Analysis of Different Pseudo Noise Sequences

Size: px
Start display at page:

Download "Analysis of Different Pseudo Noise Sequences"

Transcription

1 Analysis of Different Pseudo Noise Sequences Alka Sawlikar, Manisha Sharma Abstract Pseudo noise (PN) sequences are widely used in digital communications and the theory involved has been treated extensively in this paper. This paper analyses some interesting properties of PN sequence. This paper further elaborates about various methods of generation of PN sequences, few methods discussed in this paper are: series-parallel method for high-speed generation, avoiding the zero states, shift registers with feedback, chaotic pattern generation. A detailed comparison of PN sequence and chaotic sequence is also described in this along with comparative analysis of LFSRs, Gold sequence, Barker sequence, Kasami sequence. Index Terms Spread spectrum, pseudo-noise, Chaos, LFSR, Code division multiple access, pseudo-noise codes, Maximal length, Gold, Barker, Kasami, autocorrelation, cross correlation. I. INTRODUCTION Pseudo random binary sequences (PRBSs), also known as pseudo noise (PN), linear feedback shift register (LFSR) sequences or maximal length binary sequences (m sequences), are widely used in digital communications, instrumentation and measurements [Lathi(998)]. In a truly random sequence the bit pattern never repeats. A pseudo random binary sequence is a semi-random sequence in the sense that it appears random within the sequence length, fulfilling the needs of randomness, but the entire sequence repeats indefinitely. To a casual observer the sequence appears totally random, however to a user who is aware of the way the sequence is generated all its properties should be known. PN sequences have several interesting properties, which are exploited in a variety of applications. Because of their good autocorrelation two similar PN sequences can easily be phase synchronized, even when one of them is corrupted by noise. A PN sequence is an ideal test signal, as it simulates the random characteristics of a digital signal and can be easily generated. The following fig. shows the overview of PN sequence. II. PROPERTIES OF PN SEQUENCES A PN sequence is a bit stream of s and 0 s occurring randomly, with some unique properties. The sequence serves as a reference pattern with known random characteristics for the analysis, optimization and performance measurement of communication channels and systems. A. Balance Property In each period of a maximum length sequence, the number of s is always one more than the number of 0s. B. Run Property Among the runs of s and 0s in each period of a maximum length sequence, one half the runs of each kind are of length one-fourth are of length two, one eighth are of length three, and so on as long as these fractions represent meaningful numbers of runs[hykin(200)]. C. Correlation Property Correlation is a measure of similarity between two sequences. When the two sequences compared are different it is the cross correlation and when they are the same it is the autocorrelation. Mathematically, the correlation between two sequences x (k) and y(k) as a function of the time delay m is expressed as R ( m) xy L k 0 x( k) y( k m).() The correlation equation for the digital bit sequence can thus be written as R (m) = total number of s / total number of bits (2) b b2 b3 b4 bk K Reference Code Shift Register a a2 a3 a4 ak b b2 b3 b4 bk Modulo-2 Adder y y2 y3 y4 yk Fig.Overview of PN Sequence y a b K y 0 if a if a y a b 0 if a Fig. 2. Correlator b if a b b b 56

2 Fig.2 shows a correlator of length K. One sequence ai is shifted through a K bit shift register and the output of each stage is applied to a set of K XNOR gate for comparison. D. Shift and add When a PN sequence is shifted and the shifted sequence modulo-2 added to the un-shifted sequence with an exclusive-or gate, the result is the same PN sequence with some other shift. This is illustrated in Fig. 3, where a 5 bit PN sequence, a (k)), is arbitrarily shifted by4 bits to get, a (k - 4). The two sequences when modulo-2 added give a sequence which is a 3 bit shifted version, a (k - 3), of the original sequence a (k). Only when the PN sequence is modulo-2 added to itself without shift is the result a sequence of zeros [Li and Hykin (995)]. A direct application of this property is in the generation of two identical sequences with a known large delay between them =5 bits For example, the polynomial + xi4 + x5 means that the outputs from stages 4 and 5 are modulo- 2 added and fed back to the input of first stage of a 5- stage register to get a 25 - length sequence, as shown in Fig. 4. B. Series-parallel method for high-speed PN generation The maximum PN data rate depends on the type of logic device used. Since only one gate delay (due to the XOR gate) is introduced in the feedback path the maximum PN rate can be close to the highest operating frequency of the shift register. The operating frequency of the PN sequence can be pushed beyond the shift register clock rate by using a high-speed multiplexer. This technique uses the subsequence property of a PN sequence already discussed [Gupta and Kumareshan (2005)]. As we can demultiplex a PN sequence into two similar sequences at half the rate, we can also multiplex two PN sequences to obtain a sequence at double the rate. However, the two sequences should necessarily have a phase shift of half the sequence length.fig.5 shows the circuit for getting PN sequence of length 27 - using series parallel method. Start D3Q3 D7 Q7 Start D2Q2 D6Q6 S S2 DQ D5 Q5 D4Q4 Fig. 3. Addition of PN Sequence III. GENERATION OF PN SEQUENCES A. Using Shift Register with feedback A PN sequence is generated using a shift register and modulo-2 adders. Certain outputs of the shift register are modulo-2 added and the adder output is fed back to the register. An N-stage shift register can generate a maximal length sequence of 2N- bits. Only certain outputs, or taps, can generate a maximal length sequence. The generator output is expressed as a polynomial in 'x'. Fig. 4 A PN Generators with Polynomial + x I4 + x 5 Fig. 5 Series-parallel method for high-speed PN generation C. Avoiding the Zero State An N-bit register can generate 2N- states as against the 2N states of a binary counter, as shown in the state diagram in Fig. 6. Although the counter states generate an ascending or descending sequence, the PN generator output states are apparently random. The all-zero state is missing in the PN sequence. This state is inhibited, because the generator remains latched to it. The modulo-2 adder in the feedback circuit feeds only '0's to the input. An additional circuit is needed to detect the 'all zeros' state and reset the PN register to a valid state. When the register length, N, is small, a NOR gate can decode 0 outputs of the register, forcing a,to the feedback input, through an OR gate, as shown in Fig.7a. A modulo-n down counter may be used for decoding the all zeros state in the PN sequence for large N. The PN data is applied to the load input after inversion as shown in Fig.7b. 57

3 0 ISSN but a preferred maximal sequences can only produce Gold codes, as shown in Fig.8. Fig (e) & (f) shows the encrypted speech signal and its spectrum using Gold sequences Down counter Up counter Fig. 6 State diagrams for (a) binary counter and (b) PN generator X X2 X3 X4 X E. Barker Sequences Barker sequences are short length codes that offer good correlation properties. A Barker code is a sequence of some finite length N such that the absolute value of discrete autocorrelation function r (Ʈ) for Ʈ 0. Barker sequences have many advantages over other PN sequences [Kumar et al. (2008)]. These sequences have uniformly low auto-correlation side these pseudo-random or pseudo-noise (PN) properties include, among other properties, (a) balance, (b) run and (c) auto-correlation lobes ( ), but the size of these families is small. Fig.9 shows Barker sequence generator. XOR NOR Fig.7 (a). A PN generator with all zeros decoder PN generator (2 N -) Fig. 9 Barker Sequence Generator Clock Fig.7 (b). All zeros decoding with a counter D. Gold Sequences Gold sequences are generated by the modulo-2 operation of two different m-sequences of same length. Any two m- sequences are able to generate a family of many non-maximal product codes, a4 a3 a2 a a0 g(d)=45 LOAD CE a'4 a'3 a'2 a' a'0 Output N CO F. Kasami Sequences Kasami sequences are also PN sequences of length N = 2n-, which are defined for even values of n there are two classes of Kasami sequences: (i) small set of Kasami sequences, (ii) large set of Kasami sequences. Small set of Kasami sequences are optimal in the sense of matching Welch s lower bound for correlation functions. A small set of Kasami sequences is a set of 2n/2 binary sequences [Kumar et al. (2008)]. Fig.0 shows Kasami sequence generator. Small set of Kasami sequences are optimal sequences and have better correlation properties compared to Gold sequences. But the set contains less number of sequences. For the shift register of length n the number of possible sequences for the small Kasami sequence set is only 2 n/2 sequences, whereas Gold code set contains 2 n + 2 sequences. The number of sequences can be increased by making some relaxation on the correlation values of the sequences. The resulting set of sequences is called large set of Kasami sequences [Kumar et al. (2008)]. Fig. 8. Gold Sequence Generator 58

4 IV. COMPARATIVE ANALYSIS 6 5 h ( x) x x h= [,2,...,0] an arbitrary nonzero vector h ' [ d0, d,... dn ] h '( x) x x x x G. Correlation Measures Fig.0 Kasami Sequence Generator PN sequences of desired length are generated as described, and the MSAAC and MSACC measures are computed for the code set. Table. shows the correlation measures for PN sequences of length 6 bits and Table.2 is correlation measures for 32-bit PN sequences. From the results, among all PN sequences m-sequences have low MSAAC values since these sequences have single peak auto correlation function. But these sequences are not suitable for speech encryption since there is only one possible m-sequence of given LFSR length. Gold codes have less MSAAC and MSACC values and for a given length of m-sequence one can generate more number of Gold codes so, these sequence effectively remove the intelligibility of the speech signal by de-correlating the speech samples. The MWH codes have better auto correlation properties as compared to WH codes, but they have poor cross correlation properties. OVSF codes with some specific repetitive sequences gives less correlation values. The MSAAC and MSACC values for OVSF codes with repetitive sequences {-,-,-, } are less and these values are equal to the correlation values of MWH codes. Table : Correlation measures for PN sequences of length6 bits Sequence MSAAC MSACC m-sequences WH codes MWH codes OVSF codes Table 2: Correlation measures for PN sequences of length32 bits Sequence MSAAC MSACC m-sequences WH codes MWH codes OVSF codes Gold codes Barker sequence LFSR satisfies all the properties of PN sequences but for high degree of recursions it is computationally infeasible to evaluate the distance between the phase shifts. It has good autocorrelation but the sequence is not quite maximal length. With Series Parallel method, the rate of generation of PN sequence is at high speed and is used for doubling clock rate of PN generator. Performance of Gold code is good as compared to maximum length sequence and sample to sample correlation is reduced [Kumar et al. (2008)].Small Kasami sequences have less autocorrelation and hence more cross correlation values but the number of sequences that can be generated are less. Thus the security provided by these sequences is less compared to Barker sequence [Kumar et al. (2008)]. Concatenated Shift Registers are computationally feasible and provides a large class of linearly concatenated shift registers to generate approximately maximally spaced phase shifts of PN sequence for use in pseudo random number generation [Hurd and Welch (997)]. In Chaos Based PN sequence the generation of pseudo noise is using digital signal processor which is used in secure communication [Guo and Wang (200)]. It has good statistical properties and generates large set of PN sequence. It is used to randomize the signal over the links and provides PN sequence of higher rate. It is used to generate encryption key and its implementation is done using digital signals. Fig.showing time domain and its spectrum representation for 30 ms voice segment of the speech utterance using m-sequence, Gold code, WH codes, MWH codes and OVSF codes. Fig.2 to 6. shows a periodic auto-correlation function and cross-correlation function of Gold sequence, Barker-like sequence, large Kasami sequence of length 63 bits and MWH sequence, Gold sequence of length 64 bits. V. CONCLUSION We have shown the analysis of different PN sequences with different generation methods. A PN sequence generated by every method is analyzed to check if properties are satisfied. Advantages of every method of PN sequence is studied in this paper. PN sequences are used as spreading code. Correlation measures for PN sequences of length6 bits and 32 bits is given in Tables. We can extend analysis of PN sequences by giving different parameters which are helpful for different applications such as speech encryption and even generate PN sequence using elliptic curves over prime field. REFERENCES 59

5 [] Haykin, S Communication Systems. 4th Edition. New York: John Wiley and Sons, 200. [2] J.G.Proakis, DigitalCommunications.4 th Edition.United States: McGraw-Hill, [3] K. T. Alligood, T. D. Sauer, and J. A. Yorke, An Introduction to Dynamical Systems, Springer NY, 997. [4] Lathi, B.P, Modern Digital and Analog Communications Systems.3rd Edition, New York: Oxford University Press, 998. [5] Li.B. X, Haykin,S. A new PN Generator for Spread Spectrum Communications.IEEE,Acoustics,Speech,andSignalProcessing,Vol-5,no.9-2,pp ,995. [6] M. P. Kennedy, R. Rovatti, and G. Setti, Chaotic Electronics in Telecommunications, CRC Press, [7] P. K. Gupta. R. Kumaresan Binary Multiplication with PN Sequences IEEE Transactions on Acoustics Speech and Signal Processing. Vol. 36, no.4, pp , [8] Qianying Guo, Guangyi Wang- Generation of a Chaos-based PN sequence and its quality Analysis, IEEE Communication Society, Vol.54. no. 4, pp ,200. [9]. Rowtti, G. Setti, and G. Mazzini, Chaotic complex spreading sequences for asynchronous DSC DMA, Some Theoretical Performance Bounds. IEEE Transactions Circ. Sys. I, Vol-45, no. 4, pp , 998. [0] V. Anil Kumar, A. Mitra, S. R. Prasanna, Performance Analysis of Different PN Sequences for Speech Encryption, International Journal of Information and Communication Engg, [] W. J. Hurd, L. R. Welch, Concatenated Shift Registers Chaos, An Introduction to Dynamical Systems, Springer, NY, 997. [2] X. Wang, Y. Wn and B. Caron, Transmitter Identification Using Embedded PN Sequences, IEEE Transaction Broadcasting, Vol. 50 no. 3, pp , Fig : Time domain and its spectrogram representation for 30 ms voice segment of the speech utterance, for original speech segment ((a)&(b)), for encrypted signal, using m-sequences ((c)&(d)), signal using Gold codes ((e)&(f)), using WH codes ((g)&(h)), using MWH codes ((i)&(j)), and using OVSF codes ((k)&(l)). Fig.2: Aperiodic (a) auto-correlation function, (b) cross-correlation function, of Gold sequence of length 63 bits. Fig.3: Aperiodic (a) auto-correlation function, (b) cross-correlation function, of Barker-like sequence of length 63 bits. Fig 4. Aperiodic (a) auto-correlation function, (b) cross-correlation function, of large Kasami sequence of length 63 bits. 60

6 (a) Fig.5: Aperiodic (a) auto-correlation function, (b) cross-correlation function, of MWH sequence of length 64 bits Fig.6: Aperiodic (a) auto-correlation function, (b) cross-correlation function, of orthogonal Gold sequence of length 64 bits 6

Pseudo noise sequences

Pseudo noise sequences Pseudo noise sequences tor engineers by R.N. Mutagi Pseudo noise (PN) sequences are widely used in digital communications and the theory involved has been treated extensively in the literature. However,

More information

WATERMARKING USING DECIMAL SEQUENCES. Navneet Mandhani and Subhash Kak

WATERMARKING USING DECIMAL SEQUENCES. Navneet Mandhani and Subhash Kak Cryptologia, volume 29, January 2005 WATERMARKING USING DECIMAL SEQUENCES Navneet Mandhani and Subhash Kak ADDRESS: Department of Electrical and Computer Engineering, Louisiana State University, Baton

More information

ARM7 Microcontroller Based Digital PRBS Generator

ARM7 Microcontroller Based Digital PRBS Generator I J C International Journal of lectrical, lectronics ISSN No. (Online) : 2277-2626 and Computer ngineering 1(2): 55-59(2012) Special dition for Best Papers of Michael Faraday IT India Summit-2012, MFIIS-12

More information

LFSRs as Functional Blocks in Wireless Applications Author: Stephen Lim and Andy Miller

LFSRs as Functional Blocks in Wireless Applications Author: Stephen Lim and Andy Miller XAPP22 (v.) January, 2 R Application Note: Virtex Series, Virtex-II Series and Spartan-II family LFSRs as Functional Blocks in Wireless Applications Author: Stephen Lim and Andy Miller Summary Linear Feedback

More information

Guidance For Scrambling Data Signals For EMC Compliance

Guidance For Scrambling Data Signals For EMC Compliance Guidance For Scrambling Data Signals For EMC Compliance David Norte, PhD. Abstract s can be used to help mitigate the radiated emissions from inherently periodic data signals. A previous paper [1] described

More information

FPGA IMPLEMENTATION AN ALGORITHM TO ESTIMATE THE PROXIMITY OF A MOVING TARGET

FPGA IMPLEMENTATION AN ALGORITHM TO ESTIMATE THE PROXIMITY OF A MOVING TARGET International Journal of VLSI Design, 2(2), 20, pp. 39-46 FPGA IMPLEMENTATION AN ALGORITHM TO ESTIMATE THE PROXIMITY OF A MOVING TARGET Ramya Prasanthi Kota, Nagaraja Kumar Pateti2, & Sneha Ghanate3,2

More information

Individual Project Report

Individual Project Report EN 3542: Digital Systems Design Individual Project Report Pseudo Random Number Generator using Linear Feedback shift registers Index No: Name: 110445D I.W.A.S.U. Premaratne 1. Problem: Random numbers are

More information

TERRESTRIAL broadcasting of digital television (DTV)

TERRESTRIAL broadcasting of digital television (DTV) IEEE TRANSACTIONS ON BROADCASTING, VOL 51, NO 1, MARCH 2005 133 Fast Initialization of Equalizers for VSB-Based DTV Transceivers in Multipath Channel Jong-Moon Kim and Yong-Hwan Lee Abstract This paper

More information

CS150 Fall 2012 Solutions to Homework 4

CS150 Fall 2012 Solutions to Homework 4 CS150 Fall 2012 Solutions to Homework 4 September 23, 2012 Problem 1 43 CLBs are needed. For one bit, the overall requirement is to simulate an 11-LUT with its output connected to a flipflop for the state

More information

A Pseudorandom Binary Generator Based on Chaotic Linear Feedback Shift Register

A Pseudorandom Binary Generator Based on Chaotic Linear Feedback Shift Register A Pseudorandom Binary Generator Based on Chaotic Linear Feedback Shift Register Saad Muhi Falih Department of Computer Technical Engineering Islamic University College Al Najaf al Ashraf, Iraq saadmuheyfalh@gmail.com

More information

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20 Advanced Devices Using a combination of gates and flip-flops, we can construct more sophisticated logical devices. These devices, while more complex, are still considered fundamental to basic logic design.

More information

MODULE 3. Combinational & Sequential logic

MODULE 3. Combinational & Sequential logic MODULE 3 Combinational & Sequential logic Combinational Logic Introduction Logic circuit may be classified into two categories. Combinational logic circuits 2. Sequential logic circuits A combinational

More information

CSE 352 Laboratory Assignment 3

CSE 352 Laboratory Assignment 3 CSE 352 Laboratory Assignment 3 Introduction to Registers The objective of this lab is to introduce you to edge-trigged D-type flip-flops as well as linear feedback shift registers. Chapter 3 of the Harris&Harris

More information

Scanned by CamScanner

Scanned by CamScanner NAVEEN RAJA VELCHURI DSD & Digital IC Applications Example: 2-bit asynchronous up counter: The 2-bit Asynchronous counter requires two flip-flops. Both flip-flop inputs are connected to logic 1, and initially

More information

Design for Test. Design for test (DFT) refers to those design techniques that make test generation and test application cost-effective.

Design for Test. Design for test (DFT) refers to those design techniques that make test generation and test application cost-effective. Design for Test Definition: Design for test (DFT) refers to those design techniques that make test generation and test application cost-effective. Types: Design for Testability Enhanced access Built-In

More information

True Random Number Generation with Logic Gates Only

True Random Number Generation with Logic Gates Only True Random Number Generation with Logic Gates Only Jovan Golić Security Innovation, Telecom Italia Winter School on Information Security, Finse 2008, Norway Jovan Golic, Copyright 2008 1 Digital Random

More information

A NOTE ON FRAME SYNCHRONIZATION SEQUENCES

A NOTE ON FRAME SYNCHRONIZATION SEQUENCES A NOTE ON FRAME SYNCHRONIZATION SEQUENCES Thokozani Shongwe 1, Victor N. Papilaya 2 1 Department of Electrical and Electronic Engineering Science, University of Johannesburg P.O. Box 524, Auckland Park,

More information

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of 1 The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of the AND gate, you get the NAND gate etc. 2 One of the

More information

Asynchronous (Ripple) Counters

Asynchronous (Ripple) Counters Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory. The chapter about flip-flops introduced

More information

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 2 Stream Ciphers ver.

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 2 Stream Ciphers ver. Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 2 Stream Ciphers ver. October 29, 2009 These slides were prepared by

More information

LFSR Counter Implementation in CMOS VLSI

LFSR Counter Implementation in CMOS VLSI LFSR Counter Implementation in CMOS VLSI Doshi N. A., Dhobale S. B., and Kakade S. R. Abstract As chip manufacturing technology is suddenly on the threshold of major evaluation, which shrinks chip in size

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY Tarannum Pathan,, 2013; Volume 1(8):655-662 INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK VLSI IMPLEMENTATION OF 8, 16 AND 32

More information

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 2 Stream Ciphers ver.

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 2 Stream Ciphers ver. Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 2 Stream Ciphers ver. October 29, 2009 These slides were prepared by

More information

AIM: To study and verify the truth table of logic gates

AIM: To study and verify the truth table of logic gates EXPERIMENT: 1- LOGIC GATES AIM: To study and verify the truth table of logic gates LEARNING OBJECTIVE: Identify various Logic gates and their output. COMPONENTS REQUIRED: KL-31001 Digital Logic Lab( Main

More information

Design and Implementation of Data Scrambler & Descrambler System Using VHDL

Design and Implementation of Data Scrambler & Descrambler System Using VHDL Design and Implementation of Data Scrambler & Descrambler System Using VHDL Naina K.Randive Dept.of Electronics and Telecommunications Dept. of Electronics and Telecommunications P.R. Pote (Patil) college

More information

Implementation of CRC and Viterbi algorithm on FPGA

Implementation of CRC and Viterbi algorithm on FPGA Implementation of CRC and Viterbi algorithm on FPGA S. V. Viraktamath 1, Akshata Kotihal 2, Girish V. Attimarad 3 1 Faculty, 2 Student, Dept of ECE, SDMCET, Dharwad, 3 HOD Department of E&CE, Dayanand

More information

Chapter 3 Unit Combinational

Chapter 3 Unit Combinational EE 200: Digital Logic Circuit Design Dr Radwan E Abdel-Aal, COE Logic and Computer Design Fundamentals Chapter 3 Unit Combinational 5 Registers Logic and Design Counters Part Implementation Technology

More information

Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003

Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003 1 Introduction Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003 Circuits for counting both forward and backward events are frequently used in computers and other digital systems. Digital

More information

AC103/AT103 ANALOG & DIGITAL ELECTRONICS JUN 2015

AC103/AT103 ANALOG & DIGITAL ELECTRONICS JUN 2015 Q.2 a. Draw and explain the V-I characteristics (forward and reverse biasing) of a pn junction. (8) Please refer Page No 14-17 I.J.Nagrath Electronic Devices and Circuits 5th Edition. b. Draw and explain

More information

Optimization of Multi-Channel BCH Error Decoding for Common Cases. Russell Dill Master's Thesis Defense April 20, 2015

Optimization of Multi-Channel BCH Error Decoding for Common Cases. Russell Dill Master's Thesis Defense April 20, 2015 Optimization of Multi-Channel BCH Error Decoding for Common Cases Russell Dill Master's Thesis Defense April 20, 2015 Bose-Chaudhuri-Hocquenghem (BCH) BCH is an Error Correcting Code (ECC) and is used

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053 SET - 1 1. a) What are the characteristics of 2 s complement numbers? b) State the purpose of reducing the switching functions to minimal form. c) Define half adder. d) What are the basic operations in

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

IN DIGITAL transmission systems, there are always scramblers

IN DIGITAL transmission systems, there are always scramblers 558 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 7, JULY 2006 Parallel Scrambler for High-Speed Applications Chih-Hsien Lin, Chih-Ning Chen, You-Jiun Wang, Ju-Yuan Hsiao,

More information

REPEAT EXAMINATIONS 2002

REPEAT EXAMINATIONS 2002 REPEAT EXAMINATIONS 2002 EE101 Digital Electronics Solutions Question 1. An engine has 4 fail-safe sensors. The engine should keep running unless any of the following conditions arise: o If sensor 2 is

More information

Analogue Versus Digital [5 M]

Analogue Versus Digital [5 M] Q.1 a. Analogue Versus Digital [5 M] There are two basic ways of representing the numerical values of the various physical quantities with which we constantly deal in our day-to-day lives. One of the ways,

More information

Design of BIST with Low Power Test Pattern Generator

Design of BIST with Low Power Test Pattern Generator IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 5, Ver. II (Sep-Oct. 2014), PP 30-39 e-issn: 2319 4200, p-issn No. : 2319 4197 Design of BIST with Low Power Test Pattern Generator

More information

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A SET - 1 Note: Question Paper consists of two parts (Part-A and Part-B) Answer ALL the question in Part-A Answer any THREE Questions from Part-B a) What are the characteristics of 2 s complement numbers?

More information

Logic and Computer Design Fundamentals. Chapter 7. Registers and Counters

Logic and Computer Design Fundamentals. Chapter 7. Registers and Counters Logic and Computer Design Fundamentals Chapter 7 Registers and Counters Registers Register a collection of binary storage elements In theory, a register is sequential logic which can be defined by a state

More information

A Novel Turbo Codec Encoding and Decoding Mechanism

A Novel Turbo Codec Encoding and Decoding Mechanism A Novel Turbo Codec Encoding and Decoding Mechanism Desai Feroz 1 1Desai Feroz, Knowledge Scientist, Dept. of Electronics Engineering, SciTech Patent Art Services Pvt Ltd, Telangana, India ---------------***---------------

More information

Implementation of a turbo codes test bed in the Simulink environment

Implementation of a turbo codes test bed in the Simulink environment University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2005 Implementation of a turbo codes test bed in the Simulink environment

More information

Chapter 6 Registers and Counters

Chapter 6 Registers and Counters EEA051 - Digital Logic 數位邏輯 Chapter 6 Registers and Counters 吳俊興國立高雄大學資訊工程學系 January 2006 Chapter 6 Registers and Counters 6-1 Registers 6-2 Shift Registers 6-3 Ripple Counters 6-4 Synchronous Counters

More information

Logic Design. Flip Flops, Registers and Counters

Logic Design. Flip Flops, Registers and Counters Logic Design Flip Flops, Registers and Counters Introduction Combinational circuits: value of each output depends only on the values of inputs Sequential Circuits: values of outputs depend on inputs and

More information

Efficient Architecture for Flexible Prescaler Using Multimodulo Prescaler

Efficient Architecture for Flexible Prescaler Using Multimodulo Prescaler Efficient Architecture for Flexible Using Multimodulo G SWETHA, S YUVARAJ Abstract This paper, An Efficient Architecture for Flexible Using Multimodulo is an architecture which is designed from the proposed

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-III SEQUENTIAL CIRCUITS

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-III SEQUENTIAL CIRCUITS NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS CLASS: II YEAR ECE SUBJECT CODE: EC2203

More information

Sequences and Cryptography

Sequences and Cryptography Sequences and Cryptography Workshop on Shift Register Sequences Honoring Dr. Solomon W. Golomb Recipient of the 2016 Benjamin Franklin Medal in Electrical Engineering Guang Gong Department of Electrical

More information

Chapter Contents. Appendix A: Digital Logic. Some Definitions

Chapter Contents. Appendix A: Digital Logic. Some Definitions A- Appendix A - Digital Logic A-2 Appendix A - Digital Logic Chapter Contents Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A. Introduction A.2 Combinational

More information

FPGA Implementation of Convolutional Encoder And Hard Decision Viterbi Decoder

FPGA Implementation of Convolutional Encoder And Hard Decision Viterbi Decoder FPGA Implementation of Convolutional Encoder And Hard Decision Viterbi Decoder JTulasi, TVenkata Lakshmi & MKamaraju Department of Electronics and Communication Engineering, Gudlavalleru Engineering College,

More information

VLSI Technology used in Auto-Scan Delay Testing Design For Bench Mark Circuits

VLSI Technology used in Auto-Scan Delay Testing Design For Bench Mark Circuits VLSI Technology used in Auto-Scan Delay Testing Design For Bench Mark Circuits N.Brindha, A.Kaleel Rahuman ABSTRACT: Auto scan, a design for testability (DFT) technique for synchronous sequential circuits.

More information

1. Convert the decimal number to binary, octal, and hexadecimal.

1. Convert the decimal number to binary, octal, and hexadecimal. 1. Convert the decimal number 435.64 to binary, octal, and hexadecimal. 2. Part A. Convert the circuit below into NAND gates. Insert or remove inverters as necessary. Part B. What is the propagation delay

More information

A High- Speed LFSR Design by the Application of Sample Period Reduction Technique for BCH Encoder

A High- Speed LFSR Design by the Application of Sample Period Reduction Technique for BCH Encoder IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 239 42, ISBN No. : 239 497 Volume, Issue 5 (Jan. - Feb 23), PP 7-24 A High- Speed LFSR Design by the Application of Sample Period Reduction

More information

Flip Flop. S-R Flip Flop. Sequential Circuits. Block diagram. Prepared by:- Anwar Bari

Flip Flop. S-R Flip Flop. Sequential Circuits. Block diagram. Prepared by:- Anwar Bari Sequential Circuits The combinational circuit does not use any memory. Hence the previous state of input does not have any effect on the present state of the circuit. But sequential circuit has memory

More information

Randomness analysis of A5/1 Stream Cipher for secure mobile communication

Randomness analysis of A5/1 Stream Cipher for secure mobile communication Randomness analysis of A5/1 Stream Cipher for secure mobile communication Prof. Darshana Upadhyay 1, Dr. Priyanka Sharma 2, Prof.Sharada Valiveti 3 Department of Computer Science and Engineering Institute

More information

DESIGN and IMPLETATION of KEYSTREAM GENERATOR with IMPROVED SECURITY

DESIGN and IMPLETATION of KEYSTREAM GENERATOR with IMPROVED SECURITY DESIGN and IMPLETATION of KEYSTREAM GENERATOR with IMPROVED SECURITY Vijay Shankar Pendluri, Pankaj Gupta Wipro Technologies India vijay_shankarece@yahoo.com, pankaj_gupta96@yahoo.com Abstract - This paper

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

Principles of Computer Architecture. Appendix A: Digital Logic

Principles of Computer Architecture. Appendix A: Digital Logic A-1 Appendix A - Digital Logic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

Bit-Serial Test Pattern Generation by an Accumulator behaving as a Non-Linear Feedback Shift Register

Bit-Serial Test Pattern Generation by an Accumulator behaving as a Non-Linear Feedback Shift Register Bit-Serial Test Pattern Generation by an Accumulator behaving as a Non-Linear Feedbac Shift Register G Dimitraopoulos, D Niolos and D Baalis Computer Engineering and Informatics Dept, University of Patras,

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers and Counters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

[Krishna*, 4.(12): December, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Krishna*, 4.(12): December, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DESIGN AND IMPLEMENTATION OF BIST TECHNIQUE IN UART SERIAL COMMUNICATION M.Hari Krishna*, P.Pavan Kumar * Electronics and Communication

More information

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it,

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, Solution to Digital Logic -2067 Solution to digital logic 2067 1.)What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, A Magnitude comparator is a combinational

More information

(Refer Slide Time: 2:03)

(Refer Slide Time: 2:03) (Refer Slide Time: 2:03) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture # 22 Application of Shift Registers Today we

More information

VeriLab. An introductory lab for using Verilog in digital design (first draft) VeriLab

VeriLab. An introductory lab for using Verilog in digital design (first draft) VeriLab VeriLab An introductory lab for using Verilog in digital design (first draft) VeriLab An introductory lab for using Verilog in digital design Verilog is a hardware description language useful for designing

More information

UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MALAYSIA SULIT Faculty of Computing UNIVERSITI TEKNOLOGI MALAYSIA FINAL EXAMINATION SEMESTER I, 2016 / 2017 SUBJECT CODE : SUBJECT NAME : SECTION : TIME : DATE/DAY : VENUES : INSTRUCTIONS : Answer all questions

More information

BISHOP ANSTEY HIGH SCHOOL & TRINITY COLLEGE EAST SIXTH FORM CXC CAPE PHYSICS, UNIT 2 Ms. S. S. CALBIO NOTES lesson #39

BISHOP ANSTEY HIGH SCHOOL & TRINITY COLLEGE EAST SIXTH FORM CXC CAPE PHYSICS, UNIT 2 Ms. S. S. CALBIO NOTES lesson #39 BISHOP ANSTEY HIGH SCHOOL & TRINITY COLLEGE EAST SIXTH FORM CXC CAPE PHYSICS, UNIT 2 Ms. S. S. CALBIO NOTES lesson #39 Objectives: Students should be able to Thursday 21 st January 2016 @ 10:45 am Module

More information

THE USE OF forward error correction (FEC) in optical networks

THE USE OF forward error correction (FEC) in optical networks IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 8, AUGUST 2005 461 A High-Speed Low-Complexity Reed Solomon Decoder for Optical Communications Hanho Lee, Member, IEEE Abstract

More information

Chapter 4. Logic Design

Chapter 4. Logic Design Chapter 4 Logic Design 4.1 Introduction. In previous Chapter we studied gates and combinational circuits, which made by gates (AND, OR, NOT etc.). That can be represented by circuit diagram, truth table

More information

DESIGN OF LOW POWER TEST PATTERN GENERATOR

DESIGN OF LOW POWER TEST PATTERN GENERATOR International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN(P): 2249-684X; ISSN(E): 2249-7951 Vol. 4, Issue 1, Feb 2014, 59-66 TJPRC Pvt.

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 2003O152221A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0152221A1 Cheng et al. (43) Pub. Date: Aug. 14, 2003 (54) SEQUENCE GENERATOR AND METHOD OF (52) U.S. C.. 380/46;

More information

Counter dan Register

Counter dan Register Counter dan Register Introduction Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory.

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 03 February 09, 2012 Dohn Bowden 1 Today s Lecture Registers and Counters Chapter 12 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

TIME SCHEDULE. MODULE TOPICS PERIODS 1 Number system & Boolean algebra 17 Test I 1 2 Logic families &Combinational logic

TIME SCHEDULE. MODULE TOPICS PERIODS 1 Number system & Boolean algebra 17 Test I 1 2 Logic families &Combinational logic COURSE TITLE : DIGITAL INSTRUMENTS PRINCIPLE COURSE CODE : 3075 COURSE CATEGORY : B PERIODS/WEEK : 4 PERIODS/SEMESTER : 72 CREDITS : 4 TIME SCHEDULE MODULE TOPICS PERIODS 1 Number system & Boolean algebra

More information

QUICK GUIDE COMPUTER LOGICAL ORGANIZATION - OVERVIEW

QUICK GUIDE COMPUTER LOGICAL ORGANIZATION - OVERVIEW QUICK GUIDE http://www.tutorialspoint.com/computer_logical_organization/computer_logical_organization_quick_guide.htm COMPUTER LOGICAL ORGANIZATION - OVERVIEW Copyright tutorialspoint.com In the modern

More information

Sequential Digital Design. Laboratory Manual. Experiment #7. Counters

Sequential Digital Design. Laboratory Manual. Experiment #7. Counters The Islamic University of Gaza Engineering Faculty Department of Computer Engineering Spring 2018 ECOM 2022 Khaleel I. Shaheen Sequential Digital Design Laboratory Manual Experiment #7 Counters Objectives

More information

On the design of turbo codes with convolutional interleavers

On the design of turbo codes with convolutional interleavers University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2005 On the design of turbo codes with convolutional interleavers

More information

Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012

Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012 1 McGill University Faculty of Engineering ECSE-221B Introduction to Computer Engineering Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012 Examiner: Rola Harmouche Date:

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 ISSN DESIGN OF MB-OFDM SYSTEM USING HDL

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 ISSN DESIGN OF MB-OFDM SYSTEM USING HDL ISSN 2229-5518 836 DESIGN OF MB-OFDM SYSTEM USING HDL Ms. Payal Kantute, Mrs. Jaya Ingole Abstract - Multi-Band Orthogonal Frequency Division Multiplexing (MB-OFDM) is a suitable solution for implementation

More information

Registers and Counters

Registers and Counters Registers and Counters Clocked sequential circuit = F/Fs and combinational gates Register Group of flip-flops (share a common clock and capable of storing one bit of information) Consist of a group of

More information

Comparative Analysis of Stein s. and Euclid s Algorithm with BIST for GCD Computations. 1. Introduction

Comparative Analysis of Stein s. and Euclid s Algorithm with BIST for GCD Computations. 1. Introduction IJCSN International Journal of Computer Science and Network, Vol 2, Issue 1, 2013 97 Comparative Analysis of Stein s and Euclid s Algorithm with BIST for GCD Computations 1 Sachin D.Kohale, 2 Ratnaprabha

More information

SRAM Based Random Number Generator For Non-Repeating Pattern Generation

SRAM Based Random Number Generator For Non-Repeating Pattern Generation Applied Mechanics and Materials Online: 2014-06-18 ISSN: 1662-7482, Vol. 573, pp 181-186 doi:10.4028/www.scientific.net/amm.573.181 2014 Trans Tech Publications, Switzerland SRAM Based Random Number Generator

More information

Dynamic Power Reduction in Sequential Circuits Using Look Ahead Clock Gating Technique R. Manjith, C. Muthukumari

Dynamic Power Reduction in Sequential Circuits Using Look Ahead Clock Gating Technique R. Manjith, C. Muthukumari Dynamic Power Reduction in Sequential Circuits Using Look Ahead Clock Gating Technique R. Manjith, C. Muthukumari Abstract In this paper, a novel Linear Feedback Shift Register (LFSR) with Look Ahead Clock

More information

Logic Design Viva Question Bank Compiled By Channveer Patil

Logic Design Viva Question Bank Compiled By Channveer Patil Logic Design Viva Question Bank Compiled By Channveer Patil Title of the Practical: Verify the truth table of logic gates AND, OR, NOT, NAND and NOR gates/ Design Basic Gates Using NAND/NOR gates. Q.1

More information

Digital Fundamentals: A Systems Approach

Digital Fundamentals: A Systems Approach Digital Fundamentals: A Systems Approach Counters Chapter 8 A System: Digital Clock Digital Clock: Counter Logic Diagram Digital Clock: Hours Counter & Decoders Finite State Machines Moore machine: One

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Lab Manual for Computer Organization Lab

More information

Sequential Logic. Analysis and Synthesis. Joseph Cavahagh Santa Clara University. r & Francis. TaylonSi Francis Group. , Boca.Raton London New York \

Sequential Logic. Analysis and Synthesis. Joseph Cavahagh Santa Clara University. r & Francis. TaylonSi Francis Group. , Boca.Raton London New York \ Sequential Logic Analysis and Synthesis Joseph Cavahagh Santa Clara University r & Francis TaylonSi Francis Group, Boca.Raton London New York \ CRC is an imprint of the Taylor & Francis Group, an informa

More information

Chapter 2. Digital Circuits

Chapter 2. Digital Circuits Chapter 2. Digital Circuits Logic gates Flip-flops FF registers IC registers Data bus Encoders/Decoders Multiplexers Troubleshooting digital circuits Most contents of this chapter were covered in 88-217

More information

Implementation of BIST Test Generation Scheme based on Single and Programmable Twisted Ring Counters

Implementation of BIST Test Generation Scheme based on Single and Programmable Twisted Ring Counters IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684, p-issn: 2320-334X Implementation of BIST Test Generation Scheme based on Single and Programmable Twisted Ring Counters N.Dilip

More information

MC9211 Computer Organization

MC9211 Computer Organization MC9211 Computer Organization Unit 2 : Combinational and Sequential Circuits Lesson2 : Sequential Circuits (KSB) (MCA) (2009-12/ODD) (2009-10/1 A&B) Coverage Lesson2 Outlines the formal procedures for the

More information

WG Stream Cipher based Encryption Algorithm

WG Stream Cipher based Encryption Algorithm International Journal of Emerging Engineering Research and Technology Volume 3, Issue 11, November 2015, PP 63-70 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) WG Stream Cipher based Encryption Algorithm

More information

Application of Symbol Avoidance in Reed-Solomon Codes to Improve their Synchronization

Application of Symbol Avoidance in Reed-Solomon Codes to Improve their Synchronization Application of Symbol Avoidance in Reed-Solomon Codes to Improve their Synchronization Thokozani Shongwe Department of Electrical and Electronic Engineering Science, University of Johannesburg, P.O. Box

More information

Figure 30.1a Timing diagram of the divide by 60 minutes/seconds counter

Figure 30.1a Timing diagram of the divide by 60 minutes/seconds counter Digital Clock The timing diagram figure 30.1a shows the time interval t 6 to t 11 and t 19 to t 21. At time interval t 9 the units counter counts to 1001 (9) which is the terminal count of the 74x160 decade

More information

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall Objective: - Dealing with the operation of simple sequential devices. Learning invalid condition in

More information

Microprocessor Design

Microprocessor Design Microprocessor Design Principles and Practices With VHDL Enoch O. Hwang Brooks / Cole 2004 To my wife and children Windy, Jonathan and Michelle Contents 1. Designing a Microprocessor... 2 1.1 Overview

More information

Counters

Counters Counters A counter is the most versatile and useful subsystems in the digital system. A counter driven by a clock can be used to count the number of clock cycles. Since clock pulses occur at known intervals,

More information

Area-efficient high-throughput parallel scramblers using generalized algorithms

Area-efficient high-throughput parallel scramblers using generalized algorithms LETTER IEICE Electronics Express, Vol.10, No.23, 1 9 Area-efficient high-throughput parallel scramblers using generalized algorithms Yun-Ching Tang 1, 2, JianWei Chen 1, and Hongchin Lin 1a) 1 Department

More information

VLSI System Testing. BIST Motivation

VLSI System Testing. BIST Motivation ECE 538 VLSI System Testing Krish Chakrabarty Built-In Self-Test (BIST): ECE 538 Krish Chakrabarty BIST Motivation Useful for field test and diagnosis (less expensive than a local automatic test equipment)

More information

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL 1. A stage in a shift register consists of (a) a latch (b) a flip-flop (c) a byte of storage (d) from bits of storage 2. To serially shift a byte of data into a shift register, there must be (a) one click

More information

Electrical and Telecommunications Engineering Technology_TCET3122/TC520. NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York

Electrical and Telecommunications Engineering Technology_TCET3122/TC520. NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York DEPARTMENT: SUBJECT CODE AND TITLE: COURSE DESCRIPTION: REQUIRED: Electrical and Telecommunications Engineering Technology TCET 3122/TC

More information

Computer Architecture and Organization

Computer Architecture and Organization A-1 Appendix A - Digital Logic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Appendix A Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops Objective Construct a two-bit binary decoder. Study multiplexers (MUX) and demultiplexers (DEMUX). Construct an RS flip-flop from discrete gates.

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Vignana Bharathi Institute of Technology UNIT 4 DLD

Vignana Bharathi Institute of Technology UNIT 4 DLD DLD UNIT IV Synchronous Sequential Circuits, Latches, Flip-flops, analysis of clocked sequential circuits, Registers, Shift registers, Ripple counters, Synchronous counters, other counters. Asynchronous

More information