The main design objective in adder design are area, speed and power. Carry Select Adder (CSLA) is one of the fastest

Size: px
Start display at page:

Download "The main design objective in adder design are area, speed and power. Carry Select Adder (CSLA) is one of the fastest"

Transcription

1 ISSN: X CODEN: IJPTFI Available Online through Research Article IMPLEMENTATION OF FAST SQUARE ROOT SELECT WITH LOW POWER CONSUMPTION V.Elanangai*, Dr. K.Vasanth Department of Electrical and Electronics, Sathyabama University, Chennai-119. Department of Electrical and Electronics, Sathyabama University, Chennai Received on Accepted on Abstract The main design objective in adder design are area, speed and power. Carry Select Adder (CSLA) is one of the fastest adders which carry out fast arithmetic functions in many data processing processors. However CSLA is not area efficient since many pairs of Ripple carry adders (RCA) are used to generate partial sum and carry which are selected by the multiplexers. From the structure of the CSLA, it is clear that there is scope to reduce area and consumption of power in the CSLA. The result shows that proposed design has occupied less area and consumed less power as compared to regular SQRT CSLA. Keywords: CSLA, fast arithmetic function, SQRT CSLA. I. Introduction Addition of numbers is performed by an adder circuit in electronics. In modern computers adders are placed in arithmetic logic unit (ALU). Although adders are used to represent numeric values, the most common adders operate on binary numbers. In digital adders the speed of addition is reduced since a carry has to propagate through the adder. Similar to other circuit designs, the high performance adder design can be approached at different levels. As a result there is always a tradeoff between the design parameters area, power and speed [1]. There are many ways to design an added. RCA is more compact but speed is less. Carry propagation is the main concern [3]. This brief is structured as follows. Section II deals with the detailed structure and function of BEC logic and architecture of the existing square root carry select adder. Section III presents the structure of the proposed adder. Section IV provides us the implementation results. Section V is about conclusion. IJPT June-2016 Vol. 8 Issue No Page 14679

2 II. Existing Square Root Carry Select adder The basic square-root Carry Select adder has two ripple carry adder with 2:1 multiplexer; the main disadvantage of regular CSLA is its larger area because of multiple pairs of ripple carry adder. To overcome this Binary- to Excess- 1(BEC) method is proposed to reduce the maximum delay of carry propagation in final stage of carry save adder [4]. Fig 1 shows that BEC is used in place of RCA in the regular CSLA to get less area and power consumption [4]-[6]. The advantage of BEC logic is lesser number of logic gates than the n-bit Full Adder (FA). To replace the n-bit RCA, an n+1 bit BEC is required. Fig.2 and Fig. 3 illustrates how the CSLA works basically using mux and 4-bit BEC. One input of the 8:4 mux is the BEC output and another is (B3, B2, B1, and B0). This produces two outputs in parallel and the mux selects BEC output or the direct inputs depending on the control signal Cin. The importance of the BEC logic is area reduction when the CSLA are designed with large number of bits. The Boolean expressions of the 4-bit BEC is shown below. The function table of 4-bit BEC is shown below. Table 1: Functional Table of BEC. Fig.1 Architecture of the Existing CSA. Fig.2 illustrations of 2-bit and 3-bit BEC respectively. IJPT June-2016 Vol. 8 Issue No Page 14680

3 Fig.3 illustrations of 4-bit and 5-bit BEC respectively. III. Proposed Adder From the structure shown in fig. 1, there is a scope for reducing the power and area of CSLA. In that we have replaced RCA with Conditional sum adder (CSA). Fig. 4 gives us the structure of the proposed square root CSLA. Fig.5 shows the Circuit diagram of the proposed adder and Fig.6 shows the layout diagram of the proposed adder. Fig. 5. Circuit Diagram- Proposed square root CSLA. Fig. 6. Layout Diagram- Proposed square root CSLA. IJPT June-2016 Vol. 8 Issue No Page 14681

4 IV. Results and Discussions A. Tabulation The results of the implementation of various fast adders have been done down. Table 2 shows that the square root CSLA is fastest and area efficient. Hence conditional sum adder is implemented in square root CSLA. And when high speed adders are executed using conditional sum adder, square root carry select adder shows better performance than other adders with less combinational delay time ns and relatively less number of slices occupied. Table 3 gives us the amount of power consumed by conventional square root CSLA and Proposed square root CSLA. Table-2. Overall Comparison. 16 BIT S RIPPLE LOOK AHEAD SKIP SELECT SQUARE ROOT CSLA SQUARE ROOT CSLA (CONDITIONAL) XOR AFTER SYNTHESIS 1. NO. OF SLICES NO. OF I/P LUT BONDED IOB DELAY ns ns ns ns ns ns AFTER MAP 1. 4 I/P LUT SLICES OCCUPIED BONDED IOB EQUIVALENT GATE COUNT MAX FAN OUT PLACE AND ROUTE 1. EXTERNAL IOB NO. OF SLICES IJPT June-2016 Vol. 8 Issue No Page 14682

5 Table-3. Power Consumption Comparison. DIFFERENT POWER S SQUARE ROOT 0.220MW CSLA USING BEC SQUARE ROOT CSLA USING 0.163MW CONDITIONAL SUM The proposed adder is observed to have less delay time (14.863ns) and low power (0.163mW) consumption capability if we take the existing adder for comparison. Hence the proposed square root carry select adder using conditional sum adder is proved to be power and time efficient. B. Graph The graph shown in fig 7 proves that when compared to the existing adders the proposed square root csla using conditional sum adder consumes less power. Fig. 7. Power consumption of various 16 bit adders. Fig. 8 Combinational delay path of various 16 bit adders. IJPT June-2016 Vol. 8 Issue No Page 14683

6 The graph shown in fig 8 proves that the proposed adder has less combinational delay path hence improving the speed. V. Conclusion His paper proposes an architecture to reduce the power and delay time of square root CSLA using conditional sum adder. Initially all the high speed adders are studied and the square root carry select adder is observed to be an efficient one. Various adder architectures are also studied and the conditional sum adder is observed to be the effective. This conditional sum adder is now executed in high speed adders and respective results are obtained. Front End Results: The software used for obtaining front end results are XILINX for synthesis and MODELSIM for simulation purpose. When targeted for XC3s1000-5fg900 for FPGA, the architecture consumed 25 slices of the logic having a combinational path delay of ns which is observed to be minimum. Back End Results: Since the power obtained using XILINX is not accurate, back end tools called Dschematic and Micro wind are used. The power results obtained here shows that the proposed architecture consumes 0.163mW of power which is very less. As compared to the regular SQRT CSLA the proposed design has reduced power and delay time with only a slight increase in the area. The proposed adder is observed to have less delay time (14.863ns) and consumes less power (0.163mW) compared to the existing adder. Therefore the proposed square root carry select adder using conditional sum adder is proved to be power and time efficient. References 1. I-Chyn Wey, Cheng-chen Ho, Yi-Sheng Lin and Chien-Chang Peng, An area Efficient Carry Select Adder Design by Sharing the common Boolean Logic Term, International MultiConference of Engineers and Computer Scientists, Vol.II, March AmauryNève, Thomas Ludwig, Denis Flandre, Power- Delay Product Minimization In High-Performance 64-Bit Carry-Select Adders, Ieee Transactions On Very Large Scale Integration (Vlsi) Systems, Vol. 12, No. 3, March Basant Kumar Mohanty,Sujit Kumar Patel, Area Delay Power Efficient Carry Select Adder, Ieee Transactions On Circuits And Systems Ii: Express Briefs, Vol. 61, No. 6, June IJPT June-2016 Vol. 8 Issue No Page 14684

7 4. B. Ramkumar, H.M. Kittur and P.M. Kannan. ASIC implementation of modified faster carry save adder Eur.J.Sci.Res., Vol.42, no.1, pp , T.Y. Ceing and M.J.Hsiao, carry-select adder using single ripple carry adder, Electron. Lett., Vol. 34, No.22, pp , Oct Y. Kim and L. S. Kim, 64-bit carry select adder with Reduced area, Electron, Lett., Vol.37, No. 10, pp , May B.Ram kumar And Harish M Kittur, Low-Power and Area-Efficient Carry Select Adder,Ieee Transactions On Very Large Scale Integration (Vlsi) Systems, Vol. 20, No.2, February Jin-Fu Li, Jiunn-Der Yu, And Yu-Jen Huang, A Design Methodology For Hybrid Carry-Look ahead/carry- Select Adders With Reconfigurability, in Proc. IEEE Int. Symp. Circuits Syst., 2005, vol. 4, pp Johannes Grad And James E. Stine, A Hybrid Ling Carry-Select Adder., Version 6.2.4, March Reza Hashemian, A New Design For High Speed And High-Density Carry Select Adders, 43rdIeee Midwest Symp On Circuits And Systems, Aug- 8-11, RomanaYousuf And Najeeb-Ud-Din, Synthesis of Carry Select Adder In 65 Nm Fpga, in Proc. IEEE Int. Symp. Circuits Syst., 2005, vol. 4, pp Shmuel Wimer,Amnonstanislavsky, Energy Efficient Hybrid adder architecture,thevlsijournal48(2015) Yajuan He, Chip-Hong Chang and JiangminGu, An Area Efficient 64-Bit Square Root Carry-Select Adder For Low Power Applications, A Design Perspective. Upper Saddle River, NJ: Prentice-Hall, YotmgjoonKim And Lee-Sup Kim, A Low Power Carry Select Adder With Reduced Area, Eur. J. Sci. Res., vol. 42, no. 1, pp , Yuke Wang, C. Pai, And Xiaoyu Song, The Design Of Hybrid Carry-Look ahead/carry Select Adders, Ieee Transactions On Circuits And Systems Ii: Analog And Digital Signal Processing, Vol. 49, No. 1, January Yuke Wang, Keshab K. Parhi, A Unified Adder Design, Electron. Lett., vol. 34, no. 22, pp ,oct Corresponding Author: V.Elanangai*, elanangai123@gmail.com IJPT June-2016 Vol. 8 Issue No Page 14685

128 BIT CARRY SELECT ADDER USING BINARY TO EXCESS-ONE CONVERTER FOR DELAY REDUCTION AND AREA EFFICIENCY

128 BIT CARRY SELECT ADDER USING BINARY TO EXCESS-ONE CONVERTER FOR DELAY REDUCTION AND AREA EFFICIENCY 128 BIT CARRY SELECT ADDER USING BINARY TO EXCESS-ONE CONVERTER FOR DELAY REDUCTION AND AREA EFFICIENCY 1 Mrs.K.K. Varalaxmi, M.Tech, Assoc. Professor, ECE Department, 1varuhello@Gmail.Com 2 Shaik Shamshad

More information

An optimized implementation of 128 bit carry select adder using binary to excess-one converter for delay reduction and area efficiency

An optimized implementation of 128 bit carry select adder using binary to excess-one converter for delay reduction and area efficiency Journal From the SelectedWorks of Journal December, 2014 An optimized implementation of 128 bit carry select adder using binary to excess-one converter for delay reduction and area efficiency P. Manga

More information

Implementation of Low Power and Area Efficient Carry Select Adder

Implementation of Low Power and Area Efficient Carry Select Adder International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 8 ǁ August 2014 ǁ PP.36-48 Implementation of Low Power and Area Efficient Carry Select

More information

ISSN:

ISSN: 427 AN EFFICIENT 64-BIT CARRY SELECT ADDER WITH REDUCED AREA APPLICATION CH PALLAVI 1, VSWATHI 2 1 II MTech, Chadalawada Ramanamma Engg College, Tirupati 2 Assistant Professor, DeptofECE, CREC, Tirupati

More information

Implementation and Analysis of Area Efficient Architectures for CSLA by using CLA

Implementation and Analysis of Area Efficient Architectures for CSLA by using CLA Volume-6, Issue-3, May-June 2016 International Journal of Engineering and Management Research Page Number: 753-757 Implementation and Analysis of Area Efficient Architectures for CSLA by using CLA Anshu

More information

Modified128 bit CSLA For Effective Area and Speed

Modified128 bit CSLA For Effective Area and Speed Modified128 bit CSLA For Effective Area and Speed Shaik Bademia Babu, Sada.Ravindar,M.Tech,VLSI, Assistant professor Nimra Inst Of Sci and tech college, jupudi, Ibrahimpatnam,Vijayawada,AP state,india

More information

An Efficient 64-Bit Carry Select Adder With Less Delay And Reduced Area Application

An Efficient 64-Bit Carry Select Adder With Less Delay And Reduced Area Application An Efficient 64-Bit Carry Select Adder With Less Delay And Reduced Area Application K Allipeera, M.Tech Student & S Ahmed Basha, Assitant Professor Department of Electronics & Communication Engineering

More information

Implementation of High Speed Adder using DLATCH

Implementation of High Speed Adder using DLATCH International Journal of Emerging Engineering Research and Technology Volume 3, Issue 12, December 2015, PP 162-172 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Implementation of High Speed Adder using

More information

Design of Carry Select Adder using Binary to Excess-3 Converter in VHDL

Design of Carry Select Adder using Binary to Excess-3 Converter in VHDL Journal From the SelectedWorks of Kirat Pal Singh Summer May 18, 2016 Design of Carry Select Adder using Binary to Excess-3 Converter in VHDL Brijesh Kumar, Vaagdevi college of engg. Pune, Andra Pradesh,

More information

Improved 32 bit carry select adder for low area and low power

Improved 32 bit carry select adder for low area and low power Journal From the SelectedWorks of Journal October, 2014 Improved 32 bit carry select adder for low area and low power Syed Javeed Chanukya Rani Imthiazunnisa Begum Korani Ravinder This work is licensed

More information

Research Article Design and Implementation of High Speed and Low Power Modified Square Root Carry Select Adder (MSQRTCSLA)

Research Article Design and Implementation of High Speed and Low Power Modified Square Root Carry Select Adder (MSQRTCSLA) Research Journal of Applied Sciences, Engineering and Technology 12(1): 43-51, 2016 DOI:10.19026/rjaset.12.2302 ISSN: 2040-7459; e-issn: 2040-7467 2016 Maxwell Scientific Publication Corp. Submitted: August

More information

Design And Implimentation Of Modified Sqrt Carry Select Adder On FPGA

Design And Implimentation Of Modified Sqrt Carry Select Adder On FPGA Design And Implimentation Of Modified Sqrt Carry Select Adder On FPGA Ch. Pavan kumar #1, V.Narayana Reddy, *2, R.Sravanthi *3 #Dept. of ECE, PBR VIT, Kavali, A.P, India #2 Associate.Proffesor, Department

More information

DESIGN OF HIGH PERFORMANCE, AREA EFFICIENT FIR FILTER USING CARRY SELECT ADDER

DESIGN OF HIGH PERFORMANCE, AREA EFFICIENT FIR FILTER USING CARRY SELECT ADDER DESIGN OF HIGH PERFORMANCE, AREA EFFICIENT FIR FILTER USING CARRY SELECT ADDER G. Vijayalakshmi, A. Nithyalakshmi, J. Priyadarshini Assistant Professor, ECE, Prince Shri Venkateshwara Padmavathy Engg College,

More information

Research Article Low Power 256-bit Modified Carry Select Adder

Research Article Low Power 256-bit Modified Carry Select Adder Research Journal of Applied Sciences, Engineering and Technology 8(10): 1212-1216, 2014 DOI:10.19026/rjaset.8.1086 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted:

More information

Pak. J. Biotechnol. Vol. 14 (Special Issue II) Pp (2017) Parjoona V. and P. Manimegalai

Pak. J. Biotechnol. Vol. 14 (Special Issue II) Pp (2017) Parjoona V. and P. Manimegalai ANALYSIS OF AREA DELAY OPTIMIZATION OF IMPROVED SPARSE CHANNEL ADDER Prajoona Valsalan,2 and P. Manimegalai 2 2 Karpagam University, Coimbatore, Tamil Nadu, India. Dhofar University, Salalah, Sultanate

More information

Design and Implementation of High Speed 256-Bit Modified Square Root Carry Select Adder

Design and Implementation of High Speed 256-Bit Modified Square Root Carry Select Adder Design and Implementation of High Speed 256-Bit Modified Square Root Carry Select Adder Muralidharan.R [1], Jodhi Mohana Monica [2], Meenakshi.R [3], Lokeshwaran.R [4] B.Tech Student, Department of Electronics

More information

Design and Implementation of Low-Power and Area-Efficient for Carry Select Adder (Csla)

Design and Implementation of Low-Power and Area-Efficient for Carry Select Adder (Csla) Design and Implementation of Low-Power and Area-Efficient for Carry Select Adder (Csla) M.Deepika Department of the Electronics and Communication Engineering, NITS, Hyderabad, AP, India. K.Srinivasa Reddy

More information

128 BIT MODIFIED CARRY SELECT ADDER USING BINARY TO EXCESS-ONE CONVERTER

128 BIT MODIFIED CARRY SELECT ADDER USING BINARY TO EXCESS-ONE CONVERTER 128 BIT MODIFIED CARRY SELECT ADDER USING BINARY TO EXCESS-ONE CONVERTER M.Srinivasaperumal 1, S.Pavithra 2, V.S.Kavya Lekshmi 3, K.MohammedArshad 4 1,2,3,4 Dept. of ECE, SNS College of Technology Coimbatore,(

More information

FPGA IMPEMENTATION OF LOW POWER AND AREA EFFICIENT CARRY SELECT ADDER

FPGA IMPEMENTATION OF LOW POWER AND AREA EFFICIENT CARRY SELECT ADDER FPGA IMPEMENTATION OF LOW POWER AND AREA EFFICIENT CARRY SELECT ADDER A.Nithya [3],A.G.Priyanka [3],B.Ajitha [3],D.Gracia Nirmala Rani [2],S.Rajaram [1] [1]- Associate Professor, [2]- Assistant Professor,

More information

FPGA Implementation of Low Power and Area Efficient Carry Select Adder

FPGA Implementation of Low Power and Area Efficient Carry Select Adder Journal From the SelectedWorks of Kirat Pal Singh Summer July 17, 2014 FPGA Implementation of Low Power and Area Efficient Carry Select Adder A. Nithya, Thiagarajar College of Engineering, Madurai, India

More information

Implementation of efficient carry select adder on FPGA

Implementation of efficient carry select adder on FPGA Journal From the SelectedWorks of Kirat Pal Singh Summer May 18, 2016 Implementation of efficient carry select adder on FPGA Balaji Goswami, RajLakshmi Engineering College, Tamil Nadu, India Ms. Priya,

More information

Efficient Implementation of Multi Stage SQRT Carry Select Adder

Efficient Implementation of Multi Stage SQRT Carry Select Adder International Journal of Research Studies in Science, Engineering and Technology Volume 2, Issue 8, August 2015, PP 31-36 ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) Efficient Implementation of Multi

More information

DESIGN OF LOW POWER AND HIGH SPEED BEC 2248 EFFICIENT NOVEL CARRY SELECT ADDER

DESIGN OF LOW POWER AND HIGH SPEED BEC 2248 EFFICIENT NOVEL CARRY SELECT ADDER DESIGN OF LOW POWER AND HIGH SPEED BEC 2248 EFFICIENT NOVEL CARRY SELECT ADDER Sakshi Rajput 1, Gitanjali 2, Priya Sharma 2 and Garima 2 1 Assistant Professor, Department of Electronics and Communication

More information

An Efficient Carry Select Adder

An Efficient Carry Select Adder An Efficient Carry Select Adder with Reduced Area Application M.Manjula M.Tech,Panem Charan Aurora M.Tech, Bogati Vijaya Bhaskar Reddy, Vendidandi Ajith Babu, Kethu Dinesh,S.K.Mahmod Rafi UG Students[

More information

Design of Modified Carry Select Adder for Addition of More Than Two Numbers

Design of Modified Carry Select Adder for Addition of More Than Two Numbers Design of Modified Carry Select Adder for Addition of More Than Two Numbers Jasbir Kaur 1 and Lalit Sood 2 Assistant Professor, ECE Department, PEC University of Technology, Chandigarh, India 1 PG Scholar,

More information

A Review on Hybrid Adders in VHDL Payal V. Mawale #1, Swapnil Jain *2, Pravin W. Jaronde #3

A Review on Hybrid Adders in VHDL Payal V. Mawale #1, Swapnil Jain *2, Pravin W. Jaronde #3 A Review on Hybrid Adders in VHDL Payal V. Mawale #1, Swapnil Jain *2, Pravin W. Jaronde #3 #1 Electronics & Communication, RTMNU. *2 Electronics & Telecommunication, RTMNU. #3 Electronics & Telecommunication,

More information

An Efficient Reduction of Area in Multistandard Transform Core

An Efficient Reduction of Area in Multistandard Transform Core An Efficient Reduction of Area in Multistandard Transform Core A. Shanmuga Priya 1, Dr. T. K. Shanthi 2 1 PG scholar, Applied Electronics, Department of ECE, 2 Assosiate Professor, Department of ECE Thanthai

More information

LUT Optimization for Memory Based Computation using Modified OMS Technique

LUT Optimization for Memory Based Computation using Modified OMS Technique LUT Optimization for Memory Based Computation using Modified OMS Technique Indrajit Shankar Acharya & Ruhan Bevi Dept. of ECE, SRM University, Chennai, India E-mail : indrajitac123@gmail.com, ruhanmady@yahoo.co.in

More information

Research Article VLSI Architecture Using a Modified SQRT Carry Select Adder in Image Compression

Research Article VLSI Architecture Using a Modified SQRT Carry Select Adder in Image Compression Research Journal of Applied Sciences, Engineering and Technology 11(1): 14-18, 2015 DOI: 10.19026/rjaset.11.1670 ISSN: 2040-7459; e-issn: 2040-7467 2015 Maxwell Scientific Publication Corp. Submitted:

More information

An Efficient High Speed Wallace Tree Multiplier

An Efficient High Speed Wallace Tree Multiplier Chepuri satish,panem charan Arur,G.Kishore Kumar and G.Mamatha 38 An Efficient High Speed Wallace Tree Multiplier Chepuri satish, Panem charan Arur, G.Kishore Kumar and G.Mamatha Abstract: The Wallace

More information

An MFA Binary Counter for Low Power Application

An MFA Binary Counter for Low Power Application Volume 118 No. 20 2018, 4947-4954 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu An MFA Binary Counter for Low Power Application Sneha P Department of ECE PSNA CET, Dindigul, India

More information

COMPUTATIONAL REDUCTION LOGIC FOR ADDERS

COMPUTATIONAL REDUCTION LOGIC FOR ADDERS COMPUTATIONAL REDUCTION LOGIC FOR ADDERS 1 R. Shanmukha Sandeep, 1 P.V. Anusha Unni, 2 M. Siva Kumar, 2 Syed Inthiyaz 1 shanmuksandeep@gmail.com, 1 anushaunni.auau@gmail.com, 2 siva4580@kluniversity.in,

More information

Design of Memory Based Implementation Using LUT Multiplier

Design of Memory Based Implementation Using LUT Multiplier Design of Memory Based Implementation Using LUT Multiplier Charan Kumar.k 1, S. Vikrama Narasimha Reddy 2, Neelima Koppala 3 1,2 M.Tech(VLSI) Student, 3 Assistant Professor, ECE Department, Sree Vidyanikethan

More information

Design and Analysis of Modified Fast Compressors for MAC Unit

Design and Analysis of Modified Fast Compressors for MAC Unit Design and Analysis of Modified Fast Compressors for MAC Unit Anusree T U 1, Bonifus P L 2 1 PG Student & Dept. of ECE & Rajagiri School of Engineering & Technology 2 Assistant Professor & Dept. of ECE

More information

Optimization of memory based multiplication for LUT

Optimization of memory based multiplication for LUT Optimization of memory based multiplication for LUT V. Hari Krishna *, N.C Pant ** * Guru Nanak Institute of Technology, E.C.E Dept., Hyderabad, India ** Guru Nanak Institute of Technology, Prof & Head,

More information

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath Objectives Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath In the previous chapters we have studied how to develop a specification from a given application, and

More information

ALONG with the progressive device scaling, semiconductor

ALONG with the progressive device scaling, semiconductor IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 57, NO. 4, APRIL 2010 285 LUT Optimization for Memory-Based Computation Pramod Kumar Meher, Senior Member, IEEE Abstract Recently, we

More information

OF AN ADVANCED LUT METHODOLOGY BASED FIR FILTER DESIGN PROCESS

OF AN ADVANCED LUT METHODOLOGY BASED FIR FILTER DESIGN PROCESS IMPLEMENTATION OF AN ADVANCED LUT METHODOLOGY BASED FIR FILTER DESIGN PROCESS 1 G. Sowmya Bala 2 A. Rama Krishna 1 PG student, Dept. of ECM. K.L.University, Vaddeswaram, A.P, India, 2 Assistant Professor,

More information

Distributed Arithmetic Unit Design for Fir Filter

Distributed Arithmetic Unit Design for Fir Filter Distributed Arithmetic Unit Design for Fir Filter ABSTRACT: In this paper different distributed Arithmetic (DA) architectures are proposed for Finite Impulse Response (FIR) filter. FIR filter is the main

More information

Efficient Architecture for Flexible Prescaler Using Multimodulo Prescaler

Efficient Architecture for Flexible Prescaler Using Multimodulo Prescaler Efficient Architecture for Flexible Using Multimodulo G SWETHA, S YUVARAJ Abstract This paper, An Efficient Architecture for Flexible Using Multimodulo is an architecture which is designed from the proposed

More information

Implementation of Memory Based Multiplication Using Micro wind Software

Implementation of Memory Based Multiplication Using Micro wind Software Implementation of Memory Based Multiplication Using Micro wind Software U.Palani 1, M.Sujith 2,P.Pugazhendiran 3 1 IFET College of Engineering, Department of Information Technology, Villupuram 2,3 IFET

More information

Low Power Area Efficient Parallel Counter Architecture

Low Power Area Efficient Parallel Counter Architecture Low Power Area Efficient Parallel Counter Architecture Lekshmi Aravind M-Tech Student, Dept. of ECE, Mangalam College of Engineering, Kottayam, India Abstract: Counters are specialized registers and is

More information

Adaptive Fir Filter with Optimised Area and Power using Modified Inner-Product Block

Adaptive Fir Filter with Optimised Area and Power using Modified Inner-Product Block Adaptive Fir Filter with Optimised Area and Power using Modified Inner-Product Block Jesmin Joy M. Tech Scholar (VLSI & Embedded Systems), Dept. of ECE, IIET, M. G. University, Kottayam, Kerala, India

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal

International Journal of Engineering Research-Online A Peer Reviewed International Journal RESEARCH ARTICLE ISSN: 2321-7758 VLSI IMPLEMENTATION OF SERIES INTEGRATOR COMPOSITE FILTERS FOR SIGNAL PROCESSING MURALI KRISHNA BATHULA Research scholar, ECE Department, UCEK, JNTU Kakinada ABSTRACT The

More information

Available online at ScienceDirect. Procedia Computer Science 46 (2015 ) Aida S Tharakan a *, Binu K Mathew b

Available online at  ScienceDirect. Procedia Computer Science 46 (2015 ) Aida S Tharakan a *, Binu K Mathew b Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 46 (2015 ) 1409 1416 International Conference on Information and Communication Technologies (ICICT 2014) Design and Implementation

More information

VLSI Technology used in Auto-Scan Delay Testing Design For Bench Mark Circuits

VLSI Technology used in Auto-Scan Delay Testing Design For Bench Mark Circuits VLSI Technology used in Auto-Scan Delay Testing Design For Bench Mark Circuits N.Brindha, A.Kaleel Rahuman ABSTRACT: Auto scan, a design for testability (DFT) technique for synchronous sequential circuits.

More information

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue8- August 2013

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue8- August 2013 International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue8- August 2013 Design and Implementation of an Enhanced LUT System in Security Based Computation dama.dhanalakshmi 1, K.Annapurna

More information

LUT Design Using OMS Technique for Memory Based Realization of FIR Filter

LUT Design Using OMS Technique for Memory Based Realization of FIR Filter International Journal of Emerging Engineering Research and Technology Volume. 2, Issue 6, September 2014, PP 72-80 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) LUT Design Using OMS Technique for Memory

More information

Design and FPGA Implementation of 100Gbit/s Scrambler Architectures for OTN Protocol Chethan Kumar M 1, Praveen Kumar Y G 2, Dr. M. Z. Kurian 3.

Design and FPGA Implementation of 100Gbit/s Scrambler Architectures for OTN Protocol Chethan Kumar M 1, Praveen Kumar Y G 2, Dr. M. Z. Kurian 3. International Journal of Computer Engineering and Applications, Volume VI, Issue II, May 14 www.ijcea.com ISSN 2321 3469 Design and FPGA Implementation of 100Gbit/s Scrambler Architectures for OTN Protocol

More information

REDUCING DYNAMIC POWER BY PULSED LATCH AND MULTIPLE PULSE GENERATOR IN CLOCKTREE

REDUCING DYNAMIC POWER BY PULSED LATCH AND MULTIPLE PULSE GENERATOR IN CLOCKTREE Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 5, May 2014, pg.210

More information

Aging Aware Multiplier with AHL using FPGA

Aging Aware Multiplier with AHL using FPGA International Journal of Emerging Engineering Research and Technology Volume 5, Issue 1, January 2017, PP 12-19 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) DOI: http://dx.doi.org/10.22259/ijeert.0501003

More information

High Speed 8-bit Counters using State Excitation Logic and their Application in Frequency Divider

High Speed 8-bit Counters using State Excitation Logic and their Application in Frequency Divider High Speed 8-bit Counters using State Excitation Logic and their Application in Frequency Divider Ranjith Ram. A 1, Pramod. P 2 1 Department of Electronics and Communication Engineering Government College

More information

Why FPGAs? FPGA Overview. Why FPGAs?

Why FPGAs? FPGA Overview. Why FPGAs? Transistor-level Logic Circuits Positive Level-sensitive EECS150 - Digital Design Lecture 3 - Field Programmable Gate Arrays (FPGAs) January 28, 2003 John Wawrzynek Transistor Level clk clk clk Positive

More information

Design and analysis of RCA in Subthreshold Logic Circuits Using AFE

Design and analysis of RCA in Subthreshold Logic Circuits Using AFE Design and analysis of RCA in Subthreshold Logic Circuits Using AFE 1 MAHALAKSHMI M, 2 P.THIRUVALAR SELVAN PG Student, VLSI Design, Department of ECE, TRPEC, Trichy Abstract: The present scenario of the

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 917 The Power Optimization of Linear Feedback Shift Register Using Fault Coverage Circuits K.YARRAYYA1, K CHITAMBARA

More information

TEST PATTERN GENERATION USING PSEUDORANDOM BIST

TEST PATTERN GENERATION USING PSEUDORANDOM BIST TEST PATTERN GENERATION USING PSEUDORANDOM BIST GaneshBabu.J 1, Radhika.P 2 PG Student [VLSI], Dept. of ECE, SRM University, Chennai, Tamilnadu, India 1 Assistant Professor [O.G], Dept. of ECE, SRM University,

More information

Implementation of Dynamic RAMs with clock gating circuits using Verilog HDL

Implementation of Dynamic RAMs with clock gating circuits using Verilog HDL Implementation of Dynamic RAMs with clock gating circuits using Verilog HDL B.Sanjay 1 SK.M.Javid 2 K.V.VenkateswaraRao 3 Asst.Professor B.E Student B.E Student SRKR Engg. College SRKR Engg. College SRKR

More information

AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS

AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS NINU ABRAHAM 1, VINOJ P.G 2 1 P.G Student [VLSI & ES], SCMS School of Engineering & Technology, Cochin,

More information

A Novel Architecture of LUT Design Optimization for DSP Applications

A Novel Architecture of LUT Design Optimization for DSP Applications A Novel Architecture of LUT Design Optimization for DSP Applications O. Anjaneyulu 1, Parsha Srikanth 2 & C. V. Krishna Reddy 3 1&2 KITS, Warangal, 3 NNRESGI, Hyderabad E-mail : anjaneyulu_o@yahoo.com

More information

Performance Evolution of 16 Bit Processor in FPGA using State Encoding Techniques

Performance Evolution of 16 Bit Processor in FPGA using State Encoding Techniques Performance Evolution of 16 Bit Processor in FPGA using State Encoding Techniques Madhavi Anupoju 1, M. Sunil Prakash 2 1 M.Tech (VLSI) Student, Department of Electronics & Communication Engineering, MVGR

More information

PERFORMANCE ANALYSIS OF AN EFFICIENT PULSE-TRIGGERED FLIP FLOPS FOR ULTRA LOW POWER APPLICATIONS

PERFORMANCE ANALYSIS OF AN EFFICIENT PULSE-TRIGGERED FLIP FLOPS FOR ULTRA LOW POWER APPLICATIONS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 5.258 IJCSMC,

More information

Design of Polar List Decoder using 2-Bit SC Decoding Algorithm V Priya 1 M Parimaladevi 2

Design of Polar List Decoder using 2-Bit SC Decoding Algorithm V Priya 1 M Parimaladevi 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 V Priya 1 M Parimaladevi 2 1 Master of Engineering 2 Assistant Professor 1,2 Department

More information

LUT OPTIMIZATION USING COMBINED APC-OMS TECHNIQUE

LUT OPTIMIZATION USING COMBINED APC-OMS TECHNIQUE LUT OPTIMIZATION USING COMBINED APC-OMS TECHNIQUE S.Basi Reddy* 1, K.Sreenivasa Rao 2 1 M.Tech Student, VLSI System Design, Annamacharya Institute of Technology & Sciences (Autonomous), Rajampet (A.P),

More information

Clock Gating Aware Low Power ALU Design and Implementation on FPGA

Clock Gating Aware Low Power ALU Design and Implementation on FPGA Clock Gating Aware Low ALU Design and Implementation on FPGA Bishwajeet Pandey and Manisha Pattanaik Abstract This paper deals with the design and implementation of a Clock Gating Aware Low Arithmetic

More information

Design and Implementation of Partial Reconfigurable Fir Filter Using Distributed Arithmetic Architecture

Design and Implementation of Partial Reconfigurable Fir Filter Using Distributed Arithmetic Architecture Design and Implementation of Partial Reconfigurable Fir Filter Using Distributed Arithmetic Architecture Vinaykumar Bagali 1, Deepika S Karishankari 2 1 Asst Prof, Electrical and Electronics Dept, BLDEA

More information

High Performance Carry Chains for FPGAs

High Performance Carry Chains for FPGAs High Performance Carry Chains for FPGAs Matthew M. Hosler Department of Electrical and Computer Engineering Northwestern University Abstract Carry chains are an important consideration for most computations,

More information

Operating Bio-Implantable Devices in Ultra-Low Power Error Correction Circuits: using optimized ACS Viterbi decoder

Operating Bio-Implantable Devices in Ultra-Low Power Error Correction Circuits: using optimized ACS Viterbi decoder Operating Bio-Implantable Devices in Ultra-Low Power Error Correction Circuits: using optimized ACS Viterbi decoder Roshini R, Udhaya Kumar C, Muthumani D Abstract Although many different low-power Error

More information

Bit Swapping LFSR and its Application to Fault Detection and Diagnosis Using FPGA

Bit Swapping LFSR and its Application to Fault Detection and Diagnosis Using FPGA Bit Swapping LFSR and its Application to Fault Detection and Diagnosis Using FPGA M.V.M.Lahari 1, M.Mani Kumari 2 1,2 Department of ECE, GVPCEOW,Visakhapatnam. Abstract The increasing growth of sub-micron

More information

A Parallel Area Delay Efficient Interpolation Filter Architecture

A Parallel Area Delay Efficient Interpolation Filter Architecture A Parallel Area Delay Efficient Interpolation Filter Architecture [1] Anusha Ajayan, [2] Rafeekha M J [1] PG Student [VLSI & ES] [2] Assistant professor, Department of ECE, TKM Institute of Technology,

More information

FPGA Based Implementation of Convolutional Encoder- Viterbi Decoder Using Multiple Booting Technique

FPGA Based Implementation of Convolutional Encoder- Viterbi Decoder Using Multiple Booting Technique FPGA Based Implementation of Convolutional Encoder- Viterbi Decoder Using Multiple Booting Technique Dr. Dhafir A. Alneema (1) Yahya Taher Qassim (2) Lecturer Assistant Lecturer Computer Engineering Dept.

More information

A Fast Constant Coefficient Multiplier for the XC6200

A Fast Constant Coefficient Multiplier for the XC6200 A Fast Constant Coefficient Multiplier for the XC6200 Tom Kean, Bernie New and Bob Slous Xilinx Inc. Abstract. We discuss the design of a high performance constant coefficient multiplier on the Xilinx

More information

OMS Based LUT Optimization

OMS Based LUT Optimization International Journal of Advanced Education and Research ISSN: 2455-5746, Impact Factor: RJIF 5.34 www.newresearchjournal.com/education Volume 1; Issue 5; May 2016; Page No. 11-15 OMS Based LUT Optimization

More information

IN DIGITAL transmission systems, there are always scramblers

IN DIGITAL transmission systems, there are always scramblers 558 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 7, JULY 2006 Parallel Scrambler for High-Speed Applications Chih-Hsien Lin, Chih-Ning Chen, You-Jiun Wang, Ju-Yuan Hsiao,

More information

Design and Simulation of Modified Alum Based On Glut

Design and Simulation of Modified Alum Based On Glut IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 6 (June. 2018), V (I) PP 67-73 www.iosrjen.org Design and Simulation of Modified Alum Based On Glut Ms. Shreya

More information

12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009

12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009 12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009 Project Overview This project was originally titled Fast Fourier Transform Unit, but due to space and time constraints, the

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Memory efficient Distributed architecture LUT Design using Unified Architecture

Memory efficient Distributed architecture LUT Design using Unified Architecture Research Article Memory efficient Distributed architecture LUT Design using Unified Architecture Authors: 1 S.M.L.V.K. Durga, 2 N.S. Govind. Address for Correspondence: 1 M.Tech II Year, ECE Dept., ASR

More information

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20 Advanced Devices Using a combination of gates and flip-flops, we can construct more sophisticated logical devices. These devices, while more complex, are still considered fundamental to basic logic design.

More information

A Symmetric Differential Clock Generator for Bit-Serial Hardware

A Symmetric Differential Clock Generator for Bit-Serial Hardware A Symmetric Differential Clock Generator for Bit-Serial Hardware Mitchell J. Myjak and José G. Delgado-Frias School of Electrical Engineering and Computer Science Washington State University Pullman, WA,

More information

University College of Engineering, JNTUK, Kakinada, India Member of Technical Staff, Seerakademi, Hyderabad

University College of Engineering, JNTUK, Kakinada, India Member of Technical Staff, Seerakademi, Hyderabad Power Analysis of Sequential Circuits Using Multi- Bit Flip Flops Yarramsetti Ramya Lakshmi 1, Dr. I. Santi Prabha 2, R.Niranjan 3 1 M.Tech, 2 Professor, Dept. of E.C.E. University College of Engineering,

More information

Reconfigurable FPGA Implementation of FIR Filter using Modified DA Method

Reconfigurable FPGA Implementation of FIR Filter using Modified DA Method Reconfigurable FPGA Implementation of FIR Filter using Modified DA Method M. Backia Lakshmi 1, D. Sellathambi 2 1 PG Student, Department of Electronics and Communication Engineering, Parisutham Institute

More information

Optimizing area of local routing network by reconfiguring look up tables (LUTs)

Optimizing area of local routing network by reconfiguring look up tables (LUTs) Vol.2, Issue.3, May-June 2012 pp-816-823 ISSN: 2249-6645 Optimizing area of local routing network by reconfiguring look up tables (LUTs) Sathyabhama.B 1 and S.Sudha 2 1 M.E-VLSI Design 2 Dept of ECE Easwari

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053 SET - 1 1. a) What are the characteristics of 2 s complement numbers? b) State the purpose of reducing the switching functions to minimal form. c) Define half adder. d) What are the basic operations in

More information

Figure.1 Clock signal II. SYSTEM ANALYSIS

Figure.1 Clock signal II. SYSTEM ANALYSIS International Journal of Advances in Engineering, 2015, 1(4), 518-522 ISSN: 2394-9260 (printed version); ISSN: 2394-9279 (online version); url:http://www.ijae.in RESEARCH ARTICLE Multi bit Flip-Flop Grouping

More information

Design of an Efficient Low Power Multi Modulus Prescaler

Design of an Efficient Low Power Multi Modulus Prescaler International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 6, Issue 3 (March 2013), PP. 15-22 Design of an Efficient Low Power Multi Modulus

More information

A HIGH SPEED CMOS INCREMENTER/DECREMENTER CIRCUIT WITH REDUCED POWER DELAY PRODUCT

A HIGH SPEED CMOS INCREMENTER/DECREMENTER CIRCUIT WITH REDUCED POWER DELAY PRODUCT A HIGH SPEED CMOS INCREMENTER/DECREMENTER CIRCUIT WITH REDUCED POWER DELAY PRODUCT P.BALASUBRAMANIAN DR. R.CHINNADURAI Department of Electronics and Communication Engineering National Institute of Technology,

More information

Efficient Method for Look-Up-Table Design in Memory Based Fir Filters

Efficient Method for Look-Up-Table Design in Memory Based Fir Filters International Journal of Computer Applications (975 8887) Volume 78 No.6, September Efficient Method for Look-Up-Table Design in Memory Based Fir Filters Md.Zameeruddin M.Tech, DECS, Dept. of ECE, Vardhaman

More information

Reduction of Clock Power in Sequential Circuits Using Multi-Bit Flip-Flops

Reduction of Clock Power in Sequential Circuits Using Multi-Bit Flip-Flops Reduction of Clock Power in Sequential Circuits Using Multi-Bit Flip-Flops A.Abinaya *1 and V.Priya #2 * M.E VLSI Design, ECE Dept, M.Kumarasamy College of Engineering, Karur, Tamilnadu, India # M.E VLSI

More information

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532 www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issue 10 Oct. 2016, Page No. 18532-18540 Pulsed Latches Methodology to Attain Reduced Power and Area Based

More information

Midterm Exam 15 points total. March 28, 2011

Midterm Exam 15 points total. March 28, 2011 Midterm Exam 15 points total March 28, 2011 Part I Analytical Problems 1. (1.5 points) A. Convert to decimal, compare, and arrange in ascending order the following numbers encoded using various binary

More information

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A SET - 1 Note: Question Paper consists of two parts (Part-A and Part-B) Answer ALL the question in Part-A Answer any THREE Questions from Part-B a) What are the characteristics of 2 s complement numbers?

More information

A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY

A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY Ms. Chaitali V. Matey 1, Ms. Shraddha K. Mendhe 2, Mr. Sandip A.

More information

FPGA Hardware Resource Specific Optimal Design for FIR Filters

FPGA Hardware Resource Specific Optimal Design for FIR Filters International Journal of Computer Engineering and Information Technology VOL. 8, NO. 11, November 2016, 203 207 Available online at: www.ijceit.org E-ISSN 2412-8856 (Online) FPGA Hardware Resource Specific

More information

Power Optimization by Using Multi-Bit Flip-Flops

Power Optimization by Using Multi-Bit Flip-Flops Volume-4, Issue-5, October-2014, ISSN No.: 2250-0758 International Journal of Engineering and Management Research Page Number: 194-198 Power Optimization by Using Multi-Bit Flip-Flops D. Hazinayab 1, K.

More information

A High- Speed LFSR Design by the Application of Sample Period Reduction Technique for BCH Encoder

A High- Speed LFSR Design by the Application of Sample Period Reduction Technique for BCH Encoder IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 239 42, ISBN No. : 239 497 Volume, Issue 5 (Jan. - Feb 23), PP 7-24 A High- Speed LFSR Design by the Application of Sample Period Reduction

More information

March 13, :36 vra80334_appe Sheet number 1 Page number 893 black. appendix. Commercial Devices

March 13, :36 vra80334_appe Sheet number 1 Page number 893 black. appendix. Commercial Devices March 13, 2007 14:36 vra80334_appe Sheet number 1 Page number 893 black appendix E Commercial Devices In Chapter 3 we described the three main types of programmable logic devices (PLDs): simple PLDs, complex

More information

COPY RIGHT. To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code

COPY RIGHT. To Secure Your Paper As Per UGC Guidelines We Are Providing A Electronic Bar Code COPY RIGHT 2018IJIEMR.Personal use of this material is permitted. Permission from IJIEMR must be obtained for all other uses, in any current or future media, including reprinting/republishing this material

More information

Area-efficient high-throughput parallel scramblers using generalized algorithms

Area-efficient high-throughput parallel scramblers using generalized algorithms LETTER IEICE Electronics Express, Vol.10, No.23, 1 9 Area-efficient high-throughput parallel scramblers using generalized algorithms Yun-Ching Tang 1, 2, JianWei Chen 1, and Hongchin Lin 1a) 1 Department

More information

Modified Reconfigurable Fir Filter Design Using Look up Table

Modified Reconfigurable Fir Filter Design Using Look up Table Modified Reconfigurable Fir Filter Design Using Look up Table R. Dhayabarani, Assistant Professor. M. Poovitha, PG scholar, V.S.B Engineering College, Karur, Tamil Nadu. Abstract - Memory based structures

More information

CHAPTER 6 ASYNCHRONOUS QUASI DELAY INSENSITIVE TEMPLATES (QDI) BASED VITERBI DECODER

CHAPTER 6 ASYNCHRONOUS QUASI DELAY INSENSITIVE TEMPLATES (QDI) BASED VITERBI DECODER 80 CHAPTER 6 ASYNCHRONOUS QUASI DELAY INSENSITIVE TEMPLATES (QDI) BASED VITERBI DECODER 6.1 INTRODUCTION Asynchronous designs are increasingly used to counter the disadvantages of synchronous designs.

More information