Quiz #4 Thursday, April 25, 2002, 5:30-6:45 PM

Size: px
Start display at page:

Download "Quiz #4 Thursday, April 25, 2002, 5:30-6:45 PM"

Transcription

1 Last (family) name: First (given) name: Student I.D. #: Circle section: Hu Saluja Department of Electrical and Computer Engineering University of Wisconsin - Madison ECE/CS 352 Digital System Fundamentals Quiz #4 Thursday April :3-6:45 PM Instructions:. Closed book examination. 2. No calculator hand-held computer or portable computer allowed. 3. Five points penalty if you fail to enter name ID# or instructor selection. 4. Answer must be entered into specified boxes if provided. 5. You must show your work to receive full or partial credit for your answers. 6. No one shall leave room during last 5 minutes of the examination. 7. Upon announcement of the end of the exam stop writing on the exam paper immediately. Pass the exam to isles to be picked up by a TA. The instructor will announce when to leave the room. 8. Failure to follow instructions may result in forfeiture of your exam and will be handled according to UWS 4 Academic misconduct procedures. ECE/CS 352 Quiz #3 /9/2

2 Problem Points Score Total. (5 points) Registers (a) (5 points) The content of a 4-bit bi-directional shift register with parallel load (shown in the text book as SHR4) was initially. The parallel load data is. The right serial input (RSI) is connected to a logic and the left serial input (LSI) is connected to the left serial output Q 3 as shown below: Q 3 Q 2 Q Q RSI S S SHR 4 LSI D 3 D 2 D D Specify the output of this shift register Q 3 Q 2 Q Q after executing the operation on the left in each row of the following table. Operations Q 3 Q 2 Q Q Initially Left shift left shift Parallel load Right shift Left shift S2 ECE/CS 352 Quiz #4 2

3 (b) ( points) A 4-bit multi-function register operates according to a function table where S S are two mode selection inputs. S S Register operation No change Load Parallel data 's Complement of current content Shift left This register is to be implemented by cascading four identical -bit modules. The i -th bit module has two outputs Qi ( t ) and Qi () t and four external inputs S S I i (t) (parallel load data) and Q i (t) (shift left). Implement this i -th bit module using a D-type positive edge triggered flip-flop and a SOP realization of flip-flop input equations with minimum number of AND OR NOT logic gates. Give the logic diagram D Q i (t) Q i (t) clock ECE/CS 352 Quiz #4 3

4 2. (25 points) Counters (a) (3 points) A 4-bit ring counter is implemented with a (right-shift) shift register that will be initialized to a value of. Specify the remaining counter outputs of this ring counter in correct order. (b) (4 points) A switch-tail ring counter (a.k.a. Johnson counter twist ring counter) uses the complement of the serial output as the serial input to a (right-shift) shift register. If such a counter is initialized with specify the remaining counter outputs. ECE/CS 352 Quiz #4 4

5 (c) (8 points) CTR4 is the four bit up-counter with parallel load discussed in the text book. CO is carry out and is not needed for this problem. Our goal is to design a counter that will count from the excess-3 coded decimal digits:. Use as few as possible logic gates and a single CTR4 counter to design this synchronous excess-3 binary coded counter. Use "" to indicate logic and "" to indicate logic where-ever needed in your implementation. Specify the K-map of the input Load. Clock CTR4 Load Count D Q D Q D 2 Q 2 D 3 Q 3 CO Q 3 Q 2 \Q Q ECE/CS 352 Quiz #4 5

6 (d) ( points) Draw the logic diagram of a 3-bit synchronous binary down-counter that counts in the following sequence:. Use 3 J-K type flip-flops and AND OR NOT logic gates. Specify count enable signal EN and carry out signal CO. The JK flip-flop excitation table is provided for your convenience. Q J Q K Q J Q Q K Q J Q Q 2 K Q Clock JK Flip-Flop Q(t) Q(t+) J K X X X X ECE/CS 352 Quiz #4 6

7 3. (2 points) Memory organization (CHAPTER 6 WILL NOT BE ON QUIZ 4) (a) (4 points) With coincident selection scheme (2D memory) a 28K memory employs two decoders to provide the row select and column select signals. Suppose there are twice as many row-select lines (they are output lines of the row select decoder) than the column-select lines. How many address lines are feeding into the column-select decoder? address lines are connected to the column select decoder. (b) (4 points) A 64K memory chip is made of a square memory cell arrays. First part (most significant bits) of an address will feed into the row-select decoder and the remaining address lines will feed into column select decoder. Suppose the address in hexdecimal format is A2BE H. Find the physical location (column and row numbers) of the memory cell that is addressed. Row number: = ; column number: =. (c) (3 points) How many 6K 4 RAM chips are required to build a 28K 6 RAM subsystem? chips. ECE/CS 352 Quiz #4 7

8 (d) (4 points) A random access read/write memory is constructed of four 24 word by 4 bit integrated circuits chips with all address data and R/W lines tied in parallel (ie: A on Chip to A on Chip to A on Chip 2 to A on Chip 3 etc.). The chip select lines are separately tied to the outputs of a 2-line to -of-4 decoder which has S and S inputs tied to Address bit A and A respectively. Fill in the blanks below RAM 24 4 RAM 24 4 RAM 24 4 RAM DATA DATA DATA DATA ADRS CS ADRS CS ADRS CS ADRS CS R/W R/W R/W R/W R/W A(9:) A(:) 2 2-to-4 Decoder The size of the RAM is (e) (5 points) Connect the inputs of three 3-state buffers so that it implements a Boolean function G = A B + C D + E F where A+C+E = and A C=C E=E A = ECE/CS 352 Quiz #4 8

9 4. (25 points) PLA PAL implementation (CHAPTER 6 WILL NOT BE ON QUIZ 4) (a) (8 points) Implement the following two Boolean functions using a PLA. The objective is to minimize the number of product terms needed. Give your answer by filling in the PLA programming table below. You should also specify that whether the outputs need to be Complemented (C) or remain in original form: True (T). Note that you should not need more than six product terms! F ( a b c) = F ( a b c) = 2 m(57) m(46) Product Inputs Outputs Term a b c F F 2 Enter T or C: ECE/CS 352 Quiz #4 9

10 (b) (9 points) The following four Boolean functions are to be implemented using a PAL that has 3 inputs four outputs and a two-wide AND-OR structure (each output OR gate has two inputs). Complete the PAL connection map below. Label each output or the OR gates and mark each required connection with. = = = = (2347) ) ( (234) ) ( (456) ) ( (367) ) ( m z y x D m z y x C m z y x B m z y x A x y z w z y x ECE/CS 352 Quiz #4 z

11 (c) (8 points) For the same set of Boolean functions as specified in part (b) implement them using a ROM. Specify the minimum size of the ROM and its address and corresponding contents: The minimum size of the ROM is by. The addresses and contents are: Address Content ECE/CS 352 Quiz #4

12 5. (5 points) Hazards The circuit shown below is constructed of gates that have a delay of 5 nanoseconds. Initially all signals are stable as shown on the left edge of the diagram. Inputs "D" and "S" simultaneously change from to while D remains stable at "" causing the change shown in signal "a" and no change in signal "d". D S a d b F D c 5 ns. D D S a b c d F (a) (6 points) On the diagram above plot the waveforms for "b" "c" and "F". ECE/CS 352 Quiz #4 2

13 (b) (3 points) Circle the type of hazard that the circuit will have. (CIRCLE ALL THAT ARE TRUE) SICS SICS Function Dynamic Zero One Hazard Hazard Hazard Hazard (MICS Hazard) (c) (6 points) A Boolean function f(a B C D) is implemented in SOP format as follows: f ( ABCD ) = AD + BC D+ ABC Identify ALL the product terms that need to be added to this SOP expression to guarantee that it is free of all the static and dynamic hazards. ECE/CS 352 Quiz #4 3

Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

More information

1. Convert the decimal number to binary, octal, and hexadecimal.

1. Convert the decimal number to binary, octal, and hexadecimal. 1. Convert the decimal number 435.64 to binary, octal, and hexadecimal. 2. Part A. Convert the circuit below into NAND gates. Insert or remove inverters as necessary. Part B. What is the propagation delay

More information

EECS 270 Final Exam Spring 2012

EECS 270 Final Exam Spring 2012 EECS 270 Final Exam Spring 2012 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: Page # Points 2 /20 3 /12 4 /10 5 /15

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 23 121120 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Combinatorial Logic Sequential Logic 3 Combinatorial Logic Circuits

More information

Department of Computer Science and Engineering Question Bank- Even Semester:

Department of Computer Science and Engineering Question Bank- Even Semester: Department of Computer Science and Engineering Question Bank- Even Semester: 2014-2015 CS6201& DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to IT & CSE, Regulation 2013) UNIT-I 1. Convert the following

More information

Registers and Counters

Registers and Counters Registers and Counters Clocked sequential circuit = F/Fs and combinational gates Register Group of flip-flops (share a common clock and capable of storing one bit of information) Consist of a group of

More information

MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER CS 203: Switching Theory and Logic Design. Time: 3 Hrs Marks: 100

MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER CS 203: Switching Theory and Logic Design. Time: 3 Hrs Marks: 100 MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER 2016 CS 203: Switching Theory and Logic Design Time: 3 Hrs Marks: 100 PART A ( Answer All Questions Each carries 3 Marks )

More information

Dr. Shahram Shirani COE2DI4 Midterm Test #2 Nov 19, 2008

Dr. Shahram Shirani COE2DI4 Midterm Test #2 Nov 19, 2008 Page 1 Dr. Shahram Shirani COE2DI4 Midterm Test #2 Nov 19, 2008 Instructions: This examination paper includes 13 pages and 20 multiple-choice questions starting on page 3. You are responsible for ensuring

More information

1 Hour Sample Test Papers: Sample Test Paper 1. Roll No.

1 Hour Sample Test Papers: Sample Test Paper 1. Roll No. 6.1.2 Sample Test Papers: Sample Test Paper 1 Roll No. Institute Name: Course Code: EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ED/ET/IU Subject: Principles of Digital Techniques Marks: 25 1 Hour 1. All questions are

More information

Section 001. Read this before starting!

Section 001. Read this before starting! Points missed: Student's Name: Total score: / points East Tennessee State University epartment of Computer and Information Sciences CSCI 25 (Tarnoff) Computer Organization TEST 2 for Spring Semester, 23

More information

Chapter 6. Flip-Flops and Simple Flip-Flop Applications

Chapter 6. Flip-Flops and Simple Flip-Flop Applications Chapter 6 Flip-Flops and Simple Flip-Flop Applications Basic bistable element It is a circuit having two stable conditions (states). It can be used to store binary symbols. J. C. Huang, 2004 Digital Logic

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - III Sequential Logic I Sequential circuits: latches flip flops analysis of clocked sequential circuits state reduction and assignments Registers and Counters: Registers shift registers ripple counters

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053 SET - 1 1. a) What are the characteristics of 2 s complement numbers? b) State the purpose of reducing the switching functions to minimal form. c) Define half adder. d) What are the basic operations in

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-III SEQUENTIAL CIRCUITS

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-III SEQUENTIAL CIRCUITS NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS CLASS: II YEAR ECE SUBJECT CODE: EC2203

More information

UNIT 1 NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 1. Briefly explain the stream lined method of converting binary to decimal number with example. 2. Give the Gray code for the binary number (111) 2. 3.

More information

SEMESTER ONE EXAMINATIONS 2002

SEMESTER ONE EXAMINATIONS 2002 SEMESTER ONE EXAMINATIONS 2002 EE101 Digital Electronics Solutions Question 1. An assembly line has 3 failsafe sensors and 1 emergency shutdown switch. The Line should keep moving unless any of the following

More information

MC9211 Computer Organization

MC9211 Computer Organization MC9211 Computer Organization Unit 2 : Combinational and Sequential Circuits Lesson2 : Sequential Circuits (KSB) (MCA) (2009-12/ODD) (2009-10/1 A&B) Coverage Lesson2 Outlines the formal procedures for the

More information

Registers and Counters

Registers and Counters Registers and Counters Clocked sequential circuit = F/Fs and combinational gates Register Group of flip-flops (share a common clock and capable of storing one bit of information) Consist of a group of

More information

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A SET - 1 Note: Question Paper consists of two parts (Part-A and Part-B) Answer ALL the question in Part-A Answer any THREE Questions from Part-B a) What are the characteristics of 2 s complement numbers?

More information

1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. [4] Figure 1.

1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. [4] Figure 1. [Question 1 is compulsory] 1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. Figure 1.1 b) Minimize the following Boolean functions:

More information

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL 1. A stage in a shift register consists of (a) a latch (b) a flip-flop (c) a byte of storage (d) from bits of storage 2. To serially shift a byte of data into a shift register, there must be (a) one click

More information

Logic Design Viva Question Bank Compiled By Channveer Patil

Logic Design Viva Question Bank Compiled By Channveer Patil Logic Design Viva Question Bank Compiled By Channveer Patil Title of the Practical: Verify the truth table of logic gates AND, OR, NOT, NAND and NOR gates/ Design Basic Gates Using NAND/NOR gates. Q.1

More information

ECE 263 Digital Systems, Fall 2015

ECE 263 Digital Systems, Fall 2015 ECE 263 Digital Systems, Fall 2015 REVIEW: FINALS MEMORY ROM, PROM, EPROM, EEPROM, FLASH RAM, DRAM, SRAM Design of a memory cell 1. Draw circuits and write 2 differences and 2 similarities between DRAM

More information

Department of CSIT. Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30

Department of CSIT. Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30 Department of CSIT Class: B.SC Semester: II Year: 2013 Paper Title: Introduction to logics of Computer Max Marks: 30 Section A: (All 10 questions compulsory) 10X1=10 Very Short Answer Questions: Write

More information

CS6201 UNIT I PART-A. Develop or build the following Boolean function with NAND gate F(x,y,z)=(1,2,3,5,7).

CS6201 UNIT I PART-A. Develop or build the following Boolean function with NAND gate F(x,y,z)=(1,2,3,5,7). VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603203 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Academic Year: 2015-16 BANK - EVEN SEMESTER UNIT I PART-A 1 Find the octal equivalent of hexadecimal

More information

Agenda. EE 260: Introduction to Digital Design Counters and Registers. Asynchronous (Ripple) Counters. Asynchronous (Ripple) Counters

Agenda. EE 260: Introduction to Digital Design Counters and Registers. Asynchronous (Ripple) Counters. Asynchronous (Ripple) Counters EE26: igital esign, Spring 28 4/8/8 EE 26: Introduction to igital esign ounters and Registers Yao Zheng epartment of Electrical Engineering University of Hawaiʻi at Mānoa Agenda ounters Introduction: ounters

More information

Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology

Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Tribhuvan University Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Course Title: Digital Logic Full Marks: 60 + 0 + 0 Course No.: CSC Pass Marks:

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic EEA091 - Digital Logic 數位邏輯 Chapter 7 Memory and Programmable Logic 吳俊興國立高雄大學資訊工程學系 2006 Chapter 7 Memory and Programmable Logic 7-1 Introduction 7-2 Random-Access Memory 7-3 Memory Decoding 7-4 Error

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 COMP2611: Computer Organization Sequential Logic Time 2 Till now, we have essentially ignored the issue of time. We assume digital circuits: Perform their computations instantaneously Stateless: once

More information

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath Objectives Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath In the previous chapters we have studied how to develop a specification from a given application, and

More information

VU Mobile Powered by S NO Group

VU Mobile Powered by S NO Group Question No: 1 ( Marks: 1 ) - Please choose one A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register.

More information

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES 1 Learning Objectives 1. Explain the function of a multiplexer. Implement a multiplexer using gates. 2. Explain the

More information

Logic Design. Flip Flops, Registers and Counters

Logic Design. Flip Flops, Registers and Counters Logic Design Flip Flops, Registers and Counters Introduction Combinational circuits: value of each output depends only on the values of inputs Sequential Circuits: values of outputs depend on inputs and

More information

MODULE 3. Combinational & Sequential logic

MODULE 3. Combinational & Sequential logic MODULE 3 Combinational & Sequential logic Combinational Logic Introduction Logic circuit may be classified into two categories. Combinational logic circuits 2. Sequential logic circuits A combinational

More information

Question Bank. Unit 1. Digital Principles, Digital Logic

Question Bank. Unit 1. Digital Principles, Digital Logic Question Bank Unit 1 Digital Principles, Digital Logic 1. Using Karnaugh Map,simplify the following boolean expression and give the implementation of the same using i)nand gates only(sop) ii) NOR gates

More information

Universal Asynchronous Receiver- Transmitter (UART)

Universal Asynchronous Receiver- Transmitter (UART) Universal Asynchronous Receiver- Transmitter (UART) (UART) Block Diagram Four-Bit Bidirectional Shift Register Shift Register Counters Shift registers can form useful counters by recirculating a pattern

More information

The word digital implies information in computers is represented by variables that take a limited number of discrete values.

The word digital implies information in computers is represented by variables that take a limited number of discrete values. Class Overview Cover hardware operation of digital computers. First, consider the various digital components used in the organization and design. Second, go through the necessary steps to design a basic

More information

Registers & Counters. Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University

Registers & Counters. Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University Registers & ounters Logic and igital System esign - S 33 Erkay Savaş Sabanci University Registers Registers like counters are clocked sequential circuits A register is a group of flip-flops Each flip-flop

More information

Vignana Bharathi Institute of Technology UNIT 4 DLD

Vignana Bharathi Institute of Technology UNIT 4 DLD DLD UNIT IV Synchronous Sequential Circuits, Latches, Flip-flops, analysis of clocked sequential circuits, Registers, Shift registers, Ripple counters, Synchronous counters, other counters. Asynchronous

More information

Switching Circuits & Logic Design, Fall Final Examination (1/13/2012, 3:30pm~5:20pm)

Switching Circuits & Logic Design, Fall Final Examination (1/13/2012, 3:30pm~5:20pm) Switching Circuits & Logic Design, Fall 2011 Final Examination (1/13/2012, 3:30pm~5:20pm) Problem 1: (15 points) Consider a new FF with three inputs, S, R, and T. No more than one of these inputs can be

More information

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 151) Pass Marks: 24

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 151) Pass Marks: 24 2065 Computer Science and Information Technology (CSc. 151) Pass Marks: 24 Time: 3 hours. Candidates are required to give their answers in their own words as for as practicable. Attempt any TWO questions:

More information

1.b. Realize a 5-input NOR function using 2-input NOR gates only.

1.b. Realize a 5-input NOR function using 2-input NOR gates only. . [3 points] Short Questions.a. Prove or disprove that the operators (,XOR) form a complete set. Remember that the operator ( ) is implication such that: A B A B.b. Realize a 5-input NOR function using

More information

CHAPTER1: Digital Logic Circuits

CHAPTER1: Digital Logic Circuits CS224: Computer Organization S.KHABET CHAPTER1: Digital Logic Circuits 1 Sequential Circuits Introduction Composed of a combinational circuit to which the memory elements are connected to form a feedback

More information

ELE2120 Digital Circuits and Systems. Tutorial Note 8

ELE2120 Digital Circuits and Systems. Tutorial Note 8 ELE2120 Digital Circuits and Systems Tutorial Note 8 Outline 1. Register 2. Counters 3. Synchronous Counter 4. Asynchronous Counter 5. Sequential Circuit Design Overview 1. Register Applications: temporally

More information

Course Administration

Course Administration EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN Lecture 5: Sequential Logic - 2 Analysis of Clocked Sequential Systems 4/2/2 Avinash Kodi, kodi@ohio.edu Course Administration 2 Hw 2 due on today

More information

DIGITAL SYSTEM DESIGN UNIT I (2 MARKS)

DIGITAL SYSTEM DESIGN UNIT I (2 MARKS) DIGITAL SYSTEM DESIGN UNIT I (2 MARKS) 1. Convert Binary number (111101100) 2 to Octal equivalent. 2. Convert Binary (1101100010011011) 2 to Hexadecimal equivalent. 3. Simplify the following Boolean function

More information

Combinational vs Sequential

Combinational vs Sequential Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs Changing inputs changes outputs No regard for previous inputs

More information

Digital Systems Laboratory 3 Counters & Registers Time 4 hours

Digital Systems Laboratory 3 Counters & Registers Time 4 hours Digital Systems Laboratory 3 Counters & Registers Time 4 hours Aim: To investigate the counters and registers constructed from flip-flops. Introduction: In the previous module, you have learnt D, S-R,

More information

Part 4: Introduction to Sequential Logic. Basic Sequential structure. Positive-edge-triggered D flip-flop. Flip-flops classified by inputs

Part 4: Introduction to Sequential Logic. Basic Sequential structure. Positive-edge-triggered D flip-flop. Flip-flops classified by inputs Part 4: Introduction to Sequential Logic Basic Sequential structure There are two kinds of components in a sequential circuit: () combinational blocks (2) storage elements Combinational blocks provide

More information

EECS 270 Group Homework 4 Due Friday. June half credit if turned in by June

EECS 270 Group Homework 4 Due Friday. June half credit if turned in by June EES 270 Group Homework 4 ue Friday. June 1st @9:45am, half credit if turned in by June 1st @4pm. Name: unique name: Name: unique name: Name: unique name: This is a group assignment; all of the work should

More information

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it,

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, Solution to Digital Logic -2067 Solution to digital logic 2067 1.)What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, A Magnitude comparator is a combinational

More information

9 Programmable Logic Devices

9 Programmable Logic Devices Introduction to Programmable Logic Devices A programmable logic device is an IC that is user configurable and is capable of implementing logic functions. It is an LSI chip that contains a 'regular' structure

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 05 February 23, 2012 Dohn Bowden 1 Today s Lecture Analysis of Clocked Sequential Circuits Chapter 13 2 Course Admin 3 Administrative Admin

More information

Lecture 12. Amirali Baniasadi

Lecture 12. Amirali Baniasadi CENG 24 Digital Design Lecture 2 Amirali Baniasadi amirali@ece.uvic.ca This Lecture Chapter 6: Registers and Counters 2 Registers Sequential circuits are classified based in their function, e.g., registers.

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY CS6201-DIGITAL PRINCIPLE AND SYSTEM DESIGN. I Year/ II Sem PART-A TWO MARKS UNIT-I

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY CS6201-DIGITAL PRINCIPLE AND SYSTEM DESIGN. I Year/ II Sem PART-A TWO MARKS UNIT-I DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY CS6201-DIGITAL PRINCIPLE AND SYSTEM DESIGN I Year/ II Sem PART-A TWO MARKS UNIT-I BOOLEAN ALGEBRA AND LOGIC GATES 1) What are basic properties

More information

EECS 270 Homework the Last Winter 2017

EECS 270 Homework the Last Winter 2017 EECS 270 Homework the Last Winter 2017 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. NOTES: 1. This is an individual assignment.

More information

EECS 270 Midterm 2 Exam Closed book portion Fall 2014

EECS 270 Midterm 2 Exam Closed book portion Fall 2014 EECS 270 Midterm 2 Exam Closed book portion Fall 2014 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: Page # Points

More information

Sri Vidya College of Engineering And Technology. Virudhunagar Department of Electrical and Electronics Engineering

Sri Vidya College of Engineering And Technology. Virudhunagar Department of Electrical and Electronics Engineering Sri Vidya College of Engineering And Technology Virudhunagar 626 005 Department of Electrical and Electronics Engineering Year/ Semester/ Class : II/ III/ EEE Academic Year: 2017-2018 Subject Code/ Name:

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem.

The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem. State Reduction The reduction in the number of flip-flops in a sequential circuit is referred to as the state-reduction problem. State-reduction algorithms are concerned with procedures for reducing the

More information

Sequential Logic. Analysis and Synthesis. Joseph Cavahagh Santa Clara University. r & Francis. TaylonSi Francis Group. , Boca.Raton London New York \

Sequential Logic. Analysis and Synthesis. Joseph Cavahagh Santa Clara University. r & Francis. TaylonSi Francis Group. , Boca.Raton London New York \ Sequential Logic Analysis and Synthesis Joseph Cavahagh Santa Clara University r & Francis TaylonSi Francis Group, Boca.Raton London New York \ CRC is an imprint of the Taylor & Francis Group, an informa

More information

Chapter. Synchronous Sequential Circuits

Chapter. Synchronous Sequential Circuits Chapter 5 Synchronous Sequential Circuits Logic Circuits- Review Logic Circuits 2 Combinational Circuits Consists of logic gates whose outputs are determined from the current combination of inputs. Performs

More information

PURBANCHAL UNIVERSITY

PURBANCHAL UNIVERSITY [c] Implement a full adder circuit with a decoder and two OR gates. [4] III SEMESTER FINAL EXAMINATION-2006 Q. [4] [a] What is flip flop? Explain flip flop operating characteristics. [6] [b] Design and

More information

Chapter 7 Counters and Registers

Chapter 7 Counters and Registers Chapter 7 Counters and Registers Chapter 7 Objectives Selected areas covered in this chapter: Operation & characteristics of synchronous and asynchronous counters. Analyzing and evaluating various types

More information

1. True/False Questions (10 x 1p each = 10p) (a) I forgot to write down my name and student ID number.

1. True/False Questions (10 x 1p each = 10p) (a) I forgot to write down my name and student ID number. CprE 281: Digital Logic Midterm 2: Friday Oct 30, 2015 Student Name: Student ID Number: Lab Section: Mon 9-12(N) Mon 12-3(P) Mon 5-8(R) Tue 11-2(U) (circle one) Tue 2-5(M) Wed 8-11(J) Wed 6-9(Y) Thur 11-2(Q)

More information

EECS 270 Midterm Exam Spring 2011

EECS 270 Midterm Exam Spring 2011 EES 270 Midterm Exam Spring 2011 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: Page # Points 2 /15 3 /10 4 /6 5 /12

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Registers

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Registers Registers Registers are a very important digital building block. A data register is used to store binary information appearing at the output of an encoding matrix.shift registers are a type of sequential

More information

Chapter 4. Logic Design

Chapter 4. Logic Design Chapter 4 Logic Design 4.1 Introduction. In previous Chapter we studied gates and combinational circuits, which made by gates (AND, OR, NOT etc.). That can be represented by circuit diagram, truth table

More information

TYPICAL QUESTIONS & ANSWERS

TYPICAL QUESTIONS & ANSWERS DIGITALS ELECTRONICS TYPICAL QUESTIONS & ANSWERS OBJECTIVE TYPE QUESTIONS Each Question carries 2 marks. Choose correct or the best alternative in the following: Q.1 The NAND gate output will be low if

More information

WINTER 14 EXAMINATION

WINTER 14 EXAMINATION Subject Code: 17320 WINTER 14 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION Spring 2012 Question No: 1 ( Marks: 1 ) - Please choose one A SOP expression is equal to 1

More information

Counter dan Register

Counter dan Register Counter dan Register Introduction Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory.

More information

CSC Computer Architecture and Organization

CSC Computer Architecture and Organization S 37 - omputer Architecture and Organization Lecture 6: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store n

More information

problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts

problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS150 J. Wawrzynek Spring 2002 4/5/02 Midterm Exam II Name: Solutions ID number:

More information

Find the equivalent decimal value for the given value Other number system to decimal ( Sample)

Find the equivalent decimal value for the given value Other number system to decimal ( Sample) VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 65 009 Department of Information Technology Model Exam-II-Question bank PART A (Answer for all Questions) (8 X = 6) K CO Marks Find the equivalent

More information

CSE 140 Exam #3 Tajana Simunic Rosing

CSE 140 Exam #3 Tajana Simunic Rosing CSE 140 Exam #3 Tajana Simunic Rosing Winter 2010 Do not start the exam until you are told to. Turn off any cell phones or pagers. Write your name and PID at the top of every page. Do not separate the

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

Using minterms, m-notation / decimal notation Sum = Cout = Using maxterms, M-notation Sum = Cout =

Using minterms, m-notation / decimal notation Sum = Cout = Using maxterms, M-notation Sum = Cout = 1 Review of Digital Logic Design Fundamentals Logic circuits: 1. Combinational Logic: No memory, present output depends only on the present input 2. Sequential Logic: Has memory, present output depends

More information

Digital Fundamentals: A Systems Approach

Digital Fundamentals: A Systems Approach Digital Fundamentals: A Systems Approach Counters Chapter 8 A System: Digital Clock Digital Clock: Counter Logic Diagram Digital Clock: Hours Counter & Decoders Finite State Machines Moore machine: One

More information

Scanned by CamScanner

Scanned by CamScanner NAVEEN RAJA VELCHURI DSD & Digital IC Applications Example: 2-bit asynchronous up counter: The 2-bit Asynchronous counter requires two flip-flops. Both flip-flop inputs are connected to logic 1, and initially

More information

BHARATHIDASAN ENGINEERING COLLEGE, NATTRAMPALLI DEPARTMENT OF ECE

BHARATHIDASAN ENGINEERING COLLEGE, NATTRAMPALLI DEPARTMENT OF ECE BHARATHIDASAN ENGINEERING COLLEGE, NATTRAMPALLI DEPARTMENT OF ECE CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN 1 st year 2 nd semester CSE & IT Unit wise Important Part A and Part B Prepared by L.GOPINATH

More information

Chapter. Sequential Circuits

Chapter. Sequential Circuits Chapter Sequential Circuits Circuits Combinational circuit The output depends only on the input Sequential circuit Has a state The output depends not only on the input but also on the state the circuit

More information

Good Evening! Welcome!

Good Evening! Welcome! Page 1/11 Instructions: urn off all cell phones, beepers and other noise making devices. Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated

More information

CSE 140 Exam #3 Solution Tajana Simunic Rosing

CSE 140 Exam #3 Solution Tajana Simunic Rosing CSE 140 Exam #3 Solution Tajana Simunic Rosing Winter 2010 Do not start the exam until you are told to. Turn off any cell phones or pagers. Write your name and PID at the top of every page. Do not separate

More information

Computer Organization & Architecture Lecture #5

Computer Organization & Architecture Lecture #5 Computer Organization & Architecture Lecture #5 Shift Register A shift register is a register in which binary data can be stored and then shifted left or right when a shift signal is applied. Bits shifted

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Sequential Circuits. Output depends only and immediately on the inputs Have no memory (dependence on past values of the inputs)

Sequential Circuits. Output depends only and immediately on the inputs Have no memory (dependence on past values of the inputs) Sequential Circuits Combinational circuits Output depends only and immediately on the inputs Have no memory (dependence on past values of the inputs) Sequential circuits Combination circuits with memory

More information

Come and join us at WebLyceum

Come and join us at WebLyceum Come and join us at WebLyceum For Past Papers, Quiz, Assignments, GDBs, Video Lectures etc Go to http://www.weblyceum.com and click Register In Case of any Problem Contact Administrators Rana Muhammad

More information

AIM: To study and verify the truth table of logic gates

AIM: To study and verify the truth table of logic gates EXPERIMENT: 1- LOGIC GATES AIM: To study and verify the truth table of logic gates LEARNING OBJECTIVE: Identify various Logic gates and their output. COMPONENTS REQUIRED: KL-31001 Digital Logic Lab( Main

More information

Multiplexor (aka MUX) An example, yet VERY useful circuit!

Multiplexor (aka MUX) An example, yet VERY useful circuit! Multiplexor (aka MUX) An example, yet VERY useful circuit! A B 0 1 Y S A B Y 0 0 x 0 0 1 x 1 1 x 0 0 1 x 1 1 S=1 S=0 Y = (S)? B:A; Y=S A+SB when S = 0: output A 1: output B 56 A 32-bit MUX Use 32 1-bit

More information

Counters

Counters Counters A counter is the most versatile and useful subsystems in the digital system. A counter driven by a clock can be used to count the number of clock cycles. Since clock pulses occur at known intervals,

More information

TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC)

TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC) 1 TEST-3 (DIGITAL ELECTRONICS)-(EECTRONIC) Q.1 The flip-flip circuit is. a) Unstable b) multistable c) Monostable d) bitable Q.2 A digital counter consists of a group of a) Flip-flop b) half adders c)

More information

University of Florida EEL 3701 Fall 1996 Dr. Eric M. Schwartz

University of Florida EEL 3701 Fall 1996 Dr. Eric M. Schwartz University of lorida EEL 3701 all 1996 r. Eric M. Schwartz Page 1/9 Last Name, irst Name Instructions: Show all work on the front of the test papers. If you need more room, make a clearly indicated note

More information

Chapter 6 Digital Circuit 6-5 Department of Mechanical Engineering

Chapter 6 Digital Circuit 6-5 Department of Mechanical Engineering MEMS1082 Chapter 6 Digital Circuit 6-5 General digital system D Flip-Flops, The D flip-flop is a modification of the clocked SR flip-flop. The D input goes directly into the S input and the complement

More information

UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers.

UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers. UNIT 1: DIGITAL LOGICAL CIRCUITS What is Digital Computer? OR Explain the block diagram of digital computers. Digital computer is a digital system that performs various computational tasks. The word DIGITAL

More information

S.K.P. Engineering College, Tiruvannamalai UNIT I

S.K.P. Engineering College, Tiruvannamalai UNIT I UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES Part - A Questions 1. Convert the hexadecimal number E3FA to binary.( Nov 2007) E3FA 16 Hexadecimal E 3 F A 11102 00112 11112 10102 So the equivalent binary

More information

TIME SCHEDULE. MODULE TOPICS PERIODS 1 Number system & Boolean algebra 17 Test I 1 2 Logic families &Combinational logic

TIME SCHEDULE. MODULE TOPICS PERIODS 1 Number system & Boolean algebra 17 Test I 1 2 Logic families &Combinational logic COURSE TITLE : DIGITAL INSTRUMENTS PRINCIPLE COURSE CODE : 3075 COURSE CATEGORY : B PERIODS/WEEK : 4 PERIODS/SEMESTER : 72 CREDITS : 4 TIME SCHEDULE MODULE TOPICS PERIODS 1 Number system & Boolean algebra

More information

Experiment # 9. Clock generator circuits & Counters. Digital Design LAB

Experiment # 9. Clock generator circuits & Counters. Digital Design LAB Digital Design LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering Fall 2012 ECOM 2112: Digital Design LAB Eng: Ahmed M. Ayash Experiment # 9 Clock generator circuits & Counters

More information

Laboratory Objectives and outcomes for Digital Design Lab

Laboratory Objectives and outcomes for Digital Design Lab Class: SE Department of Information Technology Subject Logic Design Sem : III Course Objectives and outcomes for LD Course Objectives: Students will try to : COB1 Understand concept of various components.

More information

ME 515 Mechatronics. Introduction to Digital Electronics

ME 515 Mechatronics. Introduction to Digital Electronics ME 55 Mechatronics /5/26 ME 55 Mechatronics Digital Electronics Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 8239 (3627) Email: asangar@pdn.ac.lk Introduction to

More information