Assessing and Measuring VCR Playback Image Quality, Part 1. Leo Backman/DigiOmmel & Co.
|
|
- Vanessa Riley
- 10 months ago
- Views:
Transcription
1 Assessing and Measuring VCR Playback Image Quality, Part 1. Leo Backman/DigiOmmel & Co. Assessing analog VCR image quality and stability requires dedicated measuring instruments. Still, standard metrics developed for testing video signal in broadcasting environment are not directly applicable for non-broadcast VCRs. Part 1. of this study discusses the visibility of low-frequency dynamic errors affecting VCR playback signal. The quality and stability of a VCR playback video signal is unavoidably affected by various electrical, magnetic and mechanical factors. Some errors have impinged on the signal already at the recording process. Identification of the nature, cause and typical magnitudes of these errors can offer solutions to reduce the dominant dynamic errors in non-broadcast video tape digital transfer process. First, video signal measurement and quality assessment methods and practises are discussed. The use of narrow-band spectrum analysis for identifying VCR noise problems are also demonstrated and discussed.
2 Comparing an electronically generated video test-pattern with VCR playback readily shows how the overall image stability is determined by the level of dynamic errors in the video signal. The most significant factors are time-base errors, or video jitter, luminance amplitude noise and chrominance modulation noise. We will tackle them in three stages: jitter, luminance, and chrominance noise, starting with the jitter. Jitter visibility In order to get some visual proof of how jitter actually corrupts the playback image, we constructed a test setup around high-stability video generator (Philips PM5570) and used it as a signal source. The generator was modified so that and external signal could be injected into the time-base oscillator as jitter simulation (Fig. 1). Figure 1. Jitter simulation test setup. With the setup, jitter of freely variable amplitude, frequency distribution and waveform could be caused to the otherwise 'noiseless' video signal (better than 75dB unweighted S/N ratio). First we established the level (percentage) at which jitter just becomes visible on the monitor screen. This was done at optimum conditions in terms of ambient lighting and monitor viewing distance. With random noise as jitter signal, the absolute detection level (ADL) was found at about 0.008% (peak). For a more extensive ADL analysis, various types of signals were used. Next, a sine wave jitter at various spot-frequencies were generated. Below 350Hz, the ADL varied by 13dB (1:4.4), depending on its exact frequency. It was established that the visual jitter instability is at its lowest at video field frequency (50Hz) and its even multiples (100, 150, 200 Hz etc.). As expected, jitter at odd multiples of the line frequency (25, 75, 125, 175 Hz etc.) becomes most visible (Fig. 2).
3 Figure 2. The absolute jitter detection level or ADL varies significantly between odd multiples of the video signal field frequency (50Hz). To examine the ADL variation between odd an even-frequency jitter more closely, we made measurements at 2.5-Hz increments discovering that, from 25 to 75Hz, the ADL does not change symmetrically but rather peaks at precisely even multiples (Fig. 3). This measurement was made to see how resonances and other instabilities unrelated to video signal field frequency might affect the image stability. From these observations, it can be deduced that low-frequency jitter is least visible when its spectral distribution is 'synchronised' with the field frequency. Figure 3. A spot-frequency measurement of low-frequency jitter visibility shows that the variation in ADL is not symmetrical from 25 to 75 Hz, but peaks rather sharply at 50 Hz.
4 The explanation for odd/even-frequency variation in ADL is obvious: Jitter at even multiples of field frequency causes no horizontal displacement of the picture content between successive fields. Even at high levels of jitter, vertical lines and image details still appear horizontally at the same place on the screen, only slightly 'bent'. With odd-multiple jitter, however, the image details appear at two horizontal places causing a noticeable 25-Hz flicker (Fig. 4). Figure 4. The same level of jitter at odd an even multiples appear very different on a monitor screen. Standard weighting curves These findings confirmed our assumption that the visibility of low-frequency jitter should not be assessed as any random error. At least two attempts were made by the IEC, to create standard weighting curve for VCR jitter. The earliest (IEC-511, 1975) sets limits for highest acceptable jitter vs. frequency. It simply imposes lower limit to jitter frequencies between about 50 and 1.5kHz. Figure 5. IEC-511 sets limits to highest acceptable jitter vs. frequency. IEC-756 defines suitable weighting curve for jitter measurements. The JVC Company obviously adopted the latter as their factory specification.
5 The IEC-756 (1983) however, takes the opposite approach by defining the appropriate weighting curve for VCR jitter measurement (Fig. 5). As a measure of visual video image stability, both standards are rather unsuccessful. There may be two VCRs with almost 1:5 disparity in their peak jitter percentage, still appearing visually equal in terms of image stability. If a visually corresponding jitter weighting is adopted, we should expect to look something like the one drawn in Fig. 6. Figure. 6 A jitter weighting curve relating to the visual annoyance with CCIR 625/50 video signal. Jitter and noise are inseparable Random noise, mixed additively with composite video signal, including synchronization pulses, has both amplitude and time quantity. Any amplitude noise, added to the video signal, will also generate jitter; and any jitter in the video signal will be seen as noise on TV screen. We demonstrate this claim by recording and playing back a test pattern with a semi-professional VCR having an exceptionally low luminance S/N ratio (approx. 50dB unweighted). Our test pattern has a single vertical line, superimposed on a black-level background. The test generator itself, as noted, adds no visible amplitude noise. In this arrangement, the visibility of the amplitude noise in the video signal is minimised. Figure 7. Jitter visibility test signal photographed from a CRT screen (left). The 'indicator' line is horizontally time-expanded to show how jitter alone creates edge noise at sharp vertical lines, even when the luminance amplitude noise is invisible.
6 Our claim how jitter without amplitude noise causes considerable image noise is depicted in Fig. 7. Jitter from VCR s tape transport broadens bright vertical lines and sharp contours, making them appear as blurred and noisy. This phenomenon has been referred to as 'edge noise'. So, jitter alone can turn a lownoise video image into a noisy one. In summary, a high-stability video playback requires not just high S/N ratio, but also a fairly low jitter that is concentrated at even-multiples of the video field frequency. Wide-band amplitude noise, giving rise to video jitter or frequency noise was demonstrated by yet another experiment. The video generator was connected to a luminance noise meter and jitter analyser (Fig. 1). The ratio of an amplitude noise to video signal was gradually decreased from 75dB to 20dB, while marking down the jitter readings. The plot in Fig. 8 shows that a VCR, having an unweighted S/N ratio of 40dB, may be accurately measured for wide-band jitter down to about 0.055% (peak). If a zero-luminance test signal is used, or the VCR S/N ratio is only 35dB, the jitter accuracy decreases to about 0.11% (peak). This test serves to show that, if possible, a full white field should be used for jitter testing unless one desires to measure jitter and S/N mixed together! Figure 8. The S/N ratio and luminance level of a video signal determines the accuracy of jitter measurement. One method of measuring VCR jitter is to plot the line sync pulse frequency deviation across the entire video frame (40 msec). The jitter naturally always peaks at video head switching point, set at some 5-10 lines before the start of field-blanking period (Fig. 9).
7 Figure 9. Jitter value depends very much on how it is measured. This measurement, however, disregards the fact that the blanking period is basically never displayed on the screen. The blanking periods last about 1.7 msec and are placed well before the next 'visible' field begins. Modern video monitors and TV sets are quite capable of completely time-correcting such linefrequency 'jumps' due to video head switchover. Dedicated jitter meters gate the jitter from blanking periods before measuring the jitter percentage. However, when gating or blanking continuous jitter signal as per Fig. 9, is used, the jitter level will be reduced and its spectrum altered. Figure 10. While jitter can be reduced significantly with an impedance roller between 100 and 800Hz, the roller is not effective below 100Hz or above 900 Hz. Mechanical means to reduce video jitter by dampening tape resonances have been used by adding an 'inertial' or 'impedance' roller near the video head cylinder tape exit and entrance points. A result jitter spectrum of one such VCR is shown in Fig. 10, with the roller engaged and disengaged. Added inertia can indeed reduce video jitter significantly bweteen 100 and about 800 Hz.
8 Measuring luminance noise Next, our test generator-monitor-luminance noise meter setup was used to determine how the luminance level (brightness) affects the visibility of amplitude noise on TV screen. In the viewing sessions, we came up with a curve drawn in Fig. 11. The sessions were conducted at optimum conditions (viewing distance and ambient lighting). As expected, the luminance noise is most visible at mid-grey levels, or video amplitudes between 20 to 30%. The curve also shows that an unweighted noise visibility limit for the CCIR PAL signal stands at an S/N ratio of around 53dB. So, a video image with an S/N figure of more than 53dB, looks exactly as noise-free' as the one having an S/N of 65, 75, or 85dB. Incidentally, it was only in the early 1990s, when the IEC revised its standard for S/N measurement from 50 to 30% video levels. Figure 11. This S/N visibility curve implies that the noise should be assessed and measured an amplitude of 20-30%. Most VCR testers used CCIR-Rec-567 weighting filter for luminance S/N measurement. However, the filter was already outdated. In any case, weighted S/N measurements were originally meant for testing TV broadcasting networks and other professional video systems. Fig. 12 shows how the weighting filter ignores the visibility of the upper portion of luminance video noise.
9 Figure 12. The CCIR-567 weighting filter ignores a significant part of the mid- and high-frequency luminance noise. Considering the proliferation of large TV screen sizes and ever-increasing screen resolutions, the use of weighting is misleading; it attenuates a portion of the high-frequency noise that is revealed by modern monitor and TV screens. Weighted S/N figures can give wrong impression of a non-broadcast VCRs, too. Fig. 13 shows two measurements of the luminance noise spectra from VCRs with an overlaid CCIR-567 weighting filter. A significant portion of the 1 to 3-MHz noise would be cut down by the filter, giving rather similar S/N readings. Still, the 'BR-6600E' produces visibly noisier playback image against the 'AG-7330'. The narrow 'spikes' in the spectra do not significantly contribute to RMS noise. Figure 13. Luminance noise spectra of two semi-professional VCRs. Measuring chrominance noise Chrominance noise measurement involves rather complex pre-processing of the video signal being analyzed. A chroma noise meter has band-pass filter to separate the 4.43-MHz subcarrier from composite video signal. The noise is measured as two modulation components of the subcarrier: amplitude and phase. In PAL signal, both AM and PM manifest as amplitude or de-saturation noise on the screen.
10 The AM and PM are typically found to have low correlation in analog VCRs. so, each should be analysed individually. All consumer-grade VCR formats such as Beta, VHS, Video8, Video2000 and even U-matic, employ a 'colour under' signal format. On recording, the 4.43MHz PAL standard chrominance signal is down-converted into a carrier located between 0.5 and 1MHz. The chroma signal also contains short bursts that serve as colour phase and level correction during playback. Burst signals are important; any time or amplitude error impinging on the burst also deteriorate the demodulated colour image by almost as much as any noise in the actual (displayed) part of the colour signal. On playback, the LF chroma carrier converted back to 4.43MHz. Upconversion also alters the chroma signal. An AM carrier, recorded at 0.5 MHz cannot theoretically contain any color information beyond 0.5MHz. Noise meters pre-condition composite video signal prior to measuring because, unlike in continuous audio signal, video signal is serrated by constant-amplitude field and line blanking periods, with their respective synchronization pulses and chrominance burst signals placed between each line period. Because of the line-synchronised phase-alternation of standard PAL chroma signal, noise measurement requires even more processing than the NTSC signal (Fig. 14). The IEC-883 (Measuring method for chrominance signal-to-random noise ratio for video tape recorders), defines the basic procedure. Still, it leaves much to interpretation. Figure 14. Chrominance AM/PM noise measurement method, according to IEC-883. For instance, many test engineers used 1, 10, or even 100-kHz high-pass filters in their chroma S/N measurements despite of the fact that the most visible LF chroma noise in any VCR occurs below 4 khz (Fig. 15). In order to study the basic low-frequency chroma noise visibility vs. frequency, we modified our video test pattern generator once more. This time, an external signal was injected into the generator s chroma subcarrier oscillator. Now we had a video signal source that could be set to produce controlled amounts of AM or PM noise at any frequency.
11 Figure 15. Gating causes aliasing of the chroma noise signal spectra. The chroma noise between 25Hz to 4kHz is the region of interest as it causes flicker in the colour image. Noise above 4 khz only slightly reduces colour saturation. Figure 16. This measurement shows why high-pass filters should not be used in VCR chroma noise measurements. Surprisingly, the spot-frequency experiment showed chroma noise ADL frequency-dependency at opposite field-frequency multiples to the jitter frequency ADL! One possibility for this is seen in Fig. 17, where the complex relationship between chroma subcarrier frequency and the resulting PM noise is presented.
12 Figure 17. Chroma PM noise can either double in frequency or increase considerably in amplitude depending on its static frequency. It seems the chroma noise, appearing at multiples of field frequency can become decoded in different ways depending on the exact subcarrier frequency. Although a full explanation this could not be confirmed at this time, we can conclude that VCR low-frequency chroma noise components should be assessed individually (AM, PM). Figure 18. A presentation of how chroma PM noise may appear on a TV or video monitor screen (red-field test pattern).
13 Figure 19. Jitter, AM and PM noise spectra of a single VCR show that all three dynamic error mechanisms can have very low correlation, and should be assessed individually. Finally, Fig. 20 illustrates how two VCRs, that produce a numerically equal amount of chroma LF noise, but differ significantly it terms of actual visibility of the noise. In VCR B, most of it appears at even multiples of the video field frequency, thus making the color flicker considerably less visible than in VCR A, where the dominant noise appears at disturbing odd multiples (25, 75, 125, 175, 225 Hz). Figure 20. Comparison of two VCRs with odd and even-multiples of LF chroma noise. The color image from VCR B has a much lower visible flicker than VCR A, even though their absolute S/N figures are quite similar. Conclusion The above tests and graphics show that a high-resolution spectrum analysis in connection with video jitter and noise meters are needed to produce objective and comparable results of how different VCRs actually perform in terms of playback image quality and stability. Part 2. of this instalment compares practical chroma noise measurements of different non-broadcast VCRs formats, and discusses their implications in order to improve digital capture of old VCR recordings.
14 Copying, alteration and redistribution of the textual or pictorial content of this document is prohibited without the author s permission. Note: Most of these tests and evaluations were conducted in the s, during the home VCR 'era', with the intention of establishing proper metrics for evaluating consumer-grade VCR video image quality. Back then, the writer was not able to actually conduct all the measurements to prove or disprove these theories. That is why some more recent measurement data were added. Leo Backman, July, 2005 (preliminary draft, March, 1983)
INTEGRATED CIRCUITS DATA SHEET. TDA4510 PAL decoder. Product specification File under Integrated Circuits, IC02
INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC02 March 1986 GENERAL DESCRIPTION The is a colour decoder for the PAL standard, which is pin sequent compatible with multistandard decoder
Multimedia. Course Code (Fall 2017) Fundamental Concepts in Video
Course Code 005636 (Fall 2017) Multimedia Fundamental Concepts in Video Prof. S. M. Riazul Islam, Dept. of Computer Engineering, Sejong University, Korea E-mail: riaz@sejong.ac.kr Outline Types of Video
Presented by: Amany Mohamed Yara Naguib May Mohamed Sara Mahmoud Maha Ali. Supervised by: Dr.Mohamed Abd El Ghany
Presented by: Amany Mohamed Yara Naguib May Mohamed Sara Mahmoud Maha Ali Supervised by: Dr.Mohamed Abd El Ghany Analogue Terrestrial TV. No satellite Transmission Digital Satellite TV. Uses satellite
Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri April 2011 Sharif University of Technology
Course Presentation Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri April 2011 Sharif University of Technology Video Visual Effect of Motion The visual effect of motion is due
BTV Tuesday 21 November 2006
Test Review Test from last Thursday. Biggest sellers of converters are HD to composite. All of these monitors in the studio are composite.. Identify the only portion of the vertical blanking interval waveform
Rec. ITU-R BT RECOMMENDATION ITU-R BT * WIDE-SCREEN SIGNALLING FOR BROADCASTING
Rec. ITU-R BT.111-2 1 RECOMMENDATION ITU-R BT.111-2 * WIDE-SCREEN SIGNALLING FOR BROADCASTING (Signalling for wide-screen and other enhanced television parameters) (Question ITU-R 42/11) Rec. ITU-R BT.111-2
Signal processing in the Philips 'VLP' system
Philips tech. Rev. 33, 181-185, 1973, No. 7 181 Signal processing in the Philips 'VLP' system W. van den Bussche, A. H. Hoogendijk and J. H. Wessels On the 'YLP' record there is a single information track
ZONE PLATE SIGNALS 525 Lines Standard M/NTSC
Application Note ZONE PLATE SIGNALS 525 Lines Standard M/NTSC Products: CCVS+COMPONENT GENERATOR CCVS GENERATOR SAF SFF 7BM23_0E ZONE PLATE SIGNALS 525 lines M/NTSC Back in the early days of television
Colour Reproduction Performance of JPEG and JPEG2000 Codecs
Colour Reproduction Performance of JPEG and JPEG000 Codecs A. Punchihewa, D. G. Bailey, and R. M. Hodgson Institute of Information Sciences & Technology, Massey University, Palmerston North, New Zealand
Electrical and Electronic Laboratory Faculty of Engineering Chulalongkorn University. Cathode-Ray Oscilloscope (CRO)
2141274 Electrical and Electronic Laboratory Faculty of Engineering Chulalongkorn University Cathode-Ray Oscilloscope (CRO) Objectives You will be able to use an oscilloscope to measure voltage, frequency
Video Signals and Circuits Part 2
Video Signals and Circuits Part 2 Bill Sheets K2MQJ Rudy Graf KA2CWL In the first part of this article the basic signal structure of a TV signal was discussed, and how a color video signal is structured.
4. ANALOG TV SIGNALS MEASUREMENT
Goals of measurement 4. ANALOG TV SIGNALS MEASUREMENT 1) Measure the amplitudes of spectral components in the spectrum of frequency modulated signal of Δf = 50 khz and f mod = 10 khz (relatively to unmodulated
fbas_enc: FBAS(CVBS) encoder for PAL and/or NTSC
fbas_enc: FBAS(CVBS) encoder for PAL and/or NTSC V0.31 (c) 2007 Jörg Wolfram 1 License This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Advanced Test Equipment Rentals ATEC (2832)
Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) SECTION 1 : Introduction The TSG 120 YC/NTSC Signal Generator is a simple, cost-effective test signal generator designed
Clock Jitter Cancelation in Coherent Data Converter Testing
Clock Jitter Cancelation in Coherent Data Converter Testing Kars Schaapman, Applicos Introduction The constantly increasing sample rate and resolution of modern data converters makes the test and characterization
Learning to Use The VG91 Universal Video Generator
Learning to Use The VG91 Universal Video Generator Todays TV-video systems can be divided into 3 sections: 1) Tuner/IF, 2) Video and 3) Audio. The VG91 provides signals to fully test and isolate defects
Signal Ingest in Uncompromising Linear Video Archiving: Pitfalls, Loopholes and Solutions.
Signal Ingest in Uncompromising Linear Video Archiving: Pitfalls, Loopholes and Solutions. Franz Pavuza Phonogrammarchiv (Austrian Academy of Science) Liebiggasse 5 A-1010 Vienna Austria franz.pavuza@oeaw.ac.at
Specifications. Reference Documentation. Performance Conditions
The material in this section is organized into two main groupings: the specification tables and the supporting figures. The specification tables include: 1. PAL general and test signal specifications 2.
ATSC Recommended Practice: Transmission Measurement and Compliance for Digital Television
ATSC Recommended Practice: Transmission Measurement and Compliance for Digital Television Document A/64B, 26 May 2008 Advanced Television Systems Committee, Inc. 1750 K Street, N.W., Suite 1200 Washington,
Dither Explained. An explanation and proof of the benefit of dither. for the audio engineer. By Nika Aldrich. April 25, 2002
Dither Explained An explanation and proof of the benefit of dither for the audio engineer By Nika Aldrich April 25, 2002 Several people have asked me to explain this, and I have to admit it was one of
Manual Version V1.02
Pixie-FS Time Base Corrector Manual Version V1.02 BURST ELECTRONICS INC ALBUQUERQUE, NM 87109 USA (505) 898-1455 VOICE (505) 890-8926 Tech Support Made in USA (505) 898-0159 FAX www.burstelectronics.com
Audio and Video II. Video signal +Color systems Motion estimation Video compression standards +H.261 +MPEG-1, MPEG-2, MPEG-4, MPEG- 7, and MPEG-21
Audio and Video II Video signal +Color systems Motion estimation Video compression standards +H.261 +MPEG-1, MPEG-2, MPEG-4, MPEG- 7, and MPEG-21 1 Video signal Video camera scans the image by following
Audiovisual Archiving Terminology
Audiovisual Archiving Terminology A Amplitude The magnitude of the difference between a signal's extreme values. (See also Signal) Analog Representing information using a continuously variable quantity
An FPGA Based Solution for Testing Legacy Video Displays
An FPGA Based Solution for Testing Legacy Video Displays Dale Johnson Geotest Marvin Test Systems Abstract The need to support discrete transistor-based electronics, TTL, CMOS and other technologies developed
TV PATTERN GENERATOR GV-298
TV PATTERN GENERATOR GV-298 1 GENERAL 1.1 Description The exceptional attributes the GV-298 video generator consists of have been designed in accordance with the latest trends of modern technology. Its
Elements of a Television System
1 Elements of a Television System 1 Elements of a Television System The fundamental aim of a television system is to extend the sense of sight beyond its natural limits, along with the sound associated
Rec. ITU-R BT RECOMMENDATION ITU-R BT PARAMETER VALUES FOR THE HDTV STANDARDS FOR PRODUCTION AND INTERNATIONAL PROGRAMME EXCHANGE
Rec. ITU-R BT.79-4 1 RECOMMENDATION ITU-R BT.79-4 PARAMETER VALUES FOR THE HDTV STANDARDS FOR PRODUCTION AND INTERNATIONAL PROGRAMME EXCHANGE (Question ITU-R 27/11) (199-1994-1995-1998-2) Rec. ITU-R BT.79-4
Experiment 13 Sampling and reconstruction
Experiment 13 Sampling and reconstruction Preliminary discussion So far, the experiments in this manual have concentrated on communications systems that transmit analog signals. However, digital transmission
Serial Component Monitors WFM601A WFM601E WFM601M
Serial Component Monitors WFM601A WFM601E WFM601M All models share the basic attributes of the WFM601A: Two 270 MB Serial Component Loop-through Inputs Real Time CRT Display Suitable for Live Monitoring
Camera Interface Guide
Camera Interface Guide Table of Contents Video Basics... 5-12 Introduction...3 Video formats...3 Standard analog format...3 Blanking intervals...4 Vertical blanking...4 Horizontal blanking...4 Sync Pulses...4
CHAPTER 3 COLOR TELEVISION SYSTEMS
HAPTE 3 OLO TELEISION SSTEMS 3.1 Introduction 3.1.1 olor signals The color GB-T system has three primary colours : ed, whith wavelngth λ = 610nm, Green, wavelength λ G = 535nm, Blue, wavelength λ B = 470nm.
RECOMMENDATION ITU-R BT (Question ITU-R 211/11)
Rec. ITU-R T.814-1 1 RECOMMENDATION ITU-R T.814-1 SPECIICATIONS AND ALIGNMENT PROCEDURES OR SETTING O RIGTNESS AND CONTRAST O DISPLAYS (Question ITU-R 211/11) Rec. ITU-R T.814-1 (1992-1994) The ITU Radiocommunication
Mahdi Amiri. April Sharif University of Technology
Course Presentation Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri April 2014 Sharif University of Technology Video Visual Effect of Motion The visual effect of motion is due
HITACHI. Instruction Manual VL-21A
HITACHI Instruction Manual VL-21A 1 Table of Contents 1. Document History 3 2. Specifications 3 2.1 Lens 3 3. Measurement Specifications 5 4. Environment Condition and Test 5 4.1 High Temperature Storage
SERIAL HIGH DENSITY DIGITAL RECORDING USING AN ANALOG MAGNETIC TAPE RECORDER/REPRODUCER
SERIAL HIGH DENSITY DIGITAL RECORDING USING AN ANALOG MAGNETIC TAPE RECORDER/REPRODUCER Eugene L. Law Electronics Engineer Weapons Systems Test Department Pacific Missile Test Center Point Mugu, California
The Cathode Ray Tube
Lesson 2 The Cathode Ray Tube The Cathode Ray Oscilloscope Cathode Ray Oscilloscope Controls Uses of C.R.O. Electric Flux Electric Flux Through a Sphere Gauss s Law The Cathode Ray Tube Example 7 on an
Analog TV Systems: Monochrome TV. Yao Wang Polytechnic University, Brooklyn, NY11201
Analog TV Systems: Monochrome TV Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Outline Overview of TV systems development Video representation by raster scan: Human vision system
Midterm Review. Yao Wang Polytechnic University, Brooklyn, NY11201
Midterm Review Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Yao Wang, 2003 EE4414: Midterm Review 2 Analog Video Representation (Raster) What is a video raster? A video is represented
Interfaces and Sync Processors
Interfaces and Sync Processors Kramer Electronics has a full line of video, audio and sync interfaces. The group is divided into two sections Format Interfaces and Video Sync Processors. The Format Interface
PCM ENCODING PREPARATION... 2 PCM the PCM ENCODER module... 4
PCM ENCODING PREPARATION... 2 PCM... 2 PCM encoding... 2 the PCM ENCODER module... 4 front panel features... 4 the TIMS PCM time frame... 5 pre-calculations... 5 EXPERIMENT... 5 patching up... 6 quantizing
Graduate Institute of Electronics Engineering, NTU Digital Video Recorder
Digital Video Recorder Advisor: Prof. Andy Wu 2004/12/16 Thursday ACCESS IC LAB Specification System Architecture Outline P2 Function: Specification Record NTSC composite video Video compression/processing
DATASHEET EL1883. Features. Applications. Ordering Information. Demo Board. Pinout. Sync Separator with Horizontal Output. FN7010 Rev 2.
DATASHEET EL883 Sync Separator with Horizontal Output FN7 Rev 2. The EL883 video sync separator is manufactured using Elantec s high performance analog CMOS process. This device extracts sync timing information
High-Definition, Standard-Definition Compatible Color Bar Signal
Page 1 of 16 pages. January 21, 2002 PROPOSED RP 219 SMPTE RECOMMENDED PRACTICE For Television High-Definition, Standard-Definition Compatible Color Bar Signal 1. Scope This document specifies a color
Mike Robin MIKE ROBIN S COLUMN SEPTEMBER Introduction. Generation of a color bars signal
MIKE OIN S COLUMN SEPTEME 1999 Mike obin, a 2-year veteran of the Canadian roadcasting Corporation Engineering Headquarters, is an independent broadcast consultant located in Montreal, Canada. He is the
SMPTE STANDARD Gb/s Signal/Data Serial Interface. Proposed SMPTE Standard for Television SMPTE 424M Date: < > TP Rev 0
Proposed SMPTE Standard for Television Date: TP Rev 0 SMPTE 424M-2005 SMPTE Technology Committee N 26 on File Management and Networking Technology SMPTE STANDARD- --- 3 Gb/s Signal/Data Serial
Getting Started with the LabVIEW Sound and Vibration Toolkit
1 Getting Started with the LabVIEW Sound and Vibration Toolkit This tutorial is designed to introduce you to some of the sound and vibration analysis capabilities in the industry-leading software tool
TERMINOLOGY INDEX. DME Down Stream Keyer (DSK) Drop Shadow. A/B Roll Edit Animation Effects Anti-Alias Auto Transition
A B C A/B Roll Edit Animation Effects Anti-Alias Auto Transition B-Y Signal Background Picture Background Through Mode Black Burst Border Bus Chroma/Chrominance Chroma Key Color Bar Color Matte Component
VIDEO 101: INTRODUCTION:
W h i t e P a p e r VIDEO 101: INTRODUCTION: Understanding how the PC can be used to receive TV signals, record video and playback video content is a complicated process, and unfortunately most documentation
USER MANUAL. Blackburst, Sync, Audio Tone Generator. For Models BSG-50, RM-50/BSG, SR-50/BSG. Doc Rev. F (C) Copyright 2014
HORITA BSG-50 Blackburst, Sync, Audio Tone Generator USER MANUAL For Models BSG-50, RM-50/BSG, SR-50/BSG Doc. 070450 Rev. F (C) Copyright 2014 P.O. Box 3993, Mission Viejo, CA 92690 (949) 489-0240 www.horita.com
Investigation of Digital Signal Processing of High-speed DACs Signals for Settling Time Testing
Universal Journal of Electrical and Electronic Engineering 4(2): 67-72, 2016 DOI: 10.13189/ujeee.2016.040204 http://www.hrpub.org Investigation of Digital Signal Processing of High-speed DACs Signals for
Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri November 2015 Sharif University of Technology
Course Presentation Multimedia Systems Video I (Basics of Analog and Digital Video) Mahdi Amiri November 2015 Sharif University of Technology Video Visual Effect of Motion The visual effect of motion is
Measurement of Television Channel Levels on CATV Networks
Measurement of Television Channel Levels on CATV Networks D E Woollard, SCTE Papers Committee Chairman 21st January 1999 1. Introduction Traditionally the measurement of Television channels has been concerned
ASD8V Reference Generator
Phone +45 3967 6438 Fax +45 3966 6438 E-mail rostec@rostec.com Website www.rostec.com ASD8V Reference Generator ROSTEC ASD8V Reference Generator Revision 6.3 June 21, 2004 (serial numbers xxxxn) General
From Synchronous to Asynchronous Design
by Gerrit Muller Buskerud University College e-mail: gaudisite@gmail.com www.gaudisite.nl Abstract The most simple real time programming paradigm is a synchronous loop. This is an effective approach for
GLOSSARY. 10. Chrominan ce -- Chroma ; the hue and saturation of an object as differentiated from the brightness value (luminance) of that object.
GLOSSARY 1. Back Porch -- That portion of the composite picture signal which lies between the trailing edge of the horizontal sync pulse and the trailing edge of the corresponding blanking pulse. 2. Black
CCVS + Component Generator SAF/ CCVS Generator SFF
Data sheet Version 03.00 CCVS + Component Generator SAF/ CCVS Generator SFF December 2004 Multistandard generators for all TV applications Several hundred test signals to suit every application Easy definition
BASE-LINE WANDER & LINE CODING
BASE-LINE WANDER & LINE CODING PREPARATION... 28 what is base-line wander?... 28 to do before the lab... 29 what we will do... 29 EXPERIMENT... 30 overview... 30 observing base-line wander... 30 waveform
Instruction Manual. SMS 8601 NTSC/PAL to 270 Mb Decoder
Instruction Manual SMS 8601 NTSC/PAL to 270 Mb Decoder 071-0421-00 First Printing: November 1995 Revised Printing: November 1998 Contacting Tektronix Customer Support Product, Service, Sales Information
High Value-Added IT Display - Technical Development and Actual Products
High Value-Added IT Display - Technical Development and Actual Products ITAKURA Naoki, ITO Tadayuki, OOKOSHI Yoichiro, KANDA Satoshi, MUTO Hideaki Abstract The multi-display expands the desktop area to
GS1881, GS4881, GS4981 Monolithic Video Sync Separators
GS11, GS1, GS91 Monolithic Video Sync Separators DATA SHEET FEATURES noise tolerant odd/even flag, back porch and horizontal sync pulse fast recovery from impulse noise excellent temperature stability.5
Maintenance/ Discontinued
CCD Delay Line Series MN390S NTSC-Compatible CCD H Video Signal Delay Element Overview The MN390S is a H image delay element of a f SC CMOS CCD and suitable for video signal processing applications. It
RF Level Test System +20 dbm to 130 dbm
NRVD Power Meter optional Therm. Sensor A B Power: >-15 dbm DUT (Signal Generator, Communication Tester) 1 MHz - 3.5/6 GHz +20 dbm... -130 dbm Diode Sensor Z4 Power: -15 to -40 dbm 6 db Power =< -40 dbm
Model 7130 HD Downconverter and Distribution Amplifier Data Pack
Model 7130 HD Downconverter and Distribution Amplifier Data Pack E NSEMBLE D E S I G N S Revision 1.0 SW v1.0 www.ensembledesigns.com 7130-1 Contents MODULE OVERVIEW 3 Audio Handling 3 Control 3 Metadata
GS4882, GS4982 Video Sync Separators with 50% Sync Slicing
GS488, GS498 Video Sync Separators with 50% Sync Slicing DATA SHEET FEATUES precision 50% sync slicing internal color burst filter ±5 ns temperature stability superior noise immunity robust signal detection/output
CXA1645P/M. RGB Encoder
MATRIX CXA1645P/M RGB Encoder Description The CXA1645P/M is an encoder IC that converts analog RGB signals to a composite video signal. This IC has various pulse generators necessary for encoding. Composite
Index. Aspect ratio 14,246 Attenuator, aerial Automatic chrominance control (a.c.c.) 112,113,130 Automatic phase control (a.p.c.
Index Al electrodes 211 Additive mixing 3 Aerial, acceptance angle 251, 252 amplifier 260 attenuator 260-1 bandwidth 254 cable 257-8 dipole 250-4 directivity 250 front-to-back ratio 254 gron 254,255,256
Federal Communications Commission
Federal Communications Commission 73.682 generated sidebands is partially attenuated at the transmitter and radiated only in part. Visual carrier frequency. The frequency of the carrier which is modulated
Installation and Users Guide Addendum. Software Mixer Reference and Application. Macintosh OSX Version
Installation and Users Guide Addendum Software Mixer eference and Application Macintosh OSX Version ynx Studio Technology Inc. www.lynxstudio.com support@lynxstudio.com Copyright 2004, All ights eserved,
Component Analog TV Sync Separator
19-4103; Rev 1; 12/08 EVALUATION KIT AVAILABLE Component Analog TV Sync Separator General Description The video sync separator extracts sync timing information from standard-definition (SDTV), extendeddefinition
A Guide to Standard and High-Definition Digital Video Measurements
A Guide to Standard and High-Definition Digital Video Measurements D i g i t a l V i d e o M e a s u r e m e n t s A Guide to Standard and High-Definition Digital Video Measurements Contents In The Beginning
DATA SHEET. TDA8360; TDA8361; TDA8362 Integrated PAL and PAL/NTSC TV processors. Philips Semiconductors INTEGRATED CIRCUITS.
INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC02 March 1994 Philips Semiconductors FEATURES Available in TDA8360, TDA8361 and TDA8362 Vision IF amplifier with high sensitivity and good
CATHODE RAY OSCILLOSCOPE. Basic block diagrams Principle of operation Measurement of voltage, current and frequency
CATHODE RAY OSCILLOSCOPE Basic block diagrams Principle of operation Measurement of voltage, current and frequency 103 INTRODUCTION: The cathode-ray oscilloscope (CRO) is a multipurpose display instrument
RGB Encoder For the availability of this product, please contact the sales office. VIDEO OUT Y/C MIX DELAY CLAMP
MATRIX Description The CXA1645P/M is an encoder IC that converts analog RGB signals to a composite video signal. This IC has various pulse generators necessary for encoding. Composite video outputs and
DRAFT. Proposal to modify International Standard IEC
Imaging & Color Science Research & Product Development 2528 Waunona Way, Madison, WI 53713 (608) 222-0378 www.lumita.com Proposal to modify International Standard IEC 61947-1 Electronic projection Measurement
CVOUT Vcc2 TRAP SWITCH Y/C MIX INTERNAL TRAP DELAY LPF LPF SIN-PULSE NPIN SCIN
R G B SC NP BFOUT MATRIX GND2 ROUT GOUT BOUT CVOUT Vcc2 Y YOUT COUT RGB Encoder CXA20M Description The CXA20M is an encoder IC that converts analog RGB signals a composite video signal. This IC has various
-outs. In this paper we report. on experiments and simulations. carrier are of great importance. The disturbance of the. design.
543 DIGITAL AUDIO MODULATION IN THE PAL AND NTSC LASERVISION VIDEO DISC CODING FORMATS Kees A. Schouhamer Immink, Ad. H. Hoogendijk and Joost A. Kahlman Philips Research Laboratories P.O.B. 80.000,5600
The characteristics of a video signal and methods to overcome distance limitations
The characteristics of a video signal and methods to overcome distance limitations Rich Hanna, CTS Regional Application Specialist, Southeast Extron Electronics Monday, January 24, 2005 9:00 AM 4:00 PM
THE DIGITAL DELAY ADVANTAGE A guide to using Digital Delays. Synchronize loudspeakers Eliminate comb filter distortion Align acoustic image.
THE DIGITAL DELAY ADVANTAGE A guide to using Digital Delays Synchronize loudspeakers Eliminate comb filter distortion Align acoustic image Contents THE DIGITAL DELAY ADVANTAGE...1 - Why Digital Delays?...
OSCILLOSCOPE AND DIGITAL MULTIMETER
Exp. No #0 OSCILLOSCOPE AND DIGITAL MULTIMETER Date: OBJECTIVE The purpose of the experiment is to understand the operation of cathode ray oscilloscope (CRO) and to become familiar with its usage. Also
ECE438 - Laboratory 4: Sampling and Reconstruction of Continuous-Time Signals
Purdue University: ECE438 - Digital Signal Processing with Applications 1 ECE438 - Laboratory 4: Sampling and Reconstruction of Continuous-Time Signals October 6, 2010 1 Introduction It is often desired
Realizing Waveform Characteristics up to a Digitizer s Full Bandwidth Increasing the effective sampling rate when measuring repetitive signals
Realizing Waveform Characteristics up to a Digitizer s Full Bandwidth Increasing the effective sampling rate when measuring repetitive signals By Jean Dassonville Agilent Technologies Introduction The
Baseband Video Testing With Digital Phosphor Oscilloscopes
Application Note Baseband Video Testing With Digital Phosphor Oscilloscopes Video signals are complex waveforms comprised of signals representing a picture as well as the timing information needed to display
PM 5515 & PM a IO
PM 5515 & PM 5518 71W, OF WK 704 D H N: PM 5515 PM 5515 & PM 5518 Color TV Pattern, Generator Family Keyboard -call-up cf upto'7t},testpatternslconbinmions Simple TV standard selection of PAL ; NTSC or
Digital Lock-In Amplifiers SR850 DSP lock-in amplifier with graphical display
Digital Lock-In Amplifiers SR850 DSP lock-in amplifier with graphical display SR850 DSP Lock-In Amplifier 1 mhz to 102.4 khz frequency range >100 db dynamic reserve 0.001 degree phase resolution Time constants
Vocoder Reference Test TELECOMMUNICATIONS INDUSTRY ASSOCIATION
TIA/EIA STANDARD ANSI/TIA/EIA-102.BABC-1999 Approved: March 16, 1999 TIA/EIA-102.BABC Project 25 Vocoder Reference Test TIA/EIA-102.BABC (Upgrade and Revision of TIA/EIA/IS-102.BABC) APRIL 1999 TELECOMMUNICATIONS
Supplements to the FSP Operating Manual TV-Demodulator
Test and Measurement Division Supplements to the FSP Operating Manual TV-Demodulator FSP-B6 1129.8642.02 Dear FSP Customer, The following collection of pages is intended to supplement your FSP operating
Application Note Component Video Filtering Using the ML6420/ML6421
April 1998 Application Note 42035 Component Video Filtering Using the ML6420/ML6421 INTRODUCTION This Application Note provides the video design engineer with practical circuit examples of Micro Linear
Oscilloscopes cannot be replaced by any other measuring instru ments
HAMEG Oscilloscopes Oscilloscopes cannot be replaced by any other measuring instru ments... because only oscilloscopes give a full representation of the measu ring signal.... because only oscilloscopes
Routing Swichers 248
Routing Swichers 248 BVG-1500...248 TIME CODE READER BVG-1600...250 TIME CODE GENERATOR BVX-10/10P...252 COMPONENT COLOR CORRECTOR BVX-D10...254 DIGITAL COLOR CORRECTOR BVR-D10/D11...256 REMOTE CONTROL
INSTRUCTION MANUAL MODEL IEC-788 NTSC/PAL, F1/F2, S-VHS CLOSED CAPTION DECODER
INSTRUCTION MANUAL MODEL IEC-788 NTSC/PAL, F1/F2, S-VHS CLOSED CAPTION DECODER LINK ELECTRONICS, INC. 2137 Rust Avenue Cape Girardeau, Missouri 63703 Phone: 573-334-4433 Fax: 573-334-9255 e-mail: sales
ATSC compliance and tuner design implications
ATSC compliance and tuner design implications By Nick Cowley Chief RF Systems Architect DHG Group Intel Corp. E-mail: nick.cowley@zarlink. com Robert Hanrahan National Semiconductor Corp. Applications
VIDEO 101 LCD MONITOR OVERVIEW
VIDEO 101 LCD MONITOR OVERVIEW This provides an overview of the monitor nomenclature and specifications as they relate to TRU-Vu industrial monitors. This is an ever changing industry and as such all specifications
FUNCTIONAL BLOCK DIAGRAM DELAYED C-SYNC CLOCK AT 8FSC. 5MHz 4-POLE LP PRE-FILTER DC RESTORE AND C-SYNC INSERTION. 5MHz 2-POLE LP POST- FILTER
a FEATURES Composite Video Output Chrominance and Luminance (S-Video) Outputs No External Filters or Delay Lines Required Drives 75 Ω Reverse-Terminated Loads Compact 28-Pin PLCC Logic Selectable NTSC
Maintenance/ Discontinued
For Video Equipment Color Video Camera Synchronizing Signal Generator LSI Overview The generates color video camera synchronizing signals for the NTSC, PAL, and SECAM video systems. It divides the reference
Television Channel Modulator TVCM-2
1 Television Channel Modulator TVCM-2 Contents CONTENTS...1 FRONTPANEL TVCM-2...2 ACHTERPANEEL TVCM-2...3 INTRODUCTION...4 FUNCTION OVERVIEW...5 DESCRIPTION OF MENUSTRUCTURE TVCM -2...6 Home status display...
SS THE PRINCIPLES OF TELEVISION STUDIO TIMING SYSTEMS
SUBCOURSE EDITION SS0607 8 THE PRINCIPLES OF TELEVISION STUDIO TIMING SYSTEMS US ARMY RADIO/TELEVISION TECHNICIAN MOS 26T SKILL LEVELS 1, 2, AND 3 COURSE AUTHORSHIP RESPONSIBILITY: SSG Victor M. Rios HQ,
Measurement of overtone frequencies of a toy piano and perception of its pitch
Measurement of overtone frequencies of a toy piano and perception of its pitch PACS: 43.75.Mn ABSTRACT Akira Nishimura Department of Media and Cultural Studies, Tokyo University of Information Sciences,
Model 7405 High Definition Test Signal Generator Data Pack
Model 7405 High Definition Test Signal Generator Data Pack E NSEMBLE D E S I G N S Revision 1.1 SW v1.1.0 This data pack provides detailed installation, configuration and operation information for the
Appendix D. UW DigiScope User s Manual. Willis J. Tompkins and Annie Foong
Appendix D UW DigiScope User s Manual Willis J. Tompkins and Annie Foong UW DigiScope is a program that gives the user a range of basic functions typical of a digital oscilloscope. Included are such features
SWITCHED INFINITY: SUPPORTING AN INFINITE HD LINEUP WITH SDV
SWITCHED INFINITY: SUPPORTING AN INFINITE HD LINEUP WITH SDV First Presented at the SCTE Cable-Tec Expo 2010 John Civiletto, Executive Director of Platform Architecture. Cox Communications Ludovic Milin,