TIME SEQUENCE GENERATOR ( GIUSEPPE )

Size: px
Start display at page:

Download "TIME SEQUENCE GENERATOR ( GIUSEPPE )"

Transcription

1 SLAC-TN Boris Bertolucci May 1970 A DIGITAL TIME SEQUENCE GENERATOR ( GIUSEPPE ) Abstract A circuit, which starts at T = 0 with an input pulse and puts out 10 pulses which start at arbitrarily variable times Tistart and stop at adjustable time Ti stop is described in this report. It is more or less equivalent to 10 Gate Generators (GGZOO). Introduction During the course of high energy physics experiments, particular importance has been given to gate generators to perform the functions of gating input dis- criminators, delaying a pulse, lighting fiducials and Nixies, advancing film, etc. During the 1968 run of Experimental Group D 12 GG2OO s were used for operation with an incremental tape recorder, 5 camera-data boxes, quantameter and fiducials. The gate generators were needed to delay the pretrigger, generate a machine gate (before the event), generate a kill gate, enable the quantameter DVM, gen- erate gates for fiducials and Nixies, advancing frame counter and film, reset interface (DG102). Most of these functions were completely independent in time from the others. The circuit described here can be used as a replacement for 10 gate genera- tors (extendable to any number, depending on the program boards and the output circuits). pletely Principle Its main characteristic is the complete flexibility, each output being com- independent of all the others. of Operation Suppose a gated clock oscillates at some fixed frequency v (the period T = l/v), the nth pulse, the time t = nt. after the gate has been opened by a start pulse at to = 0, occurs at If the start pulse (to = 0) also sets a FF and the nth clock resets it, we will have an output pulse whose width is W = nt and w&h starts at to = 0. The reset pulse has a delay d = nt. -l-

2

3 , If we set the FF with the mth pulse and reset with the nth (where m and n are arbitrarily numbers with n > m) we have a very versatile gate generator having an output starting at tl = mt and ending at t2 = nt with a width W = (n - m)t. The important parts of this circuit are, therefore, the clock, which generates the time base T, and the Program Board, which permits one to arbitrarily program the delay and duration of the gate with respect to time to = 0, in other words the numbers m and n. Block Diagram (Fig. 1) A. start logic pulse in coincidence with a gate pulse enables the clock to oscillate at the frequency fixed by the Time Base switch (SW3). The clock pulses are counted by a 4 decade-scaler whose 4 x 10 outputs are sent to the Program Board (P. B. ) where they are programmed on the two parts (set and reset). The 10 set outputs from the P. B. set 10 flip-flops and the 10 reset reset the same FF. The outputs of the FF are the gate-outputs, thus allowing any wanted choice of delay and gate duration. The reset-outputs from the P. B. are the delayed- outputs. With the switch SW2 (mode) in the Auto position the cycle. Specifications : the last (tenth) reset stops INPUT: LO-GATE: HI- GATE : SELECT: L-OUTPUT: G-OUTPUT: INDICATOR LIGHTS: Start input pulse. Accepts NIM standard logic signals (-700 mv). Input impedance 50 ohms. Accepts NIM standard logic signals - Input impedance 50 ohms. Accepts signals > 6 volts. Input impedance 50 ohms. 3 positions switch. Selects LO, HI, or OFF Gate. Ten logic delayed outputs (-700 mv). Output impedance 50 ohms. Width at any clock frequency 40 nsec. Typical Tr = 4 nsec; Tf = 10 nsec. The logic delayed output starts at the end of the G-output. Ten Gate output of 10 volts on 50 ohms. Width = variable range between 1 psec and 10 sec. Delay from the start pulse between 1 psec and 10 sec. One each channel. 5V/60 ma bulb lights up when the G-outputs are on. -3-._I - _ t, ,,_,.. _

4 TIME BASE: Rotary 4 positions switch. Selects the operate frequency of the clock. The four ranges are as follows: Incremental Clock Scale Range Time Frequency 1.0 psec l.op msec 1 psec 1 MHz 10.0 psec 10.0~ - O.lsec 10 psec 100 KHz 0.1 msec 0.1 m- l. 0 set 100 psec 10 KHz 1.0 msec 1.0 m set 1 msec 1 KHz MODE: AUTO: automatic reset. At the end of the cycle a reset pulse gates the clock off and ends the cycle. The reset pulse occurs with the trailing edge of the 10th output. Therefore the 10th output must have the maximum delay. FREE RUNNING: no automatic reset occurs. The cycles repeat themselves one after another. To stop the operation the manual reset has to be used. MANUA.L: STA.RT: (pushbutton) starts the cycle of operation. RESET: (pushbutton) stops the cycle at any time and resets all the outputs to zero. PROGRAMBOARD:is a double 10 x 4 decade matrix. The top part sets the times of the beginning of the gate pulses (leading edges) and the bottom part the ends of the gate pulses (trailing edges). N.B.: It is not necessary to program all the 10 channels, but it is strictly necessary to program the 10th stopping time as the longest one because this gives the automatic reset of the circuits. Circuit Description A logic (NIM Standard) pulse at the input (IN) (Fig. 2) turns on Tl and drives T2 to saturation. The pulse at T2 is then a 5 volt (TTL compatible) positive pulse. Bl is a NAND Gate so the start (IN) pulse has to be in coincidence with a LO-GA.TE pulse (logic pulse) or a HI-GATE pulse (+lov) according to SW5- switch (SELECT). With SW5 in OFF position, no coincidence is needed. B2 works as a NOR, so we will have an outgoing pulse with either of the two inputs (MANUAL or N0RMA.L). The pulse from B2 (start pulse) defines the zero time to. It enables (Fig. 3) the gated clock through the flip-flop Cl-C2 and the Gate Al, and also -4-

5 becomes the first pulse that goes to the scaler through the NOR Gate C4. The FF Cl- C2 open the Gate Al and the NAND Gate C3. Al enables the clock AZ-A3 to oscillate with the frequency v fixed by the TIME BASE switch (SW3). The two clock wave-shapes (points 3 and 6) are ANDed in A4 and a train of narrow pulses is generated at time-interval T = l/v (see below). The train of pulses is counted Clock A2-3 I I I, Clock A3-6 / GA.TE A4-12 Clock Pulses A4-11 in the 4 decade scaler (Fig. 4), so as many as lo4 pulses can be counted. This means that times between 0 and 104T can be fixed. The 4 X 4 outputs of the BCD Decade Counter are decoded to decimal (Gl-G4) and the 4 X 10 outputs are connected to the SET and RESET P. B. matrices (Fig. 5). The top 4 matrices (Sl-S4) are used to set the gate-generators, and the bottom 4 (Rl-R4) to reset them. Programming is done with diode-pins. A 4-fold coincidence occurs on each horizontal line when programming that line. EJ: Suppose we wish to program the fifth output to have a gate pulse starting 50.5 msec after the start pulse to with a width msec. The programming is as follows: First the Time Base switch has to be set on. 1 msec (because this is the precision required); 4 diode-pins will be put on channel No. 5 (horizontal line) of the Sl-S4 matrices to form the number 0505 from left (thousands) to right (units). This will set the FF at 505 X. 1 msec = 50.5 msec from the start pulse. On channel No. 5 of the Rl-R5 matrix 4 diode pins will form the number 1920 ( = 1920): this will reset the FF at 1920 X. 1 msec = 192 msec. The 20 output-lines from the program board drive 10 flip-flop (Fig. 6) H2 - H3; 12-13,... Q2 - Q3 whose outputs are amplified (Fig. 7a) to +lo volts on 500 to give the gate-pulse. The same outputs drive also 10 indicator lamps to show when the gate is on (Fig. 7b). The 10 output lines from the reset program board are also converted to NIM standard logic levels (Fig. 7c) to give the delayed logic outputs. -5-

6 START uf- -._. -_---_1-- I G-OUT s I L-OUT ;, 6, 192 msec The output of the 10th channel of the reset program board functions to reset automatically the circuit (Fig. 8). Automatic and manual reset are ORed in B3. The pulse out drives a one-shot multivibrator (D2-D3) whose output from D4 switches the FF Cl-C2 (Fig. 3) and gates the clock off, stopping the cycle. At the same time, I outputs from El, E2 and 22 reset the 4-qecade scaler (Fig. 4) and the 10 gate genera- tor (flip-flops H... Q) (Fig. 6). Resetting the H... Q flip-flops is not strictly neces- sary as long as the 10th channel reset is programmed as the latest in time. With reset switch SW2 (Fig. 3) in the free running position, the automatic reset resets only the scaler and the H... Q flip-flops will repeat synchronously until a manual reset is given. Conclusion but will not gate the clock; so the cycle The first generator of this type was built and tested successfully in the first K decay experiment in the Group D Streamer Chamber,, The unit is capable of replacing from 10 to 20 E.G. & G., GG200 Gate Generators in experiments in which a large number of channels is required. It has been suggested that the number of outputs per channel be increased from G and delay to G, E, logic and delay. This and other smaller modifications will be incorporated Acknowledgements into the next generator. I would like to thank Dr. A.. Odian whose suggestions and general help were very useful and gratefully appreciated, Mr. Ray Larsen and Dr. F. Villa for their discussions and encouragement and Mr. W. Knapp for his great help in packaging. - 6-

7 I DCD + DEC CONfE PT.FR 0 OFF -T- Fl6. I - Blorw Diabtat,,

8 II INPUT to Cl Pin P Fl6. 3 I 00 I Dl Fb 200 P -5 FIG. 2 - Level Converter #I

9

10

11

12 to 1-b. TV PIG; 70 to r.o.-l.c. #2 Ttb FIG. 7c I to L.O.- L.C. #2 PIG. 7c to BI pih \t Fib. 8 t=llr. 6 Gate Gtheratorr

13 ,,...,._,_.,.. -. _I I...

14 jr,pl pim 6 wt.6 Zl N7440 l s te rue t,, I=/- F4 pih I Fllr. 4 8 to D3-D7 (FF I - 5 ) FIG.6 to bg-dlz (FF 6- IO) N7490 ~16.6 Fib. 8 - Reset Citcvi t

15 c L-Output (LC #2) 200 mv/cm 20 psec/cm

16

Figure 30.1a Timing diagram of the divide by 60 minutes/seconds counter

Figure 30.1a Timing diagram of the divide by 60 minutes/seconds counter Digital Clock The timing diagram figure 30.1a shows the time interval t 6 to t 11 and t 19 to t 21. At time interval t 9 the units counter counts to 1001 (9) which is the terminal count of the 74x160 decade

More information

ECB DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER

ECB DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER ECB2212 - DIGITAL ELECTRONICS PROJECT BASED LEARNING PROJECT REPORT ON 7 SEGMENT DIGITAL STOP WATCH USING DECODER SUBMITTED BY ASHRAF HUSSAIN (160051601105) S SAMIULLAH (160051601059) CONTENTS >AIM >INTRODUCTION

More information

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays Today 3/8/ Lecture 8 Sequential Logic, Clocks, and Displays Flip Flops and Ripple Counters One Shots and Timers LED Displays, Decoders, and Drivers Homework XXXX Reading H&H sections on sequential logic

More information

SEQUENTIAL LOGIC. Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur

SEQUENTIAL LOGIC. Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur SEQUENTIAL LOGIC Satish Chandra Assistant Professor Department of Physics P P N College, Kanpur www.satish0402.weebly.com OSCILLATORS Oscillators is an amplifier which derives its input from output. Oscillators

More information

16 Stage Bi-Directional LED Sequencer

16 Stage Bi-Directional LED Sequencer 16 Stage Bi-Directional LED Sequencer The bi-directional sequencer uses a 4 bit binary up/down counter (CD4516) and two "1 of 8 line decoders" (74HC138 or 74HCT138) to generate the popular "Night Rider"

More information

Sequential Logic and Clocked Circuits

Sequential Logic and Clocked Circuits Sequential Logic and Clocked Circuits Clock or Timing Device Input Variables State or Memory Element Combinational Logic Elements From combinational logic, we move on to sequential logic. Sequential logic

More information

Chapter 4. Logic Design

Chapter 4. Logic Design Chapter 4 Logic Design 4.1 Introduction. In previous Chapter we studied gates and combinational circuits, which made by gates (AND, OR, NOT etc.). That can be represented by circuit diagram, truth table

More information

Technical Note

Technical Note ESD-TR-f. 6-453 ESD RECORD COPY 1211 N DIVISION ESD ACCESSION LIST Call No. AL 531^8 Technical Note 1966-24 S. B. Russell Haystack Display Translator 10 October 1966 s Division Contract AF 19(628)-5]

More information

LATCHES & FLIP-FLOP. Chapter 7

LATCHES & FLIP-FLOP. Chapter 7 LATCHES & FLIP-FLOP Chapter 7 INTRODUCTION Latch and flip flops are categorized as bistable devices which have two stable states,called SET and RESET. They can retain either of this states indefinitely

More information

FLIP-FLOPS AND RELATED DEVICES

FLIP-FLOPS AND RELATED DEVICES C H A P T E R 5 FLIP-FLOPS AND RELATED DEVICES OUTLINE 5- NAND Gate Latch 5-2 NOR Gate Latch 5-3 Troubleshooting Case Study 5-4 Digital Pulses 5-5 Clock Signals and Clocked Flip-Flops 5-6 Clocked S-R Flip-Flop

More information

Introduction. NAND Gate Latch. Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1

Introduction. NAND Gate Latch.  Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1 2007 Introduction BK TP.HCM FLIP-FLOP So far we have seen Combinational Logic The output(s) depends only on the current values of the input variables Here we will look at Sequential Logic circuits The

More information

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates, Timers, Flip-Flops & Counters Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates Transistor NOT Gate Let I C be the collector current.

More information

Chapter 4: One-Shots, Counters, and Clocks

Chapter 4: One-Shots, Counters, and Clocks Chapter 4: One-Shots, Counters, and Clocks I. The Monostable Multivibrator (One-Shot) The timing pulse is one of the most common elements of laboratory electronics. Pulses can control logical sequences

More information

Digital Circuits I and II Nov. 17, 1999

Digital Circuits I and II Nov. 17, 1999 Physics 623 Digital Circuits I and II Nov. 17, 1999 Digital Circuits I 1 Purpose To introduce the basic principles of digital circuitry. To understand the small signal response of various gates and circuits

More information

Asynchronous (Ripple) Counters

Asynchronous (Ripple) Counters Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory. The chapter about flip-flops introduced

More information

Counters

Counters Counters A counter is the most versatile and useful subsystems in the digital system. A counter driven by a clock can be used to count the number of clock cycles. Since clock pulses occur at known intervals,

More information

RS flip-flop using NOR gate

RS flip-flop using NOR gate RS flip-flop using NOR gate Triggering and triggering methods Triggering : Applying train of pulses, to set or reset the memory cell is known as Triggering. Triggering methods:- There are basically two

More information

Experiment # 9. Clock generator circuits & Counters. Digital Design LAB

Experiment # 9. Clock generator circuits & Counters. Digital Design LAB Digital Design LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering Fall 2012 ECOM 2112: Digital Design LAB Eng: Ahmed M. Ayash Experiment # 9 Clock generator circuits & Counters

More information

... A COMPUTER SYSTEM FOR MULTIPARAMETER PULSE HEIGHT ANALYSIS AND CONTROL*

... A COMPUTER SYSTEM FOR MULTIPARAMETER PULSE HEIGHT ANALYSIS AND CONTROL* I... A COMPUTER SYSTEM FOR MULTIPARAMETER PULSE HEIGHT ANALYSIS AND CONTROL* R. G. Friday and K. D. Mauro Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 SLAC-PUB-995

More information

RS flip-flop using NOR gate

RS flip-flop using NOR gate RS flip-flop using NOR gate Triggering and triggering methods Triggering : Applying train of pulses, to set or reset the memory cell is known as Triggering. Triggering methods:- There are basically two

More information

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL 1. A stage in a shift register consists of (a) a latch (b) a flip-flop (c) a byte of storage (d) from bits of storage 2. To serially shift a byte of data into a shift register, there must be (a) one click

More information

Chapter 8. The MAP Circuit Discussion. The MAP Circuit 53

Chapter 8. The MAP Circuit Discussion. The MAP Circuit 53 The MAP Circuit 53 Chapter 8 The MAP Circuit 8-1. Discussion In the preceding chapter, we described the connections to the 68000 microprocessor and actually got it to the point where it ran. It is now

More information

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MDETS UCTECH's Modular Digital Electronics Training System is a modular course covering the fundamentals, concepts, theory and applications of digital electronics.

More information

Decade Counters Mod-5 counter: Decade Counter:

Decade Counters Mod-5 counter: Decade Counter: Decade Counters We can design a decade counter using cascade of mod-5 and mod-2 counters. Mod-2 counter is just a single flip-flop with the two stable states as 0 and 1. Mod-5 counter: A typical mod-5

More information

DIGITAL ELECTRONICS MCQs

DIGITAL ELECTRONICS MCQs DIGITAL ELECTRONICS MCQs 1. A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register. A. 1 B. 2 C. 4 D. 8

More information

Asynchronous Counter

Asynchronous Counter Asynchronous Counter Contents: Asynchronous/Ripple Counter Propagation Delay in Ripple Counter MOD Number Synchronous/Parallel Counter 10101010101010101010101010101010101010101010101010101010101010101010101010101010

More information

Laboratory 11. Required Components: Objectives. Introduction. Digital Displays and Logic (modified from lab text by Alciatore)

Laboratory 11. Required Components: Objectives. Introduction. Digital Displays and Logic (modified from lab text by Alciatore) Laboratory 11 Digital Displays and Logic (modified from lab text by Alciatore) Required Components: 2x lk resistors 1x 10M resistor 3x 0.1 F capacitor 1x 555 timer 1x 7490 decade counter 1x 7447 BCD to

More information

Digital Delay / Pulse Generator DG535 Digital delay and pulse generator (4-channel)

Digital Delay / Pulse Generator DG535 Digital delay and pulse generator (4-channel) Digital Delay / Pulse Generator Digital delay and pulse generator (4-channel) Digital Delay/Pulse Generator Four independent delay channels Two fully defined pulse channels 5 ps delay resolution 50 ps

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I The Light Emitting Diode: The light emitting diode (LED) is used as a probe in the digital experiments below. We begin by

More information

University of Victoria. Department of Electrical and Computer Engineering. CENG 290 Digital Design I Lab Manual

University of Victoria. Department of Electrical and Computer Engineering. CENG 290 Digital Design I Lab Manual University of Victoria Department of Electrical and Computer Engineering CENG 290 Digital Design I Lab Manual INDEX Introduction to the labs Lab1: Digital Instrumentation Lab2: Basic Digital Components

More information

Flip-flops, like logic gates are defined by their truth table. Flip-flops are controlled by an external clock pulse. C

Flip-flops, like logic gates are defined by their truth table. Flip-flops are controlled by an external clock pulse. C P517/617 Lec10, P1 eview from last week: Flip-Flops: asic counting unit in computer counters shift registers memory Example: S flip-flop or eset-set flip-flop Flip-flops, like logic gates are defined by

More information

PHYS 3322 Modern Laboratory Methods I Digital Devices

PHYS 3322 Modern Laboratory Methods I Digital Devices PHYS 3322 Modern Laboratory Methods I Digital Devices Purpose This experiment will introduce you to the basic operating principles of digital electronic devices. Background These circuits are called digital

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Lab Manual for Computer Organization Lab

More information

Counter dan Register

Counter dan Register Counter dan Register Introduction Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory.

More information

UNIT-3: SEQUENTIAL LOGIC CIRCUITS

UNIT-3: SEQUENTIAL LOGIC CIRCUITS UNIT-3: SEQUENTIAL LOGIC CIRCUITS STRUCTURE 3. Objectives 3. Introduction 3.2 Sequential Logic Circuits 3.2. NAND Latch 3.2.2 RS Flip-Flop 3.2.3 D Flip-Flop 3.2.4 JK Flip-Flop 3.2.5 Edge Triggered RS Flip-Flop

More information

The NOR latch is similar to the NAND latch

The NOR latch is similar to the NAND latch 5-2 NOR Gate Latch The NOR latch is similar to the NAND latch except that the Q and Q outputs are reversed. The set and clear inputs are active high, that is, the output will change when the input is pulsed

More information

EKT 121/4 ELEKTRONIK DIGIT 1

EKT 121/4 ELEKTRONIK DIGIT 1 EKT 121/4 ELEKTRONIK DIGIT 1 Kolej Universiti Kejuruteraan Utara Malaysia Bistable Storage Devices and Related Devices Introduction Latches and flip-flops are the basic single-bit memory elements used

More information

2. Counter Stages or Bits output bits least significant bit (LSB) most significant bit (MSB) 3. Frequency Division 4. Asynchronous Counters

2. Counter Stages or Bits output bits least significant bit (LSB) most significant bit (MSB) 3. Frequency Division 4. Asynchronous Counters 2. Counter Stages or Bits The number of output bits of a counter is equal to the flip-flop stages of the counter. A MOD-2 n counter requires n stages or flip-flops in order to produce a count sequence

More information

Module -5 Sequential Logic Design

Module -5 Sequential Logic Design Module -5 Sequential Logic Design 5.1. Motivation: In digital circuit theory, sequential logic is a type of logic circuit whose output depends not only on the present value of its input signals but on

More information

Logic. Andrew Mark Allen March 4, 2012

Logic. Andrew Mark Allen March 4, 2012 Logic Andrew Mark Allen - 05370299 March 4, 2012 Abstract NAND gates and inverters were used to construct several different logic gates whose operations were investigate under various inputs. Then the

More information

Registers and Counters

Registers and Counters Registers and Counters Clocked sequential circuit = F/Fs and combinational gates Register Group of flip-flops (share a common clock and capable of storing one bit of information) Consist of a group of

More information

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall Objective: - Dealing with the operation of simple sequential devices. Learning invalid condition in

More information

PRE J. Figure 25.1a J-K flip-flop with Asynchronous Preset and Clear inputs

PRE J. Figure 25.1a J-K flip-flop with Asynchronous Preset and Clear inputs Asynchronous Preset and Clear Inputs The S-R, J-K and D inputs are known as synchronous inputs because the outputs change when appropriate input values are applied at the inputs and a clock signal is applied

More information

Logic Design. Flip Flops, Registers and Counters

Logic Design. Flip Flops, Registers and Counters Logic Design Flip Flops, Registers and Counters Introduction Combinational circuits: value of each output depends only on the values of inputs Sequential Circuits: values of outputs depend on inputs and

More information

Chapter 5 Flip-Flops and Related Devices

Chapter 5 Flip-Flops and Related Devices Chapter 5 Flip-Flops and Related Devices Chapter 5 Objectives Selected areas covered in this chapter: Constructing/analyzing operation of latch flip-flops made from NAND or NOR gates. Differences of synchronous/asynchronous

More information

Lesson 12. Advanced Digital Integrated Circuits Flip-Flops, Counters, Decoders, Displays

Lesson 12. Advanced Digital Integrated Circuits Flip-Flops, Counters, Decoders, Displays Lesson 12 Sierra College CIE-01 Jim Weir 530.272.2203 jweir43@gmail.com www.rstengineering.com/sierra Advanced Digital Integrated Circuits Flip-Flops, Counters, Decoders, Displays Flip-Flops: True name

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I Tasks marked by an asterisk (*) may be carried out before coming to the lab. The Light Emitting Diode: The light emitting

More information

Timing Pulses. Important element of laboratory electronics. Pulses can control logical sequences with precise timing.

Timing Pulses. Important element of laboratory electronics. Pulses can control logical sequences with precise timing. Timing Pulses Important element of laboratory electronics Pulses can control logical sequences with precise timing. If your detector sees a charged particle or a photon, you might want to signal a clock

More information

Sequential Digital Design. Laboratory Manual. Experiment #7. Counters

Sequential Digital Design. Laboratory Manual. Experiment #7. Counters The Islamic University of Gaza Engineering Faculty Department of Computer Engineering Spring 2018 ECOM 2022 Khaleel I. Shaheen Sequential Digital Design Laboratory Manual Experiment #7 Counters Objectives

More information

Introduction to Microprocessor & Digital Logic

Introduction to Microprocessor & Digital Logic ME262 Introduction to Microprocessor & Digital Logic (Sequential Logic) Summer 2 Sequential Logic Definition The output(s) of a sequential circuit depends d on the current and past states of the inputs,

More information

Digital Fundamentals: A Systems Approach

Digital Fundamentals: A Systems Approach Digital Fundamentals: A Systems Approach Counters Chapter 8 A System: Digital Clock Digital Clock: Counter Logic Diagram Digital Clock: Hours Counter & Decoders Finite State Machines Moore machine: One

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I Tasks marked by an asterisk (*) may be carried out before coming to the lab. The Light Emitting Diode: The light emitting

More information

Laboratory 8. Digital Circuits - Counter and LED Display

Laboratory 8. Digital Circuits - Counter and LED Display Laboratory 8 Digital Circuits - Counter and Display Required Components: 2 1k resistors 1 10M resistor 3 0.1 F capacitor 1 555 timer 1 7490 decade counter 1 7447 BCD to decoder 1 MAN 6910 or LTD-482EC

More information

HDL & High Level Synthesize (EEET 2035) Laboratory II Sequential Circuits with VHDL: DFF, Counter, TFF and Timer

HDL & High Level Synthesize (EEET 2035) Laboratory II Sequential Circuits with VHDL: DFF, Counter, TFF and Timer 1 P a g e HDL & High Level Synthesize (EEET 2035) Laboratory II Sequential Circuits with VHDL: DFF, Counter, TFF and Timer Objectives: Develop the behavioural style VHDL code for D-Flip Flop using gated,

More information

1. Convert the decimal number to binary, octal, and hexadecimal.

1. Convert the decimal number to binary, octal, and hexadecimal. 1. Convert the decimal number 435.64 to binary, octal, and hexadecimal. 2. Part A. Convert the circuit below into NAND gates. Insert or remove inverters as necessary. Part B. What is the propagation delay

More information

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP 1 Chapter Overview Latches Gated Latches Edge-triggered flip-flops Master-slave flip-flops Flip-flop operating characteristics Flip-flop applications

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - III Sequential Logic I Sequential circuits: latches flip flops analysis of clocked sequential circuits state reduction and assignments Registers and Counters: Registers shift registers ripple counters

More information

University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Digital Electronics Laboratory Physics Department Physics 40 Laboratory Experiment 3: CMOS Digital Logic. Introduction The purpose of this lab is to continue

More information

CHAPTER 1 LATCHES & FLIP-FLOPS

CHAPTER 1 LATCHES & FLIP-FLOPS CHAPTER 1 LATCHES & FLIP-FLOPS 1 Outcome After learning this chapter, student should be able to; Recognize the difference between latches and flipflops Analyze the operation of the flip flop Draw the output

More information

UNIT IV. Sequential circuit

UNIT IV. Sequential circuit UNIT IV Sequential circuit Introduction In the previous session, we said that the output of a combinational circuit depends solely upon the input. The implication is that combinational circuits have no

More information

Laboratory Exercise 7

Laboratory Exercise 7 Laboratory Exercise 7 Finite State Machines This is an exercise in using finite state machines. Part I We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied

More information

Registers and Counters

Registers and Counters Registers and Counters Clocked sequential circuit = F/Fs and combinational gates Register Group of flip-flops (share a common clock and capable of storing one bit of information) Consist of a group of

More information

Logic Devices for Interfacing, The 8085 MPU Lecture 4

Logic Devices for Interfacing, The 8085 MPU Lecture 4 Logic Devices for Interfacing, The 8085 MPU Lecture 4 1 Logic Devices for Interfacing Tri-State devices Buffer Bidirectional Buffer Decoder Encoder D Flip Flop :Latch and Clocked 2 Tri-state Logic Outputs

More information

BUSES IN COMPUTER ARCHITECTURE

BUSES IN COMPUTER ARCHITECTURE BUSES IN COMPUTER ARCHITECTURE The processor, main memory, and I/O devices can be interconnected by means of a common bus whose primary function is to provide a communication path for the transfer of data.

More information

CHAPTER 3 LOMA LINDA UNIVERSITY

CHAPTER 3 LOMA LINDA UNIVERSITY CHAPTER 3 LOMA LINDA UNIVERSITY School of Medicine Department of Orthopaedic Surgery 11234 Anderson Loma Linda, California 92354 Principal Investigator: Subrata Saha (909) 824-4418 29 30 NSF 1992 Engineering

More information

Generation and Measurement of Burst Digital Audio Signals with Audio Analyzer UPD

Generation and Measurement of Burst Digital Audio Signals with Audio Analyzer UPD Generation and Measurement of Burst Digital Audio Signals with Audio Analyzer UPD Application Note GA8_0L Klaus Schiffner, Tilman Betz, 7/97 Subject to change Product: Audio Analyzer UPD . Introduction

More information

Introduction. Serial In - Serial Out Shift Registers (SISO)

Introduction. Serial In - Serial Out Shift Registers (SISO) Introduction Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are a group of flip-flops connected in a chain so that the output from one flip-flop becomes

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Fundamentals Of Digital Logic 1 Our Goal Understand Fundamentals and basics Concepts How computers work at the lowest level Avoid whenever possible Complexity Implementation

More information

DIGITAL LOGIC HANDBOOK

DIGITAL LOGIC HANDBOOK DIGITAL LOGIC HANDBOOK COPYRIGHT, 1961, BY DIGITAL EQUIPMENT CORPORATION First Edition - September, 1960 Second Edition - November, 1960 Third Edition - March, 1961 PRINTED IN THE UNITED STATES OF AMERICA

More information

ELE2120 Digital Circuits and Systems. Tutorial Note 8

ELE2120 Digital Circuits and Systems. Tutorial Note 8 ELE2120 Digital Circuits and Systems Tutorial Note 8 Outline 1. Register 2. Counters 3. Synchronous Counter 4. Asynchronous Counter 5. Sequential Circuit Design Overview 1. Register Applications: temporally

More information

Notes on Digital Circuits

Notes on Digital Circuits PHYS 331: Junior Physics Laboratory I Notes on Digital Circuits Digital circuits are collections of devices that perform logical operations on two logical states, represented by voltage levels. Standard

More information

Chapter 6 Registers and Counters

Chapter 6 Registers and Counters EEA051 - Digital Logic 數位邏輯 Chapter 6 Registers and Counters 吳俊興國立高雄大學資訊工程學系 January 2006 Chapter 6 Registers and Counters 6-1 Registers 6-2 Shift Registers 6-3 Ripple Counters 6-4 Synchronous Counters

More information

TYPICAL QUESTIONS & ANSWERS

TYPICAL QUESTIONS & ANSWERS DIGITALS ELECTRONICS TYPICAL QUESTIONS & ANSWERS OBJECTIVE TYPE QUESTIONS Each Question carries 2 marks. Choose correct or the best alternative in the following: Q.1 The NAND gate output will be low if

More information

Step 1 - shaft decoder to generate clockwise/anticlockwise signals

Step 1 - shaft decoder to generate clockwise/anticlockwise signals Workshop Two Shaft Position Encoder Introduction Some industrial automation applications require control systems which know the rotational position of a shaft. Similar devices are also used for digital

More information

Reaction Game Kit MitchElectronics 2019

Reaction Game Kit MitchElectronics 2019 Reaction Game Kit MitchElectronics 2019 www.mitchelectronics.co.uk CONTENTS Schematic 3 How It Works 4 Materials 6 Construction 8 Important Information 9 Page 2 SCHEMATIC Page 3 SCHEMATIC EXPLANATION The

More information

Analogue Versus Digital [5 M]

Analogue Versus Digital [5 M] Q.1 a. Analogue Versus Digital [5 M] There are two basic ways of representing the numerical values of the various physical quantities with which we constantly deal in our day-to-day lives. One of the ways,

More information

Flip Flop. S-R Flip Flop. Sequential Circuits. Block diagram. Prepared by:- Anwar Bari

Flip Flop. S-R Flip Flop. Sequential Circuits. Block diagram. Prepared by:- Anwar Bari Sequential Circuits The combinational circuit does not use any memory. Hence the previous state of input does not have any effect on the present state of the circuit. But sequential circuit has memory

More information

Switching Theory And Logic Design UNIT-IV SEQUENTIAL LOGIC CIRCUITS

Switching Theory And Logic Design UNIT-IV SEQUENTIAL LOGIC CIRCUITS Switching Theory And Logic Design UNIT-IV SEQUENTIAL LOGIC CIRCUITS Sequential circuits Classification of sequential circuits: Sequential circuits may be classified as two types. 1. Synchronous sequential

More information

DIGITAL REGISTERS. Serial Input Serial Output. Block Diagram. Operation

DIGITAL REGISTERS. Serial Input Serial Output. Block Diagram. Operation DIGITAL REGISTERS http://www.tutorialspoint.com/computer_logical_organization/digital_registers.htm Copyright tutorialspoint.com Flip-flop is a 1 bit memory cell which can be used for storing the digital

More information

Palestine Technical College. Engineering Professions Department. EEE Digital Logic Fundamentals. Experiment 2.

Palestine Technical College. Engineering Professions Department. EEE Digital Logic Fundamentals. Experiment 2. Palestine Technical ollege Engineering Professions epartment EEE - Experiment ode onverters # Student No Name Surname Sign Fall 07-0 EEE Objectives: uild a Gray code to binary converter. Use design steps

More information

Digital Stopwatch Timer Circuit Using 555timer and CD4033

Digital Stopwatch Timer Circuit Using 555timer and CD4033 Digital Stopwatch Timer Circuit Using 555timer and CD4033 Kokila.C 1, Kousalya.J.R 2, Madhumitha.K 3, Nandhini.P 4 and Mr.Martin Joel Ratnam 5 UG Scholar, Department of ECE, Adhiyamaan College of Engineering,

More information

MODULE 3. Combinational & Sequential logic

MODULE 3. Combinational & Sequential logic MODULE 3 Combinational & Sequential logic Combinational Logic Introduction Logic circuit may be classified into two categories. Combinational logic circuits 2. Sequential logic circuits A combinational

More information

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops Objective Construct a two-bit binary decoder. Study multiplexers (MUX) and demultiplexers (DEMUX). Construct an RS flip-flop from discrete gates.

More information

DIGITAL CIRCUIT COMBINATORIAL LOGIC

DIGITAL CIRCUIT COMBINATORIAL LOGIC DIGITAL CIRCUIT COMBINATORIAL LOGIC Logic levels: one zero true false high low CMOS logic levels: 1 => 0.7 V DD 0.4 V DD = noise margin 0 =< 0.3 V DD Positive logic: high = 1 = true low = 0 = false Negative

More information

Flip-Flops and Related Devices. Wen-Hung Liao, Ph.D. 4/11/2001

Flip-Flops and Related Devices. Wen-Hung Liao, Ph.D. 4/11/2001 Flip-Flops and Related Devices Wen-Hung Liao, Ph.D. 4/11/2001 Objectives Recognize the various IEEE/ANSI flip-flop symbols. Use state transition diagrams to describe counter operation. Use flip-flops in

More information

Digital Fundamentals: A Systems Approach

Digital Fundamentals: A Systems Approach Digital Fundamentals: A Systems Approach Latches, Flip-Flops, and Timers Chapter 6 Traffic Signal Control Traffic Signal Control: State Diagram Traffic Signal Control: Block Diagram Traffic Signal Control:

More information

Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

More information

Chapter 3: Sequential Logic Systems

Chapter 3: Sequential Logic Systems Chapter 3: Sequential Logic Systems 1. The S-R Latch Learning Objectives: At the end of this topic you should be able to: design a Set-Reset latch based on NAND gates; complete a sequential truth table

More information

Chapter 6. Flip-Flops and Simple Flip-Flop Applications

Chapter 6. Flip-Flops and Simple Flip-Flop Applications Chapter 6 Flip-Flops and Simple Flip-Flop Applications Basic bistable element It is a circuit having two stable conditions (states). It can be used to store binary symbols. J. C. Huang, 2004 Digital Logic

More information

AIM: To study and verify the truth table of logic gates

AIM: To study and verify the truth table of logic gates EXPERIMENT: 1- LOGIC GATES AIM: To study and verify the truth table of logic gates LEARNING OBJECTIVE: Identify various Logic gates and their output. COMPONENTS REQUIRED: KL-31001 Digital Logic Lab( Main

More information

1. True/False Questions (10 x 1p each = 10p) (a) I forgot to write down my name and student ID number.

1. True/False Questions (10 x 1p each = 10p) (a) I forgot to write down my name and student ID number. CprE 281: Digital Logic Midterm 2: Friday Oct 30, 2015 Student Name: Student ID Number: Lab Section: Mon 9-12(N) Mon 12-3(P) Mon 5-8(R) Tue 11-2(U) (circle one) Tue 2-5(M) Wed 8-11(J) Wed 6-9(Y) Thur 11-2(Q)

More information

Chapter 3 Unit Combinational

Chapter 3 Unit Combinational EE 200: Digital Logic Circuit Design Dr Radwan E Abdel-Aal, COE Logic and Computer Design Fundamentals Chapter 3 Unit Combinational 5 Registers Logic and Design Counters Part Implementation Technology

More information

DEC BUILDING BLOCK LOGIC

DEC BUILDING BLOCK LOGIC ., DEC BUILDING BLOCK LOGIC PER COPY $1.00 DEC BUILDING BLOCK LOGIC digital equipment corporation MAYNARD, MASSACHUSETTS COPYRIGHT, 1960, BY DIGITAL EQUIPMENT CORPORATION PRINTED IN THE UNITED STATES

More information

MC54/74F568 MC54/74F569 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS)

MC54/74F568 MC54/74F569 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) 4-BIT BIDIRECTIONAL COUNTERS (WITH 3-STATE OUTPUTS) The MC54/ 74F568 and MC54/74F569 are fully synchronous, reversible counters with 3-state outputs. The F568 is a BCD decade counter; the F569 is a binary

More information

Vignana Bharathi Institute of Technology UNIT 4 DLD

Vignana Bharathi Institute of Technology UNIT 4 DLD DLD UNIT IV Synchronous Sequential Circuits, Latches, Flip-flops, analysis of clocked sequential circuits, Registers, Shift registers, Ripple counters, Synchronous counters, other counters. Asynchronous

More information

Topic D-type Flip-flops. Draw a timing diagram to illustrate the significance of edge

Topic D-type Flip-flops. Draw a timing diagram to illustrate the significance of edge Topic 1.3.2 -type Flip-flops. Learning Objectives: At the end of this topic you will be able to; raw a timing diagram to illustrate the significance of edge triggering; raw a timing diagram to illustrate

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP General Description The Digital Blocks core is a full function equivalent to the Motorola MC6845 device. The interfaces a microprocessor to a raster-scan CRT display. The

More information

ASYNCHRONOUS COUNTER CIRCUITS

ASYNCHRONOUS COUNTER CIRCUITS ASYNCHRONOUS COUNTER CIRCUITS Asynchronous counters do not have a common clock that controls all the Hipflop stages. The control clock is input into the first stage, or the LSB stage of the counter. The

More information

QUICK GUIDE COMPUTER LOGICAL ORGANIZATION - OVERVIEW

QUICK GUIDE COMPUTER LOGICAL ORGANIZATION - OVERVIEW QUICK GUIDE http://www.tutorialspoint.com/computer_logical_organization/computer_logical_organization_quick_guide.htm COMPUTER LOGICAL ORGANIZATION - OVERVIEW Copyright tutorialspoint.com In the modern

More information