problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts

Size: px
Start display at page:

Download "problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts"

Transcription

1 University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS150 J. Wawrzynek Spring /5/02 Midterm Exam II Name: Solutions ID number: This is a closed-book, closed-note exam. No calculators please. You have 3 hours. Each question is marked with its number of points (one point per expected minute of time). Use the scrap paper to work out your answers, then neatly write your final answer in the space provided. We will only grade answers provided in the appropriate place. Put your name and SID on each page. Show your work. Write neatly and be well organized. Good luck! problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts

2 1. [28 pts] Short Answer. a) [1pt] Any Boolean function can be implemented using multiplexers alone. (true or false) b) [1pt] Dedicated carry-chains in FPGAs speed-up addition over carry-ripple adders using LUTS by approximately a factor of 4, 8, or 16 (choose one) c) [2pts] Equal comparison of 2 8-bit numbers (output =1 if two numbers are equal) requires at least 31 2-input AND/OR gates (assuming both complemented and uncomplemented inputs are available) true 4 d) [1pt] For a SR-latch built from cross-coupled NAND gates, to set the latch, one of the the inputs must changed from logic level HI to logic level LO. e) [1pt] A toggle flip-flop can be built from a D-type flip-flop (with both Q and Q outputs) and how many 2-input AND/OR gates? 3 f) [1pt] How many distinct states are there in a n-bit Johnson Counter? 2n g) [2pt] A Two-dimensional universal shift-register (shift both left/right or up/down) could be built from D-type flip-flops and multiplexors with how many inputs? 6 or 9 if including the control h) [1pt] A Moore machine usually has fewer states than an equivalent Mealy machine. (true or false) false i) [1pt] If you were to build a 64:1 multiplexer from 4:1 multiplexers, you would need 21 4:1 multiplexers. j) [1pt] A sequential circuit is to output a 1 when an even number of one s are input; otherwise the output is 0. The minimum number of flip-flops required is 1. 2

3 k) [1pt] A four to one multiplexer is to be implemented using a memory. How many = words of memory are required, and how many bits must each word have? 64 x 1 l) [2pt] Given a Mealy machine with 3 inputs, 4 state flip-flops, and 5 outputs. What is the maximum possible number of transition arrows that can leave a single state? 3 or 8 m) [3pt] What is the minimum number of full-adder cells that are needed to reduce a list of M n-bit numbers to a pair of numbers using carry-save addition, in one clock cycle? approx_n n( m 2) log 2 ( m) 1 exact_n n( m 2) k = 1 ( k 1) m 1 2 k n) [6pt] Fill in the following table with delay and cost as a function of n for each type of n-bit adder structure (use the big O notation): Adder type delay cost Ripple carry O(n) O(n) Carry-Look-ahead O(log n) O(n) Carry-Select O(sqrt(n)) O(n) o) [2pt] List two reasons why designers should carefully choose the state assignment in FSM design. Delay, cost, and power p) [2pt] What is the minimum number of 2-input gates that are needed to implement a 3- input decoder? (assume both complemented and uncomplemented versions of the input are available) 12 3

4 2. [10 pts] Consider the design of a Moore-style FSM with the following description: The FSM has 2 inputs, IN and RESET, and four outputs X0, X1, X2, and X3. After the RESET input is asserted the FSM accepts a stream of bits applied to the input IN. Bit patterns of the form 1 1 are recognized by the FSM, where each may be either a 0 or a 1. After the rising edge of the clock on the cycle when the final 1 is passed in, the FSM asserts one of X0,, X3 to indicate 00, 01, 10, or 11 for. All other bit patterns result in no outputs being asserted. The RESET signal can come at any time and initializes the FSM to again look for bit patterns. Recognizable bit patterns do not overlap. For example, the bit stream (with time moving left to right through this bit string) contains only three recognized bit patterns, 1011, 1001, and Fill in the symbolic state transition table and the output table below. ( symbolic means that you do not need to encode the states just make up state names). 4

5 NEXT STATE IN RESET STATE STATE OUTPUT S0 0 0 S0 S0 1 0 S1 S1 S1 0 0 S2 S2 1 0 S3 S3 S2 0 0 S4 S4 1 0 S5 S5 S3 0 0 S6 S6 1 0 S7 S7 S4 0 0 S0 S8 X0 1 0 S8 S9 X1 S5 0 0 S2 S10 X2 1 0 S9 S11 X3 S6 0 0 S4 1 0 S10 S7 0 0 S6 1 0 S11 S8 0 0 S0 1 0 S1 S9 0 0 S0 1 0 S1 S S0 1 0 S1 S S0 1 0 S S0 5

6 3. [10pts] Consider the Mealy FSM with a state transition table shown below. An additional input, RESET, asynchronously sends the FSM to the S0 state. NEXT STATE IN STATE OUT S0 0 S0 0 S0 1 S1 0 S1 0 S1 0 S1 1 S2 0 S2 0 S2 0 S2 1 S0 1 In the space provided below, draw the circuit diagram for a one-hot encoded implementation of the FSM. Assume that the only circuit elements you have are inverters, 2-input AND and OR gates, and D-type flip-flops with asynchronous set and reset: 6

7 4. [15 pts] Consider the design of a synchronous binary up-counter (no ripple counters allowed!). The counter has no count-enable input (CE) and no terminal-count (TC) output. Its only input, RESET, asynchronously sends the counter to the 0 state. The design elements in the table are the only ones available for your use. The flip-flops have asynchronous reset inputs. All delays are in ns. Ignore delay due to fan-out. Element D-type FF 2-input 2-input 2-input inverter EXOR AND OR Cost Delay 1 (setup) 1 (clk-to-q) a) Using only elements from the table above, design an 8-bit counter with minimal cost that will function correctly with a clock period of 18ns. Draw your circuit in the place provided. Fill in the cost. Cost = 82 Cost = INV + 7*EXOR + 6*AND + 8*FF = = 82 Cycle time >= T clk-to-q + (6*T AND + T EXOR ) + T SU >= 1 + (12 + 2) + 1 >= 16ns 7

8 b) Now assume the desired clock period is 15ns. Draw the circuit diagram for a counter (with the same functional specification as above) with minimal cost that will function correctly with a clock period of 15ns. Fill in the cost for this version. Cost = 84 Cost = INV + 7*EXOR + 7*AND + 8*FF = = 84 Cycle time >= T clk-to-q + (5*T AND + T EXOR ) + T SU >= 1 + (10 + 2) + 1 >= 14ns 8

9 5. [14pts] Consider the design of an 3-bit array multiplier; a combinational logic circuit capable of multiplying 2 unsigned 3-bit numbers A and B, and generating a 6-bit result, P, within one clock cycle. Your design elements are shown with their associated delay in the table below. All delays are in ns. element full-adder cell (any input to any output) delay input AND Consider the design of a minimum cost multiplier. Assuming that both inputs A and B are applied at the same time, fill in the table below to indicate the worst-case delay from the inputs to each of the output bits in the result P. Hint: For this size multiplier, carry-save addition provides no advantage, so don t use it. Justify your answer by drawing your circuit below. FA: A B B2 B1 B0 C0 S Cin A0 B2 B1 B0 P0 A1 0 FA FA FA 0 B2 B1 B0 P1 A2 FA FA FA 0 P5 P4 P3 P2 delay p 0 1 p 1 3 p 2 7 p 3 9 p 4 11 p

10 6. [12 pts] A Moore style FSM with one input and one output has behavior described by the symbolic state transition table below. NEXT STATE IN STATE STATE OUTPUT A 0 C A 1 B B 0 B B 1 D C 0 A C 1 C D 0 C D 1 B A 1 B 0 C 1 D 0 a) Convert the Moore machine to a Mealy machine with the same behavior. Express your answer by filling in the symbolic state transition table in the space below. Use as few state as are necessary: NEXT STATE IN STATE OUTPUT A IN C 1 A IN B 0 A C IN C 1 C IN A 1 IN /1 IN/0 B IN A 0 IN /1 IN/0 B IN B 0 C C IN/1 IN /0 Observe that if the present state is A or D, given the same input, their behavior is the same (same state transition and output). So we can combine states A and D. 10

11 7. [12pts] Consider the design of a controller built from a FSM and a counter. The controller has one input, GO, and one output, DONE. When the GO signal is asserted (for at least one cycle) the controller waits for 12 cycles then asserts the DONE signal for one cycle, as shown below: CLK GO DONE The controller must be built from a FSM and a 4-bit synchronous binary counter with count-enable (CE) and load (LD) inputs, parallel load signals (d3,d2,d1,d0), parallel output signals (q3,q2,q1,q0) and terminal-count output (TC). a) In the space provided below, draw a state-transition-diagram for the FSM. You may choose between Moore and Mealy machines. GO / GO/LD TC /CE Idle Count Mealy TC/DONE d = 4\d GO TC GO S0 [LD] S1 [CE] S2 [DONE] TC Moore d = 5\d 11

12 b) Make all necessary connections among the inputs and outputs, to implement the controller (assume the clock signal already is connected): FSM CE LD d3,d2,d1,d0 4-bit counter TC q3,q2,q1,q0 GO DONE 4 State Mealy LD CE O[3:0] D[3:0] GO 4 OR 4 12

1. Convert the decimal number to binary, octal, and hexadecimal.

1. Convert the decimal number to binary, octal, and hexadecimal. 1. Convert the decimal number 435.64 to binary, octal, and hexadecimal. 2. Part A. Convert the circuit below into NAND gates. Insert or remove inverters as necessary. Part B. What is the propagation delay

More information

EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited

EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited April 2, 2013 John Wawrzynek Spring 2013 EECS150 - Lec19-fsm Page 1 Finite State Machines (FSMs) FSM circuits are a type of sequential

More information

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall

YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING. EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall YEDITEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING EXPERIMENT VIII: FLIP-FLOPS, COUNTERS 2014 Fall Objective: - Dealing with the operation of simple sequential devices. Learning invalid condition in

More information

Section 6.8 Synthesis of Sequential Logic Page 1 of 8

Section 6.8 Synthesis of Sequential Logic Page 1 of 8 Section 6.8 Synthesis of Sequential Logic Page of 8 6.8 Synthesis of Sequential Logic Steps:. Given a description (usually in words), develop the state diagram. 2. Convert the state diagram to a next-state

More information

Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

More information

Counter dan Register

Counter dan Register Counter dan Register Introduction Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory.

More information

Asynchronous (Ripple) Counters

Asynchronous (Ripple) Counters Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory. The chapter about flip-flops introduced

More information

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath Objectives Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath In the previous chapters we have studied how to develop a specification from a given application, and

More information

Computer Organization & Architecture Lecture #5

Computer Organization & Architecture Lecture #5 Computer Organization & Architecture Lecture #5 Shift Register A shift register is a register in which binary data can be stored and then shifted left or right when a shift signal is applied. Bits shifted

More information

Experiment 8 Introduction to Latches and Flip-Flops and registers

Experiment 8 Introduction to Latches and Flip-Flops and registers Experiment 8 Introduction to Latches and Flip-Flops and registers Introduction: The logic circuits that have been used until now were combinational logic circuits since the output of the device depends

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers and Counters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

EECS 270 Midterm 2 Exam Closed book portion Fall 2014

EECS 270 Midterm 2 Exam Closed book portion Fall 2014 EECS 270 Midterm 2 Exam Closed book portion Fall 2014 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: Page # Points

More information

Registers and Counters

Registers and Counters Registers and Counters Clocked sequential circuit = F/Fs and combinational gates Register Group of flip-flops (share a common clock and capable of storing one bit of information) Consist of a group of

More information

Midterm Exam 15 points total. March 28, 2011

Midterm Exam 15 points total. March 28, 2011 Midterm Exam 15 points total March 28, 2011 Part I Analytical Problems 1. (1.5 points) A. Convert to decimal, compare, and arrange in ascending order the following numbers encoded using various binary

More information

EECS150 - Digital Design Lecture 15 Finite State Machines. Announcements

EECS150 - Digital Design Lecture 15 Finite State Machines. Announcements EECS150 - Digital Design Lecture 15 Finite State Machines October 18, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150

More information

Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012

Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012 1 McGill University Faculty of Engineering ECSE-221B Introduction to Computer Engineering Department of Electrical and Computer Engineering Mid-Term Examination Winter 2012 Examiner: Rola Harmouche Date:

More information

Chapter 6. Flip-Flops and Simple Flip-Flop Applications

Chapter 6. Flip-Flops and Simple Flip-Flop Applications Chapter 6 Flip-Flops and Simple Flip-Flop Applications Basic bistable element It is a circuit having two stable conditions (states). It can be used to store binary symbols. J. C. Huang, 2004 Digital Logic

More information

cascading flip-flops for proper operation clock skew Hardware description languages and sequential logic

cascading flip-flops for proper operation clock skew Hardware description languages and sequential logic equential logic equential circuits simple circuits with feedback latches edge-triggered flip-flops Timing methodologies cascading flip-flops for proper operation clock skew Basic registers shift registers

More information

Chapter 5 Synchronous Sequential Logic

Chapter 5 Synchronous Sequential Logic Chapter 5 Synchronous Sequential Logic Chih-Tsun Huang ( 黃稚存 ) http://nthucad.cs.nthu.edu.tw/~cthuang/ Department of Computer Science National Tsing Hua University Outline Introduction Storage Elements:

More information

1.b. Realize a 5-input NOR function using 2-input NOR gates only.

1.b. Realize a 5-input NOR function using 2-input NOR gates only. . [3 points] Short Questions.a. Prove or disprove that the operators (,XOR) form a complete set. Remember that the operator ( ) is implication such that: A B A B.b. Realize a 5-input NOR function using

More information

Chapter Contents. Appendix A: Digital Logic. Some Definitions

Chapter Contents. Appendix A: Digital Logic. Some Definitions A- Appendix A - Digital Logic A-2 Appendix A - Digital Logic Chapter Contents Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A. Introduction A.2 Combinational

More information

Digital Fundamentals: A Systems Approach

Digital Fundamentals: A Systems Approach Digital Fundamentals: A Systems Approach Counters Chapter 8 A System: Digital Clock Digital Clock: Counter Logic Diagram Digital Clock: Hours Counter & Decoders Finite State Machines Moore machine: One

More information

Course Administration

Course Administration EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN Lecture 5: Sequential Logic - 2 Analysis of Clocked Sequential Systems 4/2/2 Avinash Kodi, kodi@ohio.edu Course Administration 2 Hw 2 due on today

More information

Logic and Computer Design Fundamentals. Chapter 7. Registers and Counters

Logic and Computer Design Fundamentals. Chapter 7. Registers and Counters Logic and Computer Design Fundamentals Chapter 7 Registers and Counters Registers Register a collection of binary storage elements In theory, a register is sequential logic which can be defined by a state

More information

Computer Architecture and Organization

Computer Architecture and Organization A-1 Appendix A - Digital Logic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Appendix A Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20 Advanced Devices Using a combination of gates and flip-flops, we can construct more sophisticated logical devices. These devices, while more complex, are still considered fundamental to basic logic design.

More information

Counters

Counters Counters A counter is the most versatile and useful subsystems in the digital system. A counter driven by a clock can be used to count the number of clock cycles. Since clock pulses occur at known intervals,

More information

Lecture 8: Sequential Logic

Lecture 8: Sequential Logic Lecture 8: Sequential Logic Last lecture discussed how we can use digital electronics to do combinatorial logic we designed circuits that gave an immediate output when presented with a given set of inputs

More information

Midterm Examination II

Midterm Examination II Midterm Examination II EE 203 - Digital Systems DESIGN (Fall 2015) MEF University Instructions Assigned: 6:30pm on December 17, 2015. Due: 8:00pm on December 17, 2015. Instructor: Şuayb Ş. Arslan. Name:

More information

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it,

Solution to Digital Logic )What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, Solution to Digital Logic -2067 Solution to digital logic 2067 1.)What is the magnitude comparator? Design a logic circuit for 4 bit magnitude comparator and explain it, A Magnitude comparator is a combinational

More information

Principles of Computer Architecture. Appendix A: Digital Logic

Principles of Computer Architecture. Appendix A: Digital Logic A-1 Appendix A - Digital Logic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

ELE2120 Digital Circuits and Systems. Tutorial Note 8

ELE2120 Digital Circuits and Systems. Tutorial Note 8 ELE2120 Digital Circuits and Systems Tutorial Note 8 Outline 1. Register 2. Counters 3. Synchronous Counter 4. Asynchronous Counter 5. Sequential Circuit Design Overview 1. Register Applications: temporally

More information

Sequential Logic Circuits

Sequential Logic Circuits Sequential Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch- Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has memory

More information

Combinational / Sequential Logic

Combinational / Sequential Logic Digital Circuit Design and Language Combinational / Sequential Logic Chang, Ik Joon Kyunghee University Combinational Logic + The outputs are determined by the present inputs + Consist of input/output

More information

CSE 140 Exam #3 Tajana Simunic Rosing

CSE 140 Exam #3 Tajana Simunic Rosing CSE 140 Exam #3 Tajana Simunic Rosing Winter 2010 Do not start the exam until you are told to. Turn off any cell phones or pagers. Write your name and PID at the top of every page. Do not separate the

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - III Sequential Logic I Sequential circuits: latches flip flops analysis of clocked sequential circuits state reduction and assignments Registers and Counters: Registers shift registers ripple counters

More information

Unit 11. Latches and Flip-Flops

Unit 11. Latches and Flip-Flops Unit 11 Latches and Flip-Flops 1 Combinational Circuits A combinational circuit consists of logic gates whose outputs, at any time, are determined by combining the values of the inputs. For n input variables,

More information

St. MARTIN S ENGINEERING COLLEGE

St. MARTIN S ENGINEERING COLLEGE St. MARTIN S ENGINEERING COLLEGE Dhulapally, Kompally, Secunderabad-500014. Branch Year&Sem Subject Name : Electronics and Communication Engineering : II B. Tech I Semester : SWITCHING THEORY AND LOGIC

More information

DIGITAL SYSTEM DESIGN UNIT I (2 MARKS)

DIGITAL SYSTEM DESIGN UNIT I (2 MARKS) DIGITAL SYSTEM DESIGN UNIT I (2 MARKS) 1. Convert Binary number (111101100) 2 to Octal equivalent. 2. Convert Binary (1101100010011011) 2 to Hexadecimal equivalent. 3. Simplify the following Boolean function

More information

EECS 270 Final Exam Spring 2012

EECS 270 Final Exam Spring 2012 EECS 270 Final Exam Spring 2012 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: Page # Points 2 /20 3 /12 4 /10 5 /15

More information

Digital Electronics II 2016 Imperial College London Page 1 of 8

Digital Electronics II 2016 Imperial College London Page 1 of 8 Information for Candidates: The following notation is used in this paper: 1. Unless explicitly indicated otherwise, digital circuits are drawn with their inputs on the left and their outputs on the right.

More information

Sequential logic. Circuits with feedback. How to control feedback? Sequential circuits. Timing methodologies. Basic registers

Sequential logic. Circuits with feedback. How to control feedback? Sequential circuits. Timing methodologies. Basic registers equential logic equential circuits simple circuits with feedback latches edge-triggered flip-flops Timing methodologies cascading flip-flops for proper operation clock skew Basic registers shift registers

More information

Digital Design, Kyung Hee Univ. Chapter 5. Synchronous Sequential Logic

Digital Design, Kyung Hee Univ. Chapter 5. Synchronous Sequential Logic Chapter 5. Synchronous Sequential Logic 1 5.1 Introduction Electronic products: ability to send, receive, store, retrieve, and process information in binary format Dependence on past values of inputs Sequential

More information

UNIT 1 NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES 1. Briefly explain the stream lined method of converting binary to decimal number with example. 2. Give the Gray code for the binary number (111) 2. 3.

More information

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design Flip-Flops and Sequential Circuit Design ECE 52 Summer 29 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

Dr. Shahram Shirani COE2DI4 Midterm Test #2 Nov 19, 2008

Dr. Shahram Shirani COE2DI4 Midterm Test #2 Nov 19, 2008 Page 1 Dr. Shahram Shirani COE2DI4 Midterm Test #2 Nov 19, 2008 Instructions: This examination paper includes 13 pages and 20 multiple-choice questions starting on page 3. You are responsible for ensuring

More information

Logic Design. Flip Flops, Registers and Counters

Logic Design. Flip Flops, Registers and Counters Logic Design Flip Flops, Registers and Counters Introduction Combinational circuits: value of each output depends only on the values of inputs Sequential Circuits: values of outputs depend on inputs and

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-III SEQUENTIAL CIRCUITS

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-III SEQUENTIAL CIRCUITS NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS CLASS: II YEAR ECE SUBJECT CODE: EC2203

More information

Figure 30.1a Timing diagram of the divide by 60 minutes/seconds counter

Figure 30.1a Timing diagram of the divide by 60 minutes/seconds counter Digital Clock The timing diagram figure 30.1a shows the time interval t 6 to t 11 and t 19 to t 21. At time interval t 9 the units counter counts to 1001 (9) which is the terminal count of the 74x160 decade

More information

CSE115: Digital Design Lecture 23: Latches & Flip-Flops

CSE115: Digital Design Lecture 23: Latches & Flip-Flops Faculty of Engineering CSE115: Digital Design Lecture 23: Latches & Flip-Flops Sections 7.1-7.2 Suggested Reading A Generic Digital Processor Building Blocks for Digital Architectures INPUT - OUTPUT Interconnect:

More information

Logic Design ( Part 3) Sequential Logic- Finite State Machines (Chapter 3)

Logic Design ( Part 3) Sequential Logic- Finite State Machines (Chapter 3) Logic esign ( Part ) Sequential Logic- Finite State Machines (Chapter ) Based on slides McGraw-Hill Additional material 00/00/006 Lewis/Martin Additional material 008 Roth Additional material 00 Taylor

More information

UNIT III. Combinational Circuit- Block Diagram. Sequential Circuit- Block Diagram

UNIT III. Combinational Circuit- Block Diagram. Sequential Circuit- Block Diagram UNIT III INTRODUCTION In combinational logic circuits, the outputs at any instant of time depend only on the input signals present at that time. For a change in input, the output occurs immediately. Combinational

More information

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 151) Pass Marks: 24

Bachelor Level/ First Year/ Second Semester/ Science Full Marks: 60 Computer Science and Information Technology (CSc. 151) Pass Marks: 24 2065 Computer Science and Information Technology (CSc. 151) Pass Marks: 24 Time: 3 hours. Candidates are required to give their answers in their own words as for as practicable. Attempt any TWO questions:

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: igital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers CprE 281: igital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053

R13 SET - 1 '' ''' '' ' '''' Code No: RT21053 SET - 1 1. a) What are the characteristics of 2 s complement numbers? b) State the purpose of reducing the switching functions to minimal form. c) Define half adder. d) What are the basic operations in

More information

Digital Logic Design Sequential Circuits. Dr. Basem ElHalawany

Digital Logic Design Sequential Circuits. Dr. Basem ElHalawany Digital Logic Design Sequential Circuits Dr. Basem ElHalawany Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs

More information

Chapter 5: Synchronous Sequential Logic

Chapter 5: Synchronous Sequential Logic Chapter 5: Synchronous Sequential Logic NCNU_2016_DD_5_1 Digital systems may contain memory for storing information. Combinational circuits contains no memory elements the outputs depends only on the inputs

More information

CS 151 Final. Instructions: Student ID. (Last Name) (First Name) Signature

CS 151 Final. Instructions: Student ID. (Last Name) (First Name) Signature CS 151 Final Name Student ID Signature :, (Last Name) (First Name) : : Instructions: 1. Please verify that your paper contains 19 pages including this cover. 2. Write down your Student-Id on the top of

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: igital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers CprE 281: igital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative

More information

Registers and Counters

Registers and Counters Registers and Counters Clocked sequential circuit = F/Fs and combinational gates Register Group of flip-flops (share a common clock and capable of storing one bit of information) Consist of a group of

More information

VU Mobile Powered by S NO Group

VU Mobile Powered by S NO Group Question No: 1 ( Marks: 1 ) - Please choose one A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register.

More information

1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. [4] Figure 1.

1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. [4] Figure 1. [Question 1 is compulsory] 1. a) For the circuit shown in figure 1.1, draw a truth table showing the output Q for all combinations of inputs A, B and C. Figure 1.1 b) Minimize the following Boolean functions:

More information

UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MALAYSIA SULIT Faculty of Computing UNIVERSITI TEKNOLOGI MALAYSIA FINAL EXAMINATION SEMESTER I, 2016 / 2017 SUBJECT CODE : SUBJECT NAME : SECTION : TIME : DATE/DAY : VENUES : INSTRUCTIONS : Answer all questions

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers and Counters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 3 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

Sequential Circuits. Output depends only and immediately on the inputs Have no memory (dependence on past values of the inputs)

Sequential Circuits. Output depends only and immediately on the inputs Have no memory (dependence on past values of the inputs) Sequential Circuits Combinational circuits Output depends only and immediately on the inputs Have no memory (dependence on past values of the inputs) Sequential circuits Combination circuits with memory

More information

Sequential Logic. Analysis and Synthesis. Joseph Cavahagh Santa Clara University. r & Francis. TaylonSi Francis Group. , Boca.Raton London New York \

Sequential Logic. Analysis and Synthesis. Joseph Cavahagh Santa Clara University. r & Francis. TaylonSi Francis Group. , Boca.Raton London New York \ Sequential Logic Analysis and Synthesis Joseph Cavahagh Santa Clara University r & Francis TaylonSi Francis Group, Boca.Raton London New York \ CRC is an imprint of the Taylor & Francis Group, an informa

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 05 February 23, 2012 Dohn Bowden 1 Today s Lecture Analysis of Clocked Sequential Circuits Chapter 13 2 Course Admin 3 Administrative Admin

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 23 121120 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Combinatorial Logic Sequential Logic 3 Combinatorial Logic Circuits

More information

Vignana Bharathi Institute of Technology UNIT 4 DLD

Vignana Bharathi Institute of Technology UNIT 4 DLD DLD UNIT IV Synchronous Sequential Circuits, Latches, Flip-flops, analysis of clocked sequential circuits, Registers, Shift registers, Ripple counters, Synchronous counters, other counters. Asynchronous

More information

D Latch (Transparent Latch)

D Latch (Transparent Latch) D Latch (Transparent Latch) -One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure that inputs S and R are never equal to 1 at the same time. This is done

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: igital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers CprE 281: igital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative

More information

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan DIGITAL LOGIC DESIGN (Com. to CSE, IT) PART-A SET - 1 Note: Question Paper consists of two parts (Part-A and Part-B) Answer ALL the question in Part-A Answer any THREE Questions from Part-B a) What are the characteristics of 2 s complement numbers?

More information

EECS150 - Digital Design Lecture 3 Synchronous Digital Systems Review. Announcements

EECS150 - Digital Design Lecture 3 Synchronous Digital Systems Review. Announcements EECS150 - Digital Design Lecture 3 Synchronous Digital Systems Review September 1, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150

More information

Introduction. Serial In - Serial Out Shift Registers (SISO)

Introduction. Serial In - Serial Out Shift Registers (SISO) Introduction Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are a group of flip-flops connected in a chain so that the output from one flip-flop becomes

More information

MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER CS 203: Switching Theory and Logic Design. Time: 3 Hrs Marks: 100

MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER CS 203: Switching Theory and Logic Design. Time: 3 Hrs Marks: 100 MODEL QUESTIONS WITH ANSWERS THIRD SEMESTER B.TECH DEGREE EXAMINATION DECEMBER 2016 CS 203: Switching Theory and Logic Design Time: 3 Hrs Marks: 100 PART A ( Answer All Questions Each carries 3 Marks )

More information

CHAPTER 4: Logic Circuits

CHAPTER 4: Logic Circuits CHAPTER 4: Logic Circuits II. Sequential Circuits Combinational circuits o The outputs depend only on the current input values o It uses only logic gates, decoders, multiplexers, ALUs Sequential circuits

More information

Sequential Digital Design. Laboratory Manual. Experiment #7. Counters

Sequential Digital Design. Laboratory Manual. Experiment #7. Counters The Islamic University of Gaza Engineering Faculty Department of Computer Engineering Spring 2018 ECOM 2022 Khaleel I. Shaheen Sequential Digital Design Laboratory Manual Experiment #7 Counters Objectives

More information

Digital Circuit And Logic Design I. Lecture 8

Digital Circuit And Logic Design I. Lecture 8 Digital Circuit And Logic Design I Lecture 8 Outline Sequential Logic Design Principles (1) 1. Introduction 2. Latch and Flip-flops 3. Clocked Synchronous State-Machine Analysis Panupong Sornkhom, 2005/2

More information

Digital Circuit And Logic Design I

Digital Circuit And Logic Design I Digital Circuit And Logic Design I Lecture 8 Outline Sequential Logic Design Principles (1) 1. Introduction 2. Latch and Flip-flops 3. Clocked Synchronous State-Machine Panupong Sornkhom, 2005/2 2 1 Sequential

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 03 February 09, 2012 Dohn Bowden 1 Today s Lecture Registers and Counters Chapter 12 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

Chapter. Synchronous Sequential Circuits

Chapter. Synchronous Sequential Circuits Chapter 5 Synchronous Sequential Circuits Logic Circuits- Review Logic Circuits 2 Combinational Circuits Consists of logic gates whose outputs are determined from the current combination of inputs. Performs

More information

Flip Flop. S-R Flip Flop. Sequential Circuits. Block diagram. Prepared by:- Anwar Bari

Flip Flop. S-R Flip Flop. Sequential Circuits. Block diagram. Prepared by:- Anwar Bari Sequential Circuits The combinational circuit does not use any memory. Hence the previous state of input does not have any effect on the present state of the circuit. But sequential circuit has memory

More information

Combinational vs Sequential

Combinational vs Sequential Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs Changing inputs changes outputs No regard for previous inputs

More information

Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003

Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003 1 Introduction Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003 Circuits for counting both forward and backward events are frequently used in computers and other digital systems. Digital

More information

FPGA Implementation of Sequential Logic

FPGA Implementation of Sequential Logic ECE 428 Programmable ASIC Design FPGA Implementation of Sequential Logic Haibo Wang ECE Department Southern Illinois University Carbondale, IL 62901 8-1 Sequential Circuit Model Combinational Circuit:

More information

Other Flip-Flops. Lecture 27 1

Other Flip-Flops. Lecture 27 1 Other Flip-Flops Other types of flip-flops can be constructed by using the D flip-flop and external logic. Two flip-flops less widely used in the design of digital systems are the JK and T flip-flops.

More information

EEC 118 Lecture #9: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #9: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #9: Sequential Logic Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Outline Review: Static CMOS Logic Finish Static CMOS transient analysis Sequential

More information

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP 1 Chapter Overview Latches Gated Latches Edge-triggered flip-flops Master-slave flip-flops Flip-flop operating characteristics Flip-flop applications

More information

EECS 270 Midterm 1 Exam Closed book portion Winter 2017

EECS 270 Midterm 1 Exam Closed book portion Winter 2017 EES 270 Midterm 1 Exam losed book portion Winter 2017 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. NOTES: 1. This part of

More information

Microprocessor Design

Microprocessor Design Microprocessor Design Principles and Practices With VHDL Enoch O. Hwang Brooks / Cole 2004 To my wife and children Windy, Jonathan and Michelle Contents 1. Designing a Microprocessor... 2 1.1 Overview

More information

DIGITAL ELECTRONICS MCQs

DIGITAL ELECTRONICS MCQs DIGITAL ELECTRONICS MCQs 1. A 8-bit serial in / parallel out shift register contains the value 8, clock signal(s) will be required to shift the value completely out of the register. A. 1 B. 2 C. 4 D. 8

More information

CHAPTER 6 COUNTERS & REGISTERS

CHAPTER 6 COUNTERS & REGISTERS CHAPTER 6 COUNTERS & REGISTERS 6.1 Asynchronous Counter 6.2 Synchronous Counter 6.3 State Machine 6.4 Basic Shift Register 6.5 Serial In/Serial Out Shift Register 6.6 Serial In/Parallel Out Shift Register

More information

Chapter 5 Sequential Circuits

Chapter 5 Sequential Circuits Logic and Computer Design Fundamentals Chapter 5 Sequential Circuits Part 2 Sequential Circuit Design Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hyperlinks are active in View Show mode)

More information

CS 261 Fall Mike Lam, Professor. Sequential Circuits

CS 261 Fall Mike Lam, Professor. Sequential Circuits CS 261 Fall 2018 Mike Lam, Professor Sequential Circuits Circuits Circuits are formed by linking gates (or other circuits) together Inputs and outputs Link output of one gate to input of another Some circuits

More information

Digital Logic Design I

Digital Logic Design I Digital Logic Design I Synchronous Sequential Logic Mustafa Kemal Uyguroğlu Sequential Circuits Asynchronous Inputs Combinational Circuit Memory Elements Outputs Synchronous Inputs Combinational Circuit

More information

Registers & Counters. Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University

Registers & Counters. Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University Registers & ounters Logic and igital System esign - S 33 Erkay Savaş Sabanci University Registers Registers like counters are clocked sequential circuits A register is a group of flip-flops Each flip-flop

More information

CSE 140 Exam #3 Solution Tajana Simunic Rosing

CSE 140 Exam #3 Solution Tajana Simunic Rosing CSE 140 Exam #3 Solution Tajana Simunic Rosing Winter 2010 Do not start the exam until you are told to. Turn off any cell phones or pagers. Write your name and PID at the top of every page. Do not separate

More information

Universal Asynchronous Receiver- Transmitter (UART)

Universal Asynchronous Receiver- Transmitter (UART) Universal Asynchronous Receiver- Transmitter (UART) (UART) Block Diagram Four-Bit Bidirectional Shift Register Shift Register Counters Shift registers can form useful counters by recirculating a pattern

More information