Welcome Back to Fundamentals of Multimedia (MR412) Fall, ZHU Yongxin, Winson

Size: px
Start display at page:

Download "Welcome Back to Fundamentals of Multimedia (MR412) Fall, ZHU Yongxin, Winson"

Transcription

1 Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 ZHU Yongxin, Winson

2 Shanghai Jiao Tong University Chapter 5 Fundamental Concepts in Video 5.1 Types of Video Signals 5.2 Analog Video 5.3 Digital Video 5.4 Further Exploration

3 Shanghai Jiao Tong 5.1 UniversityTypes of Video Signals Component video Component video: Higher-end video systems make use of three separate video signals for the red, green, and blue image planes. Each color channel is sent as a separate video signal. (a) Most computer systems use Component Video, with separate signals for R, G, and B signals. (b) For any color separation scheme, Component Video gives the best color reproduction since there is no " crosstalk between the three channels. (c) This is not the case for S-Video or Composite Video, discussed next. Component video, however, requires more bandwidth and good synchronization of the three components.

4 Shanghai Jiao Tong Composite University Video - 1 Signal Composite video: color ("chrominance") and intensity ("luminance") signals are mixed into a single carrier wave. a) Chrominance is a composition of two color components (I and Q, or U and V). b) In NTSC TV, e.g., I and Q are combined into a chroma signal, and a color subcarrier is then employed to put the chroma signal at the high-frequency end of the signal shared with the luminance signal. c) The chrominance and luminance components can be separated at the receiver end and then the two color components can be further recovered. d) When connecting to TVs or VCRs, Composite Video uses only one wire and video color signals are mixed, not sent separately. The audio and sync signals are additions to this one signal.

5 Shanghai Jiao Tong Composite University Video - 1 Signal Since color and intensity are wrapped into the same signal, some interference between the luminance and chrominance signals is inevitable.

6 Shanghai Jiao Tong UniversityS-Video - 2 Signals S-Video: as a compromise, (Separated video, or Supervideo, e.g., in S-VHS) uses two wires, one for luminance and another for a composite chrominance signal As a result, there is less crosstalk between the color information and the crucial gray-scale information. 4 pin S-Video female 4 pin S-Video male Source: yesky.com Pin Name Definition 1 GND Y GND 2 GND C GND 3 Y Luminance 4 C color

7 Shanghai Jiao Tong UniversityS-Video - 2 Signals The reason for placing luminance into its own part of the signal is that black-and-white information is most crucial for visual perception. In fact, humans are able to differentiate spatial resolution in grayscale images with a much higher acuity than for the color part of color images. As a result, we can send less accurate color information than must be sent for intensity information we can only see fairly large blobs of color, so it makes sense to send less color detail. Source:

8 Shanghai Jiao Tong University Quality vs. Transmission Distance? RGB: best quality, around 3-15m S-video: close to the optimal quality, around 15-30m, possibly over 60m Composite video: acceptable quality, more than 30m, possibly over 500m

9 Shanghai Jiao Tong University 5.2 Analog Video An analog signal f(t) samples a time-varying image. So called " progressive" scanning traces through a complete picture (a frame) row-wise for each time interval. In TV, and in some monitors and multimedia standards as well, another system, called " interlaced" scanning is used: a) The odd-numbered lines are traced first, and then the even-numbered lines are traced. This results in "odd" and "even" fields - two fields make up one frame. b) In fact, the odd lines (starting from 1) end up at the middle of a line at the end of the odd field, and the even scan starts at a half-way point.

10 Shanghai Jiao Tong University " interlaced" scanning Fig. 5.1: Interlaced raster scan c) Figure 5.1 shows the scheme used. First the solid (odd) lines are traced, P to Q, then R to S, etc., ending at T; then the even field starts at U and ends at V. d) The jump from Q to R, etc. in Figure 5.1 is called the horizontal retrace, during which the electronic beam in the CRT is blanked. The jump from T to U or V to P is called the vertical retrace.

11 Shanghai " Jiao Tong interlaced" University scanning (cont d) Because of interlacing, the odd and even lines are displaced in time from each other - generally not noticeable except when very fast action is taking place on screen, when blurring may occur. For example, in the video in Fig. 5.2, the moving helicopter is blurred more than is the still background.

12 Shanghai " Jiao Tong interlaced" University scanning (cont d) Fig. 5.2: Interlaced scan produces two fields for each frame. (a) The video frame, (b) Field 1, (c) Field 2, (d) Difference of Fields

13 Shanghai Jiao Tong University De-interlace Since it is sometimes necessary to change the frame rate, resize, or even produce stills from an interlaced source video, various schemes are used to "de-interlace" it. a) The simplest de-interlacing method consists of discarding one field and duplicating the scan lines of the other field. The information in one field is lost completely using this simple technique. b) Other more complicated methods that retain information from both fields are also possible. Analog video use a small voltage offset from zero to indicate "black", and another value such as zero to indicate the start of a line. For example, we could use a "blacker-than-black" zero signal to indicate the beginning of a line.

14 Shanghai Jiao Tong University NTSC scan line Fig. 5.3 Electronic signal for one NTSC scan line.

15 Shanghai Jiao Tong University NTSC Video NTSC (National Television System Committee) TV standard is mostly used in North America and Japan. It uses the familiar 4:3 aspect ratio (i.e., the ratio of picture width to its height) and uses 525 scan lines per frame at 30 frames per second (fps). a) NTSC follows the interlaced scanning system, and each frame is divided into two fields, with lines/field. b) Thus the horizontal sweep frequency is ,734 lines/sec, so that each line is swept out in 1/( )usec 63.6usec. c) Since the horizontal retrace takes 10.9 μsec, this leaves 52.7 μsec for the active line signal during which image data is displayed (see Fig.5.3).

16 Shanghai Jiao Tong University NTSC Video raster Fig. 5.4 shows the effect of " vertical retrace & sync" and " horizontal retrace & sync" on the NTSC video raster. Fig. 5.4: Video raster, including retrace and sync data.

17 Shanghai Jiao Tong NTSC University Video raster (cont d) a) Vertical retrace takes place during 20 lines reserved for control information at the beginning of each field. Hence, the number of active video lines per frame is only 485. b) Similarly, almost 1/6 of the raster at the left side is blanked for horizontal retrace and sync. The non-blanking pixels are called active pixels. c) Since the horizontal retrace takes 10.9 μsec, this leaves 52.7 μsec for the active line signal during which image data is displayed (see Fig.5.3). d) It is known that pixels often fall in-between the scan lines. Therefore, even with non-interlaced scan, NTSC TV is only capable of showing about 340 (visually distinct) lines, i.e., about 70% of the 485 specified active lines. With interlaced scan, this could be as low as 50%.

18 Shanghai Jiao Tong UniversityNTSC Video (cont d) NTSC video is an analog signal with no fixed horizontal resolution. Therefore one must decide how many times to sample the signal for display: each sample corresponds to one pixel output. A " pixel clock" is used to divide each horizontal line of video into samples. The higher the frequency of the pixel clock, the more samples per line there are. Different video formats provide different numbers of samples per line, as listed in Table 5.1. Table 5.1: Samples per line for various video formats

19 Shanghai Color Jiao Tong University Model and Modulation of NTSC NTSC uses the YIQ color model, and the technique of quadrature modulation is employed to combine (the spectrally overlapped part of) I (in-phase) and Q (quadrature) signals into a single chroma signal C: C = I cos(f sc t) + Qsin(F sc t) (5.1) This modulated chroma signal is also known as the color subcarrier, whose magnitude is, and phase is tan 1 (Q/I). The frequency of C is F sc 3.58 MHz. The NTSC composite signal is a further composition of the luminance signal Y and the chroma signal as dened below: composite = Y +C = Y +I cos(f sc t) + Qsin(F sc t) (5.2)

20 Shanghai Jiao Tong University NTSC spectrum Fig. 5.5: NTSC assigns a bandwidth of 4.2 MHz to Y, and only 1.6 MHz to I and 0.6 MHz to Q due to humans insensitivity to color details (high frequency color changes). Fig. 5.5: Interleaving Y and C signals in the NTSC spectrum.

21 Shanghai Jiao Tong University Decoding NTSC Signals The first step in decoding the composite signal at the receiver side is the separation of Y and C. After the separation of Y using a low-pass filter, the chroma signal C can be demodulated to extract the components I and Q separately. To extract I: 1. Multiply the signal C by 2 cos(f sc t), i.e., C 2cos(F sc t) = I 2cos 2 (F sc t)+q 2sin(F sc t) cos(f sc t) = I (1+cos(2F sc t))+q 2sin(F sc t) cos(f sc t) = I +I cos(2f sc t)+q sin(2f sc t). 2. Apply a low-pass filter to obtain I and discard the two higher frequency (2F sc ) terms.

22 Shanghai Jiao Tong University Decoding NTSC Signals Similarly, Q can be extracted by first multiplying C by 2 sin(f sc t) and then low-pass filtering: C 2sin(F sc t) = I 2sin(F sc t)cos(f sc t)+q 2sin 2 (F sc t) = I sin(2f sc t))+q (1- cos(2f sc t)) = Q +I sin(2f sc t) - Q cos(2f sc t).

23 Shanghai Decoding Jiao Tong University NTSC Signals (cont d) The NTSC bandwidth of 6 MHz is tight. Its audio subcarrier frequency is 4.5 MHz. The Picture carrier is at 1.25 MHz, which places the center of the audio band at = 5.75 MHz in the channel (Fig. 5.5). But notice that the color is placed at = 4.83 MHz. So the audio is a bit too close to the color subcarrier - a cause for potential interference between the audio and color signals. It was largely due to this reason that the NTSC color TV actually slowed down its frame rate to 30 1,000 / 1, fps. As a result, the adopted NTSC color subcarrier frequency is slightly lowered to f sc = 30 1, 000/1, : MHz; where is the number of color samples per scan line in NTSC broadcast TV.

24 Shanghai Jiao Tong University PAL Video PAL (Phase Alternating Line) is a TV standard widely used in Western Europe, China, India, and many other parts of the world. PAL uses 625 scan lines per frame, at 25 frames/second, with a 4:3 aspect ratio and interlaced fields. (a) PAL uses the YUV color model. It uses an 8 MHz channel and allocates a bandwidth of 5.5 MHz to Y, and 1.8 MHz each to U and V. The color subcarrier frequency is f sc 4.43 MHz. (b) In order to improve picture quality, chroma signals have alternate signs (e.g., +U and -U) in successive scan lines, hence the name "Phase Alternating Line". (c) This facilitates the use of a (line rate) comb filter at the receiver - the signals in consecutive lines are averaged so as to cancel the chroma signals (that always carry opposite signs) for separating Y and C and obtaining high quality Y signals.

25 Shanghai Jiao Tong University SECAM Video SECAM stands for Système Electronique Couleur Avec Mémoire, the third major broadcast TV standard. SECAM also uses 625 scan lines per frame, at 25 frames per second, with a 4:3 aspect ratio and interlaced fields. SECAM and PAL are very similar. They differ slightly in their color coding scheme: (a) In SECAM, U and V signals are modulated using separate color subcarriers at 4.25 MHz and 4.41 MHz respectively. (b) They are sent in alternate lines, i.e., only one of the U or V signals will be sent on each scan line.

26 Shanghai Jiao Tong University Comparison Table 5.2 gives a comparison of the three major analog broadcast TV systems. Table 5.2: Comparison of Analog Broadcast TV Systems

27 Shanghai Jiao Tong University 5.3 Digital Video The advantages of digital representation for video are many. For example: (a) Video can be stored on digital devices or in memory, ready to be processed (noise removal, cut and paste, etc.), and integrated to various multimedia applications; (b) Direct access is possible, which makes nonlinear video editing achievable as a simple, rather than a complex, task; (c) Repeated recording does not degrade image quality; (d) Ease of encryption and better tolerance to channel noise.

28 Shanghai Jiao Tong University Chroma Subsampling Since humans see color with much less spatial resolution than they see black and white, it makes sense to " decimate" the chrominance signal. Interesting (but not necessarily informative!) names have arisen to label the different schemes used. To begin with, numbers are given stating how many pixel values, per four original pixels, are actually sent: (a) The chroma subsampling scheme " 4:4:4" indicates that no chroma subsampling is used: each pixel's Y, Cb and Cr values are transmitted, 4 for each of Y, Cb, Cr.

29 Shanghai Jiao Chroma Tong University Subsampling (cont d) (b) The scheme " 4:2:2" indicates horizontal subsampling of the Cb, Cr signals by a factor of 2. That is, of four pixels horizontally labelled as 0 to 3, all four Ys are sent, and every two Cb's and two Cr's are sent, as (Cb0, Y0)(Cr0, Y1)(Cb2, Y2)(Cr2, Y3)(Cb4, Y4), and so on (or averaging is used). (c) The scheme " 4:1:1" subsamples horizontally by a factor of 4. (d) The scheme " 4:2:0" subsamples in both the horizontal and vertical dimensions by a factor of 2. Theoretically, an average chroma pixel is positioned between the rows and columns as shown Fig.5.6. Scheme 4:2:0 along with other schemes is commonly used in JPEG and MPEG (see later chapters in Part 2).

30 Shanghai Jiao Tong University Chroma subsampling Fig. 5.6: Chroma subsampling.

31 Shanghai CCIR Jiao Tong University Standards for Digital Video CCIR is the Consultative Committee for International Radio, and one of the most important standards it has produced is CCIR-601, for component digital video. This standard has since become standard ITU-R-601, an international standard for professional video applications - adopted by certain digital video formats including the popular DV video. Table 5.3 shows some of the digital video specifications, all with an aspect ratio of 4:3. The CCIR 601 standard uses an interlaced scan, so each field has only half as much vertical resolution (e.g., 240 lines in NTSC). 525 * 858 * 30 * 2 *8 = 216Mbps

32 Shanghai Jiao Tong University CIF CIF stands for Common Intermediate Format specified by the CCITT. (a) The idea of CIF is to specify a format for lower bitrate. (b) CIF is about the same as VHS quality. It uses a progressive (non-interlaced) scan. (c) QCIF stands for Quarter-CIF". All the CIF/QCIF resolutions are evenly divisible by 8, and all except 88 are divisible by 16; this provides convenience for block-based video coding in H.261 and H.263, discussed later in Chapter 10. (d) Note, CIF is a compromise of NTSC and PAL in that it adopts the `NTSC frame rate and half of the number of active lines as in PAL.

33 Shanghai Jiao Tong Digital University video specifications Table 5.3: Digital video specifications

34 Shanghai Jiao Tong HDTV University (High Definition TV) The main thrust of HDTV (High Definition TV) is not to increase the " definition" in each unit area, but rather to increase the visual field especially in its width. (a) The first generation of HDTV was based on an analog technology developed by Sony and NHK in Japan in the late 1970s. (b) MUSE (MUltiple sub-nyquist Sampling Encoding) was an improved NHK HDTV with hybrid analog/digital technologies that was put in use in the 1990s. It has 1,125 scan lines, interlaced (60 fields per second), and 16:9 aspect ratio. (c) Since uncompressed HDTV will easily demand more than 20 MHz bandwidth, which will not t in the current 6 MHz or 8 MHz channels, various compression techniques are being investigated. (d) It is also anticipated that high quality HDTV signals will be transmitted using more than one channel even after compression.

35 Shanghai Jiao Tong history University of HDTV evolution A brief history of HDTV evolution: (a) In 1987, the FCC decided that HDTV standards must be compatible with the existing NTSC standard and be conned to the existing VHF (Very High Frequency) and UHF (Ultra High Frequency) bands. (b) In 1990, the FCC announced a very different initiative, i.e., its preference for a full-resolution HDTV, and it was decided that HDTV would be simultaneously broadcast with the existing NTSC TV and eventually replace it. (c) Witnessing a boom of proposals for digital HDTV, the FCC made a key decision to go all-digital in A "grand alliance" was formed that included four main proposals, by General Instruments, MIT, Zenith, and AT&T, and by Thomson, Philips, Sarno and others. (d) This eventually led to the formation of the ATSC (Advanced Television Systems Committee) - responsible for the standard for TV broadcasting of HDTV. (e) In 1995 the U.S. FCC Advisory Committee on Advanced Television Service recommended that the ATSC Digital Television Standard be adopted.

36 Shanghai Jiao Tong University ASTC Formats The standard supports video scanning formats shown in Table 5.4. In the table, " I" mean interlaced scan and "P" means progressive (non-interlaced) scan. Table 5.4: Advanced Digital TV formats supported by ATSC

37 Shanghai Jiao Tong University TV vs HDTV For video, MPEG-2 is chosen as the compression standard. For audio, AC-3 is the standard. It supports the so-called 5.1 channel Dolby surround sound, i.e., five surround channels plus a subwoofer channel. The salient difference between conventional TV and HDTV: (a) HDTV has a much wider aspect ratio of 16:9 instead of 4:3. (b) HDTV moves toward progressive (non-interlaced) scan. The rationale is that interlacing introduces serrated edges to moving objects and flickers along horizontal edges.

38 Shanghai Jiao Tong University Digital TV Broadcasting The FCC has planned to replace all analog broadcast services with digital TV broadcasting by the year The services provided will include: SDTV (Standard Definition TV): the current NTSC TV or higher. EDTV (Enhanced Definition TV): 480 active lines or higher, i.e., the third and fourth rows in Table 5.4. HDTV (High Definition TV): 720 active lines or higher.

39 Shanghai Jiao Tong University 5.4 Further Exploration Links given for this Chapter on the text website include: Tutorials on NTSC television The official ATSC home page The latest news on the digital TV front Introduction to HDTV The official FCC (Federal Communications Commission) home page

40 Shanghai Jiao Tong University MPEG-4 AVC/H.264 IPR issue 1991:MPEG-1 No IP charge 1994:MPEG , MPEG LA Patent Pool start, one stop shop Before 2002, 4 US$/device After 2002, 2.5 US$/device 1996:MPEG LA Inc. no relationship with MPEG 1999:MPEG-4 (Part 2) Complex, Charge to device, content (per title), usage (per year) AOL-Times Warner against 2003:H.264/MPEG-4 AVC (Part 10) licensing term announced EBU against(2003 第 96 号声明 ) licensing term fixed

41 MPEG4 AVC licensing term for content and usage Categories MPEGLA Via Total Title-by-title Less than 12 minutes minutes minutes More than 90 minutes $0.00 2% or $0.02 2% or $0.02 2% or $0.02 $0.005 $0.005 $0.015 $0.025 $ % or $ % or $ % or $0.045 Subscriber/year 0 10,000 10, , , , ,000 1,000,000 More than 1,000,000 0 $25,000 $50,000 $75,000 $100,000-0 $25,000 $50,000 $75,000 $100,000 Free to Air Broadcasting Viewers/year 100, , ,000 1,000,000 More than 1,000,000 $2,500 $5,000 $10,000 - $2,500 $5,000 $10,000

42 Shanghai Jiao Tong University MPEG4 AVC licensing term for device Unit/Year MPEGLA Via Total 0 50,000 $0.00 $0.00 $ , ,000 $0.00 $0.25 $ ,000-5,000,000 $0.20 $0.25 $0.45 5,000,000 20,000,000 $0.10 $0.25 (Reach the CAP at 10M or 16M) $0.35 More than 20,000,000 $0.10 (Reach the CAP at 30M, 37.5M or 45M) - $0.10

43 Differences between AVS, H.264, and MPEG-2 Shanghai Jiao Tong University tools AVS H.264 MPEG-2 ¼ pixel MC ½ pixels 4-tap ½ pixels 6-tap ½ pixels 2-tap ¼ pixels 4-tap ¼ pixels 2-tap Transform and quantization 8x8 integer transform, encoding site normalization only 4x4 integer transform, both encoding and decoding sites need to normalize 8x8 float DCT Entropy coding Adaptive 2D VLC CAVLC CABAC VLC Loop filter 8x8 based Less boundaries Less BS-levels (0..2), Less pixels filtered (p0, p1,q0, q1) 4x4 based More boundaries More BS-levels (0..4), More pixels filtered (p0..p3,q0..q3) N/A

44 Shanghai Jiao Tong University Cost efficiency Compression ratio 250 AVS-?/MPEG-? MPEG-2 AVS-1 MPEG-4 AVC MPEG Complexity

45 Shanghai Jiao Tong University Cost efficiency analysis Tools Estimated cost increase AVS H.264 Multiple reference 1 2 Variable block-size MC 1 2 Quarter pixel 3 3 Entropy coding Deblock filter Total 6 9

5.1 Types of Video Signals. Chapter 5 Fundamental Concepts in Video. Component video

5.1 Types of Video Signals. Chapter 5 Fundamental Concepts in Video. Component video Chapter 5 Fundamental Concepts in Video 5.1 Types of Video Signals 5.2 Analog Video 5.3 Digital Video 5.4 Further Exploration 1 Li & Drew c Prentice Hall 2003 5.1 Types of Video Signals Component video

More information

Multimedia. Course Code (Fall 2017) Fundamental Concepts in Video

Multimedia. Course Code (Fall 2017) Fundamental Concepts in Video Course Code 005636 (Fall 2017) Multimedia Fundamental Concepts in Video Prof. S. M. Riazul Islam, Dept. of Computer Engineering, Sejong University, Korea E-mail: riaz@sejong.ac.kr Outline Types of Video

More information

Chapter 3 Fundamental Concepts in Video. 3.1 Types of Video Signals 3.2 Analog Video 3.3 Digital Video

Chapter 3 Fundamental Concepts in Video. 3.1 Types of Video Signals 3.2 Analog Video 3.3 Digital Video Chapter 3 Fundamental Concepts in Video 3.1 Types of Video Signals 3.2 Analog Video 3.3 Digital Video 1 3.1 TYPES OF VIDEO SIGNALS 2 Types of Video Signals Video standards for managing analog output: A.

More information

To discuss. Types of video signals Analog Video Digital Video. Multimedia Computing (CSIT 410) 2

To discuss. Types of video signals Analog Video Digital Video. Multimedia Computing (CSIT 410) 2 Video Lecture-5 To discuss Types of video signals Analog Video Digital Video (CSIT 410) 2 Types of Video Signals Video Signals can be classified as 1. Composite Video 2. S-Video 3. Component Video (CSIT

More information

Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri April 2011 Sharif University of Technology

Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri April 2011 Sharif University of Technology Course Presentation Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri April 2011 Sharif University of Technology Video Visual Effect of Motion The visual effect of motion is due

More information

Television History. Date / Place E. Nemer - 1

Television History. Date / Place E. Nemer - 1 Television History Television to see from a distance Earlier Selenium photosensitive cells were used for converting light from pictures into electrical signals Real breakthrough invention of CRT AT&T Bell

More information

Mahdi Amiri. April Sharif University of Technology

Mahdi Amiri. April Sharif University of Technology Course Presentation Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri April 2014 Sharif University of Technology Video Visual Effect of Motion The visual effect of motion is due

More information

Intro. To Multimedia Engineering Slide 4 - Fundamental Concepts of Video

Intro. To Multimedia Engineering Slide 4 - Fundamental Concepts of Video Intro. To Multimedia Engineering Slide 4 - Fundamental Concepts of Video Kyoungro Yoon yoonk@konkuk.ac.kr 1/31 Contents Analog Video Digital Video Types of Video Interfaces 3D TV Mainly From Chapter 5

More information

VIDEO Muhammad AminulAkbar

VIDEO Muhammad AminulAkbar VIDEO Muhammad Aminul Akbar Analog Video Analog Video Up until last decade, most TV programs were sent and received as an analog signal Progressive scanning traces through a complete picture (a frame)

More information

So far. Chapter 4 Color spaces Chapter 3 image representations. Bitmap grayscale. 1/21/09 CSE 40373/60373: Multimedia Systems

So far. Chapter 4 Color spaces Chapter 3 image representations. Bitmap grayscale. 1/21/09 CSE 40373/60373: Multimedia Systems So far. Chapter 4 Color spaces Chapter 3 image representations Bitmap grayscale page 1 8-bit color image Can show up to 256 colors Use color lookup table to map 256 of the 24-bit color (rather than choosing

More information

An Overview of Video Coding Algorithms

An Overview of Video Coding Algorithms An Overview of Video Coding Algorithms Prof. Ja-Ling Wu Department of Computer Science and Information Engineering National Taiwan University Video coding can be viewed as image compression with a temporal

More information

Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri November 2015 Sharif University of Technology

Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri November 2015 Sharif University of Technology Course Presentation Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri November 2015 Sharif University of Technology Video Visual Effect of Motion The visual effect of motion is

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks Video Basics Jianping Pan Spring 2017 3/10/17 csc466/579 1 Video is a sequence of images Recorded/displayed at a certain rate Types of video signals component video separate

More information

Multimedia Systems. Part 13. Mahdi Vasighi

Multimedia Systems. Part 13. Mahdi Vasighi Multimedia Systems Part 13 Mahdi Vasighi www.iasbs.ac.ir/~vasighi Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran o Analog TV uses

More information

1. Broadcast television

1. Broadcast television VIDEO REPRESNTATION 1. Broadcast television A color picture/image is produced from three primary colors red, green and blue (RGB). The screen of the picture tube is coated with a set of three different

More information

Ch. 1: Audio/Image/Video Fundamentals Multimedia Systems. School of Electrical Engineering and Computer Science Oregon State University

Ch. 1: Audio/Image/Video Fundamentals Multimedia Systems. School of Electrical Engineering and Computer Science Oregon State University Ch. 1: Audio/Image/Video Fundamentals Multimedia Systems Prof. Ben Lee School of Electrical Engineering and Computer Science Oregon State University Outline Computer Representation of Audio Quantization

More information

Midterm Review. Yao Wang Polytechnic University, Brooklyn, NY11201

Midterm Review. Yao Wang Polytechnic University, Brooklyn, NY11201 Midterm Review Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Yao Wang, 2003 EE4414: Midterm Review 2 Analog Video Representation (Raster) What is a video raster? A video is represented

More information

MULTIMEDIA TECHNOLOGIES

MULTIMEDIA TECHNOLOGIES MULTIMEDIA TECHNOLOGIES LECTURE 08 VIDEO IMRAN IHSAN ASSISTANT PROFESSOR VIDEO Video streams are made up of a series of still images (frames) played one after another at high speed This fools the eye into

More information

Audio and Video II. Video signal +Color systems Motion estimation Video compression standards +H.261 +MPEG-1, MPEG-2, MPEG-4, MPEG- 7, and MPEG-21

Audio and Video II. Video signal +Color systems Motion estimation Video compression standards +H.261 +MPEG-1, MPEG-2, MPEG-4, MPEG- 7, and MPEG-21 Audio and Video II Video signal +Color systems Motion estimation Video compression standards +H.261 +MPEG-1, MPEG-2, MPEG-4, MPEG- 7, and MPEG-21 1 Video signal Video camera scans the image by following

More information

10 Digital TV Introduction Subsampling

10 Digital TV Introduction Subsampling 10 Digital TV 10.1 Introduction Composite video signals must be sampled at twice the highest frequency of the signal. To standardize this sampling, the ITU CCIR-601 (often known as ITU-R) has been devised.

More information

Video Compression Basics. Nimrod Peleg Update: Dec. 2003

Video Compression Basics. Nimrod Peleg Update: Dec. 2003 Video Compression Basics Nimrod Peleg Update: Dec. 2003 Video Compression: list of topics Analog and Digital Video Concepts Block-Based Motion Estimation Resolution Conversion H.261: A Standard for VideoConferencing

More information

Lecture 2 Video Formation and Representation

Lecture 2 Video Formation and Representation 2013 Spring Term 1 Lecture 2 Video Formation and Representation Wen-Hsiao Peng ( 彭文孝 ) Multimedia Architecture and Processing Lab (MAPL) Department of Computer Science National Chiao Tung University 1

More information

Tutorial on the Grand Alliance HDTV System

Tutorial on the Grand Alliance HDTV System Tutorial on the Grand Alliance HDTV System FCC Field Operations Bureau July 27, 1994 Robert Hopkins ATSC 27 July 1994 1 Tutorial on the Grand Alliance HDTV System Background on USA HDTV Why there is a

More information

Motion Video Compression

Motion Video Compression 7 Motion Video Compression 7.1 Motion video Motion video contains massive amounts of redundant information. This is because each image has redundant information and also because there are very few changes

More information

Analog and Digital Video Basics

Analog and Digital Video Basics Analog and Digital Video Basics Nimrod Peleg Update: May. 2006 1 Video Compression: list of topics Analog and Digital Video Concepts Block-Based Motion Estimation Resolution Conversion H.261: A Standard

More information

Module 1: Digital Video Signal Processing Lecture 5: Color coordinates and chromonance subsampling. The Lecture Contains:

Module 1: Digital Video Signal Processing Lecture 5: Color coordinates and chromonance subsampling. The Lecture Contains: The Lecture Contains: ITU-R BT.601 Digital Video Standard Chrominance (Chroma) Subsampling Video Quality Measures file:///d /...rse%20(ganesh%20rana)/my%20course_ganesh%20rana/prof.%20sumana%20gupta/final%20dvsp/lecture5/5_1.htm[12/30/2015

More information

Digital Media. Daniel Fuller ITEC 2110

Digital Media. Daniel Fuller ITEC 2110 Digital Media Daniel Fuller ITEC 2110 Daily Question: Video In a video file made up of 480 frames, how long will it be when played back at 24 frames per second? Email answer to DFullerDailyQuestion@gmail.com

More information

Analog and Digital Video Basics. Nimrod Peleg Update: May. 2006

Analog and Digital Video Basics. Nimrod Peleg Update: May. 2006 Analog and Digital Video Basics Nimrod Peleg Update: May. 2006 1 Video Compression: list of topics Analog and Digital Video Concepts Block-Based Motion Estimation Resolution Conversion H.261: A Standard

More information

Analog TV Systems: Monochrome TV. Yao Wang Polytechnic University, Brooklyn, NY11201

Analog TV Systems: Monochrome TV. Yao Wang Polytechnic University, Brooklyn, NY11201 Analog TV Systems: Monochrome TV Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Outline Overview of TV systems development Video representation by raster scan: Human vision system

More information

Video Compression. Representations. Multimedia Systems and Applications. Analog Video Representations. Digitizing. Digital Video Block Structure

Video Compression. Representations. Multimedia Systems and Applications. Analog Video Representations. Digitizing. Digital Video Block Structure Representations Multimedia Systems and Applications Video Compression Composite NTSC - 6MHz (4.2MHz video), 29.97 frames/second PAL - 6-8MHz (4.2-6MHz video), 50 frames/second Component Separation video

More information

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur Module 8 VIDEO CODING STANDARDS Lesson 27 H.264 standard Lesson Objectives At the end of this lesson, the students should be able to: 1. State the broad objectives of the H.264 standard. 2. List the improved

More information

Presented by: Amany Mohamed Yara Naguib May Mohamed Sara Mahmoud Maha Ali. Supervised by: Dr.Mohamed Abd El Ghany

Presented by: Amany Mohamed Yara Naguib May Mohamed Sara Mahmoud Maha Ali. Supervised by: Dr.Mohamed Abd El Ghany Presented by: Amany Mohamed Yara Naguib May Mohamed Sara Mahmoud Maha Ali Supervised by: Dr.Mohamed Abd El Ghany Analogue Terrestrial TV. No satellite Transmission Digital Satellite TV. Uses satellite

More information

Chapter 6 & Chapter 7 Digital Video CS3570

Chapter 6 & Chapter 7 Digital Video CS3570 Chapter 6 & Chapter 7 Digital Video CS3570 Video, Film, and Television Compared Movie : a story told with moving images and sound The word motion picture and movie are the same thing The word film seems

More information

NAPIER. University School of Engineering. Advanced Communication Systems Module: SE Television Broadcast Signal.

NAPIER. University School of Engineering. Advanced Communication Systems Module: SE Television Broadcast Signal. NAPIER. University School of Engineering Television Broadcast Signal. luminance colour channel channel distance sound signal By Klaus Jørgensen Napier No. 04007824 Teacher Ian Mackenzie Abstract Klaus

More information

Video 1 Video October 16, 2001

Video 1 Video October 16, 2001 Video Video October 6, Video Event-based programs read() is blocking server only works with single socket audio, network input need I/O multiplexing event-based programming also need to handle time-outs,

More information

ADVANCED TELEVISION SYSTEMS. Robert Hopkins United States Advanced Television Systems Committee

ADVANCED TELEVISION SYSTEMS. Robert Hopkins United States Advanced Television Systems Committee DVNCED TELEVISION SYSTEMS Robert Hopkins United States dvanced Television Systems Committee STRCT This paper was first presented as a tutorial to engineers at the Federal Communications Commission (FCC)

More information

Video coding standards

Video coding standards Video coding standards Video signals represent sequences of images or frames which can be transmitted with a rate from 5 to 60 frames per second (fps), that provides the illusion of motion in the displayed

More information

Video. Philco H3407C (circa 1958)

Video. Philco H3407C (circa 1958) Video Philco H3407C (circa 1958) Never before have I witnessed compressed into a single device so much ingenuity, so much brain power, so much development, and such phenomenal results David Sarnoff Topics

More information

CMPT 365 Multimedia Systems. Mid-Term Review

CMPT 365 Multimedia Systems. Mid-Term Review CMPT 365 Multimedia Systems Mid-Term Review Xiaochuan Chen Spring 2017 CMPT365 Multimedia Systems 1 Adminstrative Mid-Term: Feb 22th, In Class, 50mins Still have a course on Monday Feb 20 th!!! Pick up

More information

COPYRIGHTED MATERIAL. Introduction to Analog and Digital Television. Chapter INTRODUCTION 1.2. ANALOG TELEVISION

COPYRIGHTED MATERIAL. Introduction to Analog and Digital Television. Chapter INTRODUCTION 1.2. ANALOG TELEVISION Chapter 1 Introduction to Analog and Digital Television 1.1. INTRODUCTION From small beginnings less than 100 years ago, the television industry has grown to be a significant part of the lives of most

More information

Chrominance Subsampling in Digital Images

Chrominance Subsampling in Digital Images Chrominance Subsampling in Digital Images Douglas A. Kerr Issue 2 December 3, 2009 ABSTRACT The JPEG and TIFF digital still image formats, along with various digital video formats, have provision for recording

More information

Overview: Video Coding Standards

Overview: Video Coding Standards Overview: Video Coding Standards Video coding standards: applications and common structure ITU-T Rec. H.261 ISO/IEC MPEG-1 ISO/IEC MPEG-2 State-of-the-art: H.264/AVC Video Coding Standards no. 1 Applications

More information

Colour Reproduction Performance of JPEG and JPEG2000 Codecs

Colour Reproduction Performance of JPEG and JPEG2000 Codecs Colour Reproduction Performance of JPEG and JPEG000 Codecs A. Punchihewa, D. G. Bailey, and R. M. Hodgson Institute of Information Sciences & Technology, Massey University, Palmerston North, New Zealand

More information

decodes it along with the normal intensity signal, to determine how to modulate the three colour beams.

decodes it along with the normal intensity signal, to determine how to modulate the three colour beams. Television Television as we know it today has hardly changed much since the 1950 s. Of course there have been improvements in stereo sound and closed captioning and better receivers for example but compared

More information

Lecture 2 Video Formation and Representation

Lecture 2 Video Formation and Representation Wen-Hsiao Peng, Ph.D. Multimedia Architecture and Processing Laboratory (MAPL) Department of Computer Science, National Chiao Tung University March 2013 Wen-Hsiao Peng, Ph.D. (NCTU CS) MAPL March 2013

More information

COMP 249 Advanced Distributed Systems Multimedia Networking. Video Compression Standards

COMP 249 Advanced Distributed Systems Multimedia Networking. Video Compression Standards COMP 9 Advanced Distributed Systems Multimedia Networking Video Compression Standards Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs.unc.edu September,

More information

Rounding Considerations SDTV-HDTV YCbCr Transforms 4:4:4 to 4:2:2 YCbCr Conversion

Rounding Considerations SDTV-HDTV YCbCr Transforms 4:4:4 to 4:2:2 YCbCr Conversion Digital it Video Processing 김태용 Contents Rounding Considerations SDTV-HDTV YCbCr Transforms 4:4:4 to 4:2:2 YCbCr Conversion Display Enhancement Video Mixing and Graphics Overlay Luma and Chroma Keying

More information

Dan Schuster Arusha Technical College March 4, 2010

Dan Schuster Arusha Technical College March 4, 2010 Television Theory Of Operation Dan Schuster Arusha Technical College March 4, 2010 My TV Background 34 years in Automation and Image Electronics MS in Electrical and Computer Engineering Designed Television

More information

H.261: A Standard for VideoConferencing Applications. Nimrod Peleg Update: Nov. 2003

H.261: A Standard for VideoConferencing Applications. Nimrod Peleg Update: Nov. 2003 H.261: A Standard for VideoConferencing Applications Nimrod Peleg Update: Nov. 2003 ITU - Rec. H.261 Target (1990)... A Video compression standard developed to facilitate videoconferencing (and videophone)

More information

Camera Interface Guide

Camera Interface Guide Camera Interface Guide Table of Contents Video Basics... 5-12 Introduction...3 Video formats...3 Standard analog format...3 Blanking intervals...4 Vertical blanking...4 Horizontal blanking...4 Sync Pulses...4

More information

Chapter 10 Basic Video Compression Techniques

Chapter 10 Basic Video Compression Techniques Chapter 10 Basic Video Compression Techniques 10.1 Introduction to Video compression 10.2 Video Compression with Motion Compensation 10.3 Video compression standard H.261 10.4 Video compression standard

More information

A video signal consists of a time sequence of images. Typical frame rates are 24, 25, 30, 50 and 60 images per seconds.

A video signal consists of a time sequence of images. Typical frame rates are 24, 25, 30, 50 and 60 images per seconds. Video coding Concepts and notations. A video signal consists of a time sequence of images. Typical frame rates are 24, 25, 30, 50 and 60 images per seconds. Each image is either sent progressively (the

More information

PAL uncompressed. 768x576 pixels per frame. 31 MB per second 1.85 GB per minute. x 3 bytes per pixel (24 bit colour) x 25 frames per second

PAL uncompressed. 768x576 pixels per frame. 31 MB per second 1.85 GB per minute. x 3 bytes per pixel (24 bit colour) x 25 frames per second 191 192 PAL uncompressed 768x576 pixels per frame x 3 bytes per pixel (24 bit colour) x 25 frames per second 31 MB per second 1.85 GB per minute 191 192 NTSC uncompressed 640x480 pixels per frame x 3 bytes

More information

Video (Fundamentals, Compression Techniques & Standards) Hamid R. Rabiee Mostafa Salehi, Fatemeh Dabiran, Hoda Ayatollahi Spring 2011

Video (Fundamentals, Compression Techniques & Standards) Hamid R. Rabiee Mostafa Salehi, Fatemeh Dabiran, Hoda Ayatollahi Spring 2011 Video (Fundamentals, Compression Techniques & Standards) Hamid R. Rabiee Mostafa Salehi, Fatemeh Dabiran, Hoda Ayatollahi Spring 2011 Outlines Frame Types Color Video Compression Techniques Video Coding

More information

Multimedia Communications. Video compression

Multimedia Communications. Video compression Multimedia Communications Video compression Video compression Of all the different sources of data, video produces the largest amount of data There are some differences in our perception with regard to

More information

The Development of a Synthetic Colour Test Image for Subjective and Objective Quality Assessment of Digital Codecs

The Development of a Synthetic Colour Test Image for Subjective and Objective Quality Assessment of Digital Codecs 2005 Asia-Pacific Conference on Communications, Perth, Western Australia, 3-5 October 2005. The Development of a Synthetic Colour Test Image for Subjective and Objective Quality Assessment of Digital Codecs

More information

Chapter 2 Introduction to

Chapter 2 Introduction to Chapter 2 Introduction to H.264/AVC H.264/AVC [1] is the newest video coding standard of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). The main improvements

More information

Digital Television Fundamentals

Digital Television Fundamentals Digital Television Fundamentals Design and Installation of Video and Audio Systems Michael Robin Michel Pouiin McGraw-Hill New York San Francisco Washington, D.C. Auckland Bogota Caracas Lisbon London

More information

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur Module 8 VIDEO CODING STANDARDS Lesson 24 MPEG-2 Standards Lesson Objectives At the end of this lesson, the students should be able to: 1. State the basic objectives of MPEG-2 standard. 2. Enlist the profiles

More information

Lecture 2 Video Formation and Representation

Lecture 2 Video Formation and Representation Wen-Hsiao Peng, Ph.D Multimedia Architecture and Processing Laboratory (MAPL) Department of Computer Science, National Chiao Tung University February 2008 Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL February 2008

More information

4. ANALOG TV SIGNALS MEASUREMENT

4. ANALOG TV SIGNALS MEASUREMENT Goals of measurement 4. ANALOG TV SIGNALS MEASUREMENT 1) Measure the amplitudes of spectral components in the spectrum of frequency modulated signal of Δf = 50 khz and f mod = 10 khz (relatively to unmodulated

More information

BTV Tuesday 21 November 2006

BTV Tuesday 21 November 2006 Test Review Test from last Thursday. Biggest sellers of converters are HD to composite. All of these monitors in the studio are composite.. Identify the only portion of the vertical blanking interval waveform

More information

RECOMMENDATION ITU-R BT (Questions ITU-R 25/11, ITU-R 60/11 and ITU-R 61/11)

RECOMMENDATION ITU-R BT (Questions ITU-R 25/11, ITU-R 60/11 and ITU-R 61/11) Rec. ITU-R BT.61-4 1 SECTION 11B: DIGITAL TELEVISION RECOMMENDATION ITU-R BT.61-4 Rec. ITU-R BT.61-4 ENCODING PARAMETERS OF DIGITAL TELEVISION FOR STUDIOS (Questions ITU-R 25/11, ITU-R 6/11 and ITU-R 61/11)

More information

Module 1: Digital Video Signal Processing Lecture 3: Characterisation of Video raster, Parameters of Analog TV systems, Signal bandwidth

Module 1: Digital Video Signal Processing Lecture 3: Characterisation of Video raster, Parameters of Analog TV systems, Signal bandwidth The Lecture Contains: Analog Video Raster Interlaced Scan Characterization of a video Raster Analog Color TV systems Signal Bandwidth Digital Video Parameters of a digital video Pixel Aspect Ratio file:///d

More information

Video compression principles. Color Space Conversion. Sub-sampling of Chrominance Information. Video: moving pictures and the terms frame and

Video compression principles. Color Space Conversion. Sub-sampling of Chrominance Information. Video: moving pictures and the terms frame and Video compression principles Video: moving pictures and the terms frame and picture. one approach to compressing a video source is to apply the JPEG algorithm to each frame independently. This approach

More information

Rec. ITU-R BT RECOMMENDATION ITU-R BT * WIDE-SCREEN SIGNALLING FOR BROADCASTING

Rec. ITU-R BT RECOMMENDATION ITU-R BT * WIDE-SCREEN SIGNALLING FOR BROADCASTING Rec. ITU-R BT.111-2 1 RECOMMENDATION ITU-R BT.111-2 * WIDE-SCREEN SIGNALLING FOR BROADCASTING (Signalling for wide-screen and other enhanced television parameters) (Question ITU-R 42/11) Rec. ITU-R BT.111-2

More information

Communication Theory and Engineering

Communication Theory and Engineering Communication Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 Practice work 14 Image signals Example 1 Calculate the aspect ratio for an image

More information

OVE EDFORS ELECTRICAL AND INFORMATION TECHNOLOGY

OVE EDFORS ELECTRICAL AND INFORMATION TECHNOLOGY Information Transmission Chapter 3, image and video OVE EDFORS ELECTRICAL AND INFORMATION TECHNOLOGY Learning outcomes Understanding raster image formats and what determines quality, video formats and

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 25 January 2007 Dr. ir. Aleksandra Pizurica Prof. Dr. Ir. Wilfried Philips Aleksandra.Pizurica @telin.ugent.be Tel: 09/264.3415 UNIVERSITEIT GENT Telecommunicatie en Informatieverwerking

More information

Content storage architectures

Content storage architectures Content storage architectures DAS: Directly Attached Store SAN: Storage Area Network allocates storage resources only to the computer it is attached to network storage provides a common pool of storage

More information

Information Transmission Chapter 3, image and video

Information Transmission Chapter 3, image and video Information Transmission Chapter 3, image and video FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Images An image is a two-dimensional array of light values. Make it 1D by scanning Smallest element

More information

A review of the implementation of HDTV technology over SDTV technology

A review of the implementation of HDTV technology over SDTV technology A review of the implementation of HDTV technology over SDTV technology Chetan lohani Dronacharya College of Engineering Abstract Standard Definition television (SDTV) Standard-Definition Television is

More information

Getting Images of the World

Getting Images of the World Computer Vision for HCI Image Formation Getting Images of the World 3-D Scene Video Camera Frame Grabber Digital Image A/D or Digital Lens Image array Transfer image to memory 2 1 CCD Charged Coupled Device

More information

SHRI SANT GADGE BABA COLLEGE OF ENGINEERING & TECHNOLOGY, BHUSAWAL Department of Electronics & Communication Engineering. UNIT-I * April/May-2009 *

SHRI SANT GADGE BABA COLLEGE OF ENGINEERING & TECHNOLOGY, BHUSAWAL Department of Electronics & Communication Engineering. UNIT-I * April/May-2009 * SHRI SANT GADGE BABA COLLEGE OF ENGINEERING & TECHNOLOGY, BHUSAWAL Department of Electronics & Communication Engineering Subject: Television & Consumer Electronics (TV& CE) -SEM-II UNIVERSITY PAPER QUESTIONS

More information

Digital Media. Daniel Fuller ITEC 2110

Digital Media. Daniel Fuller ITEC 2110 Digital Media Daniel Fuller ITEC 2110 Daily Question: Video How does interlaced scan display video? Email answer to DFullerDailyQuestion@gmail.com Subject Line: ITEC2110-26 Housekeeping Project 4 is assigned

More information

ATSC vs NTSC Spectrum. ATSC 8VSB Data Framing

ATSC vs NTSC Spectrum. ATSC 8VSB Data Framing ATSC vs NTSC Spectrum ATSC 8VSB Data Framing 22 ATSC 8VSB Data Segment ATSC 8VSB Data Field 23 ATSC 8VSB (AM) Modulated Baseband ATSC 8VSB Pre-Filtered Spectrum 24 ATSC 8VSB Nyquist Filtered Spectrum ATSC

More information

Multimedia Communications. Image and Video compression

Multimedia Communications. Image and Video compression Multimedia Communications Image and Video compression JPEG2000 JPEG2000: is based on wavelet decomposition two types of wavelet filters one similar to what discussed in Chapter 14 and the other one generates

More information

Assessing and Measuring VCR Playback Image Quality, Part 1. Leo Backman/DigiOmmel & Co.

Assessing and Measuring VCR Playback Image Quality, Part 1. Leo Backman/DigiOmmel & Co. Assessing and Measuring VCR Playback Image Quality, Part 1. Leo Backman/DigiOmmel & Co. Assessing analog VCR image quality and stability requires dedicated measuring instruments. Still, standard metrics

More information

Errata to the 2nd, 3rd, and 4th printings, A Technical Introduction to Digital Video

Errata to the 2nd, 3rd, and 4th printings, A Technical Introduction to Digital Video Charles Poynton tel +1 416 486 3271 fax +1 416 486 3657 poynton @ poynton.com www.inforamp.net/ ~ poynton Errata to the 2nd, 3rd, and 4th printings, A Technical Introduction to Digital Video This note

More information

A Guide to Standard and High-Definition Digital Video Measurements

A Guide to Standard and High-Definition Digital Video Measurements A Guide to Standard and High-Definition Digital Video Measurements D i g i t a l V i d e o M e a s u r e m e n t s A Guide to Standard and High-Definition Digital Video Measurements Contents In The Beginning

More information

Lecture 1: Introduction & Image and Video Coding Techniques (I)

Lecture 1: Introduction & Image and Video Coding Techniques (I) Lecture 1: Introduction & Image and Video Coding Techniques (I) Dr. Reji Mathew Reji@unsw.edu.au School of EE&T UNSW A/Prof. Jian Zhang NICTA & CSE UNSW jzhang@cse.unsw.edu.au COMP9519 Multimedia Systems

More information

ELEC 691X/498X Broadcast Signal Transmission Fall 2015

ELEC 691X/498X Broadcast Signal Transmission Fall 2015 ELEC 691X/498X Broadcast Signal Transmission Fall 2015 Instructor: Dr. Reza Soleymani, Office: EV 5.125, Telephone: 848 2424 ext.: 4103. Office Hours: Wednesday, Thursday, 14:00 15:00 Time: Tuesday, 2:45

More information

Video Basics. Video Resolution

Video Basics. Video Resolution Video Basics This article provides an overview about commonly used video formats and explains some of the technologies being used to process, transport and display digital video content. Video Resolution

More information

EECS150 - Digital Design Lecture 12 Project Description, Part 2

EECS150 - Digital Design Lecture 12 Project Description, Part 2 EECS150 - Digital Design Lecture 12 Project Description, Part 2 February 27, 2003 John Wawrzynek/Sandro Pintz Spring 2003 EECS150 lec12-proj2 Page 1 Linux Command Server network VidFX Video Effects Processor

More information

Contents. xv xxi xxiii xxiv. 1 Introduction 1 References 4

Contents. xv xxi xxiii xxiv. 1 Introduction 1 References 4 Contents List of figures List of tables Preface Acknowledgements xv xxi xxiii xxiv 1 Introduction 1 References 4 2 Digital video 5 2.1 Introduction 5 2.2 Analogue television 5 2.3 Interlace 7 2.4 Picture

More information

iii Table of Contents

iii Table of Contents i iii Table of Contents Display Setup Tutorial....................... 1 Launching Catalyst Control Center 1 The Catalyst Control Center Wizard 2 Enabling a second display 3 Enabling A Standard TV 7 Setting

More information

Television System. EE 3414 May 9, Group Members: Jun Wei Guo Shou Hang Shi Raul Gomez

Television System. EE 3414 May 9, Group Members: Jun Wei Guo Shou Hang Shi Raul Gomez Television System EE 3414 May 9, 2003 Group Members: Jun Wei Guo Shou Hang Shi Raul Gomez Overview Basic Components of TV Camera Transmission of TV signals Basic Components of TV Reception of TV signals

More information

Chrontel CH7015 SDTV / HDTV Encoder

Chrontel CH7015 SDTV / HDTV Encoder Chrontel Preliminary Brief Datasheet Chrontel SDTV / HDTV Encoder Features 1.0 GENERAL DESCRIPTION VGA to SDTV conversion supporting graphics resolutions up to 104x768 Analog YPrPb or YCrCb outputs for

More information

High-Definition, Standard-Definition Compatible Color Bar Signal

High-Definition, Standard-Definition Compatible Color Bar Signal Page 1 of 16 pages. January 21, 2002 PROPOSED RP 219 SMPTE RECOMMENDED PRACTICE For Television High-Definition, Standard-Definition Compatible Color Bar Signal 1. Scope This document specifies a color

More information

MPEG-2. ISO/IEC (or ITU-T H.262)

MPEG-2. ISO/IEC (or ITU-T H.262) 1 ISO/IEC 13818-2 (or ITU-T H.262) High quality encoding of interlaced video at 4-15 Mbps for digital video broadcast TV and digital storage media Applications Broadcast TV, Satellite TV, CATV, HDTV, video

More information

hdtv (high Definition television) and video surveillance

hdtv (high Definition television) and video surveillance hdtv (high Definition television) and video surveillance introduction The TV market is moving rapidly towards high-definition television, HDTV. This change brings truly remarkable improvements in image

More information

Software Analog Video Inputs

Software Analog Video Inputs Software FG-38-II has signed drivers for 32-bit and 64-bit Microsoft Windows. The standard interfaces such as Microsoft Video for Windows / WDM and Twain are supported to use third party video software.

More information

Graduate Institute of Electronics Engineering, NTU Digital Video Recorder

Graduate Institute of Electronics Engineering, NTU Digital Video Recorder Digital Video Recorder Advisor: Prof. Andy Wu 2004/12/16 Thursday ACCESS IC LAB Specification System Architecture Outline P2 Function: Specification Record NTSC composite video Video compression/processing

More information

06 Video. Multimedia Systems. Video Standards, Compression, Post Production

06 Video. Multimedia Systems. Video Standards, Compression, Post Production Multimedia Systems 06 Video Video Standards, Compression, Post Production Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures

More information

Multicore Design Considerations

Multicore Design Considerations Multicore Design Considerations Multicore: The Forefront of Computing Technology We re not going to have faster processors. Instead, making software run faster in the future will mean using parallel programming

More information

Primer. A Guide to Standard and High-Definition Digital Video Measurements. 3G, Dual Link and ANC Data Information

Primer. A Guide to Standard and High-Definition Digital Video Measurements. 3G, Dual Link and ANC Data Information A Guide to Standard and High-Definition Digital Video Measurements 3G, Dual Link and ANC Data Information Table of Contents In The Beginning..............................1 Traditional television..............................1

More information

4. Video and Animation. Contents. 4.3 Computer-based Animation. 4.1 Basic Concepts. 4.2 Television. Enhanced Definition Systems

4. Video and Animation. Contents. 4.3 Computer-based Animation. 4.1 Basic Concepts. 4.2 Television. Enhanced Definition Systems Contents 4.1 Basic Concepts Video Signal Representation Computer Video Format 4.2 Television Conventional Systems Enhanced Definition Systems High Definition Systems Transmission 4.3 Computer-based Animation

More information

Checkpoint 2 Video Encoder

Checkpoint 2 Video Encoder UNIVERSITY OF CALIFORNIA AT BERKELEY COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE ASSIGNED: Week of 3/7 DUE: Week of 3/14, 10 minutes after start (xx:20) of your assigned

More information

VIDEO 101: INTRODUCTION:

VIDEO 101: INTRODUCTION: W h i t e P a p e r VIDEO 101: INTRODUCTION: Understanding how the PC can be used to receive TV signals, record video and playback video content is a complicated process, and unfortunately most documentation

More information

Digital Video Telemetry System

Digital Video Telemetry System Digital Video Telemetry System Item Type text; Proceedings Authors Thom, Gary A.; Snyder, Edwin Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings

More information