013 Data Sheet FN7173.4 Sync Separator, 50% Slice, S-H, Filter, H OUT The EL4583 extracts timing from video sync in NTSC, PAL, and SECAM systems, and non standard formats, or from computer graphics operating

More information

NCS2566. Six-Channel Video Driver with Triple SD & Triple Selectable SD/HD Filters

NCS2566. Six-Channel Video Driver with Triple SD & Triple Selectable SD/HD Filters Six-Channel Video Driver with Triple SD & Triple Selectable SD/HD Filters The NCS2566 integrates reconstruction filters and video amplifiers. It s a combination of two 3 channel drivers the first one capable

More information

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC

More information

General purpose low noise wideband amplifier for frequencies between DC and 2.2 GHz

General purpose low noise wideband amplifier for frequencies between DC and 2.2 GHz Rev. 1 20 October 2011 Product data sheet 1. Product profile 1.1 General description Silicon Monolithic Microwave Integrated Circuit (MMIC) wideband amplifier with internal matching circuit in a 6-pin

More information

HMC958LC5 HIGH SPEED LOGIC - SMT. Typical Applications. Features. Functional Diagram. General Description

HMC958LC5 HIGH SPEED LOGIC - SMT. Typical Applications. Features. Functional Diagram. General Description Typical Applications Features The HMC958LC5 is ideal for: SONET OC-192 and 1 GbE 16G Fiber Channel 4:1 Multiplexer Built-In Test Broadband Test & Measurement Functional Diagram Supports High Data Rates:

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 9-6; Rev ; /8 Ω PART TEMP RANGE PIN-PACKAGE EAE+ -4 C to +85 C 6 SSOP (5.mm x 6.mm) PKG COE A6+ +5V +5V.μF.μF CAMERA UNSHIELE TWISTE PAIR ( TO m).μf INP CLAMP AAPTIVE EQUALIZER OUT AC INN.μF FEQ FEQ AGC

More information

Complete 12-Bit 40 MHz CCD Signal Processor AD9945

Complete 12-Bit 40 MHz CCD Signal Processor AD9945 Complete 12-Bit 40 MHz CCD Signal Processor AD9945 FEATURES 40 MSPS Correlated Double Sampler (CDS) 6 db to 40 db 10-Bit Variable Gain Amplifier (VGA) Low Noise Optical Black Clamp Circuit Preblanking

More information

Is Now Part of. To learn more about ON Semiconductor, please visit our website at

Is Now Part of. To learn more about ON Semiconductor, please visit our website at Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers

More information

4W High Linearity InGaP HBT Amplifier. Product Description

4W High Linearity InGaP HBT Amplifier. Product Description AH42 Product Features 4 27 MHz +3.7 dbm P1dB -49 dbc ACLR @ 26 dbm db Gain @ 2 MHz 8 ma Quiescent Current + V Single Supply MTTF > 1 Years Lead-free/green/RoHS-compliant 12-pin 4xmm DFN Package Applications

More information

QPC1022TR7. Broad Band Low Distortion SPDT Switch. General Description. Product Features. Functional Block Diagram RF1612.

QPC1022TR7. Broad Band Low Distortion SPDT Switch. General Description. Product Features. Functional Block Diagram RF1612. General Description The QPC1022 is a single pole dual-throw (SPDT) switch designed for switching applications requiring very low insertion loss and high power handling capability with minimal DC power

More information

PART TEMP RANGE PIN-PACKAGE

PART TEMP RANGE PIN-PACKAGE General Description The MAX6701 microprocessor (µp) supervisory circuits reduce the complexity and components required to monitor power-supply functions in µp systems. These devices significantly improve

More information

Complete 10-Bit, 25 MHz CCD Signal Processor AD9943

Complete 10-Bit, 25 MHz CCD Signal Processor AD9943 a FEATURES 25 MSPS Correlated Double Sampler (CDS) 6 db to 40 db 10-Bit Variable Gain Amplifier (VGA) Low Noise Optical Black Clamp Circuit Preblanking Function 10-Bit, 25 MSPS A/D Converter No Missing

More information

HMC412BMS8GE MIXER - SINGLE & DOUBLE BALANCED - SMT. Typical Applications. Features. Functional Diagram. General Description

HMC412BMS8GE MIXER - SINGLE & DOUBLE BALANCED - SMT. Typical Applications. Features. Functional Diagram. General Description HMCBMSGE v1.1 Typical Applications The HMCBMSGE is ideal for: Long Haul Radio Platforms Microwave Radio VSAT Functional Diagram Features Conversion Loss: db Noise Figure: db LO to RF Isolation: db LO to

More information

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC

More information

DATASHEET EL4583A. Features. Applications. Pinout. Ordering Information. Sync Separator, 50% Slice, S-H, Filter, HOUT. FN7503 Rev 2.

DATASHEET EL4583A. Features. Applications. Pinout. Ordering Information. Sync Separator, 50% Slice, S-H, Filter, HOUT. FN7503 Rev 2. DATASHEET Sync Separator, 50% Slice, S-H, Filter, HOUT FN7503 Rev 2.00 The extracts timing from video sync in NTSC, PAL, and SECAM systems, and non-standard formats, or from computer graphics operating

More information

Features. = +25 C, IF = 0.5 GHz, LO = +15 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units

Features. = +25 C, IF = 0.5 GHz, LO = +15 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units v1.514 Typical Applications The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use Functional Diagram Features Passive: No DC Bias Required

More information

TGA2218-SM GHz 12 W GaN Power Amplifier

TGA2218-SM GHz 12 W GaN Power Amplifier Applications Satellite Communications Data Link Radar Product Features Functional Block Diagram Frequency Range: 13.4 16.5 GHz PSAT: > 41 dbm (PIN = 18 dbm) PAE: > 29% (PIN = 18 dbm) Large Signal Gain:

More information

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC

More information

General purpose low noise wideband amplifier for frequencies between DC and 2.2 GHz

General purpose low noise wideband amplifier for frequencies between DC and 2.2 GHz Rev. 5 3 October 2016 Product data sheet 1. Product profile 1.1 General description Silicon Monolithic Microwave Integrated Circuit (MMIC) wideband amplifier with internal matching circuit in a 6-pin SOT363

More information

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC

More information

Complete 12-Bit 40 MHz CCD Signal Processor AD9945

Complete 12-Bit 40 MHz CCD Signal Processor AD9945 Complete 12-Bit 40 MHz CCD Signal Processor AD9945 FEATURES 40 MSPS Correlated Double Sampler (CDS) 6 db to 40 db 10-Bit Variable Gain Amplifier (VGA) Low Noise Optical Black Clamp Circuit Preblanking

More information

General purpose low noise wideband amplifier for frequencies between DC and 750 MHz

General purpose low noise wideband amplifier for frequencies between DC and 750 MHz Rev. 3 13 July 2015 Product data sheet 1. Product profile 1.1 General description Silicon Monolithic Microwave Integrated Circuit (MMIC) wideband amplifier with internal matching circuit in a 6-pin SOT363

More information