Project Proposal: Sub pixel motion estimation for side information generation in Wyner- Ziv decoder.

Size: px
Start display at page:

Download "Project Proposal: Sub pixel motion estimation for side information generation in Wyner- Ziv decoder."

Transcription

1 EE 5359 MULTIMEDIA PROCESSING Subrahmanya Maira Venkatrav Project Proposal: Sub pixel motion estimation for side information generation in Wyner- Ziv decoder. Wyner-Ziv(WZ) encoder is a low -complexity encoder and can be made to achieve compression comparable to traditional high complexity encoders but at the expense of a high-complexity decoder. The high complexity of the decoder is mainly attributed to the generation of side information which involves motion estimation. The quality of the frame reconstructed at the decoder mainly depends on quality of the motion estimation. Hence in this proposal sub pixel motion estimation is considered for side information generation. 1. Overview of WZ Encoder The WZ encoding process involves encoding of key frames and WZ frames. The overall encoding process is illustrated in Figure 1. Some of the input frames are marked as key frames and encoded using H.264 Intra (I) frame [6][18] encoding. The WZ frames are encoded as follows: The difference between previous reconstructed key frame and WZ frame is quantized using a uniform scalar quantizer and the output is encoded using low-density-parity-check accumulated (LDPCA) code. Figure 1. Block diagram of WZ encoder

2 2. Overview of WZ Decoder The first step in decoding a WZ frame is generation of side information (SI) using key frames. The SI frame generated is used by the low density parity check accumulate (LDPCA) decoder to decode the WZ bitstream and generate the WZ frame. The previous key frame is subtracted from the SI frame generated to produce error frame which is subsequently quantized. This is used by LDPCA decoder to correct bit errors in WZ encoded error frame. The error frame obtained in this way is added to the key frame and de-quantized to reconstruct the WZ frame. At low bitrates some of the macroblocks in the WZ frame cannot be reconstructed. These macroblocks are replaced with the corresponding macroblocks from WZ estimated frame. Figure 2. Block diagram of WZ decoder [1]

3 3. Generation of Side Information (SI) The SI frame generation is key aspect of WZ decoding process. The quality of the decoding is dependent on the SI frame and in terms of complexity this is a major component of WZ decoder. Figure 3.Side information generation using key frames [1] The generation of SI is illustrated in Figure 3 and it involves, Motion estimation (ME) between two key frames to obtain motion vectors (MV). The estimation is done in both forward and backward directions to obtain MV F and MV B respectively as shown in Figure 3. The block sizes are used for ME are 16x16, 8x8 and 4x4. The derivation of motion vectors for WZ frames. This is done by scaling MVs obtained in the previous step by the ratio calculated as distance between WZ frame to previous key frame to the distance between key frames themselves. In Figure 3, the scaling factor is ½ since the ratio of distance between key frame and WZ frame to distance between two key frames is ½. Obtaining the estimation for macroblock of a WZ frame by interpolation of macroblocks from the previous and next key frames. The motion vectors calculated in the previous step are used here to obtain mapping of macroblocks in WZ frame to key frame macroblocks. The forward predicted frame (P F ) is obtained using forward motion vector MV F and backward predicted frame (P B ) is obtained using backward motion vector MV B. Then the side information frame Y is obtained as (P F + P B )/2 as shown in Figure 3.

4 4. Sub-pixel motion estimation for SI generation The side information generated can be improved by using sub-pixel motion vectors for both forward and backward predictions. In order to derive these sub-pixel positions interpolation between pixels needs to be performed. For half pixel motion estimation there are three pixel positions that need to be evaluated. For quarter pixel motion estimation there are twelve pixel positions that need to be evaluated. The generation of sub-pixel positions is done as per H.264 standard [8] and is briefly described below: 1. Half-pixel positions: In Figure 4 the pixel positions numbered H33, G33 and D33 are half pixel positions and need to be derived. Figure 4. Full and half pixel positions These are generated by interpolating full pixel or half pixel values using a six tap filter [ ]/32. Following equations can be used, H33 = [F * F * F * F * F53 + F ] >> 5 G33 = [F * F * F * F * F35 + F ] >> 5 D33 = [H * H * H * H * H35 + H ] >> 5 2. Quarter-pixel positions: The quarter pixels are obtained by averaging nearest full pixel or half pixel positions.

5 Figure 5. Full, half and quarter pixel positions The following equations are used for obtaining quarter pixel positions, q1 = ( F33 + G ) >> 1 q2 = ( G33 + F ) >> 1 q3 = ( F33 + H ) >> 1 q4 = ( H33 + G ) >> 1 q5 = (G33 + D ) >> 1 q6 = ( G33 + H ) >> 1 q7 = ( H33 + D ) >> 1 q8 = ( D33 + H ) >> 1 q9 = ( H33 + F ) >> 1 q10 = ( H33 + G ) >> 1 q11 = ( D33 + G ) >> 1 q12 = ( G43 + H ) >> 1 The forward and backward predicted data obtained for each partition block is averaged to obtain the final prediction block. In case for a block if there is no motion vector, then intra prediction can be used to predict the block from neighboring pixels. The improvement in the quality of SI generated with the sub pixel motion estimation over full pixel motion estimation can be measured both visually and quantitatively [17]. The quantitative measurement can be done by PSNR of the predicted frame with reference to the original frame. The objective is to get a good improvement in the quality of SI frame. 3. Results: The half-pel motion estimation is implemented for WZ frame generation using JM reference software. The even frames are encoded as I frames and odd frames are encoded using WZ encoder. For quality comparison between WZ encoder and H.264 encoder a separate encoding is done with even frame being I frame and odd frame being P frame. The WZ frame obtained using SI prediction is analyzed for PSNR with reference to corresponding

6 H.264 P frame. The average PSNR plot for a QCIF (176x144) test sequence for a ME search range of 64 is shown in Table 1 and the plot is shown in Figure 6. Coastguard_qcif.yuv (Search Range- 64) SI prediction scheme PSNR(dB) Frame Average Full pel-me 4x Full pel-me 8x Full pel-me 16x Half pel-me 4x Half pel-me 8x Half pel-me 16x Table 1. PSNR for WZ frame. Figure 6. PSNR for WZ frame The PSNR plot in the Figure 6 indicates that the half-pel ME with 8x8 block size performs better than any other schemes. The gain in PSNR using ME for prediction is approximately 7dB compared that of simple frame averaging scheme. Further performance gain can be achieved using quarter-pel motion estimation.

7 References: 1. E. Peixoto, R. L. de Queiroz, and D. Mukherjee, Mobile video communications using a Wyner- Ziv transcoder, Proc. SPIE 6822, VCIP, 68220R Jan A. Aaron, E. Setton and B. Girod, "Towards practical Wyner-Ziv coding of video," Proceedings International Conference on Image Processing, ICIP 2003., vol.3, pp. III , Sept K. R. Rao and J. J. Hwang, Techniques and standards for image, video, and audio coding, Prentice Hall PTR, Jin-Soo Kim, "Brief overview of Wyner-Ziv CODEC" (Private Communication) 5. A. Aaron, D. Varodayan, and B. Girod, Wyner-Ziv residual coding of video, Proc. International Picture Coding Symposium, Beijing, P. R. China, April T. Wiegand and G.J Sullivan, The H.264/AVC video coding standard, IEEE SP Magazine, vol. 24, pp , March G. J. Sullivan, P. Topiwala, and A. Luthra, "The H.264/AVC advanced video coding standard: Overview and introduction to the fidelity range extensions", SPIE Conf. on applications of digital image processing XXVII, vol. 5558, pp , Aug S.K. Kwon, A. Tamhankar, and K.R. Rao Overview of H.264/MPEG-4 Part 10 J. VCIR, Vol. 17, pp , April 2006, Special Issue on Emerging H.264/AVC Video Coding Standard,. 9. A. Wyner and J. Ziv, "The rate-distortion function for source coding with side information at the decoder," IEEE Trans., Information Theory, vol.22, pp. 1-10, Jan D. Varodayan, A. Aaron and B. Girod, "Rate-adaptive distributed source coding using lowdensity parity-check codes," Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, 2005, pp , Oct. 28 Nov. 1, Z. Li and E.J. Delp, "Wyner-Ziv video side estimator: conventional motion search methods revisited," IEEE International Conference on Image Processing, ICIP 2005, vol.1, pp. I , Sept L. Liu and E. J. Delp, "Wyner-Ziv video coding using LDPC codes," Proceedings of the 7th Nordic Signal Processing Symposium, NORSIG D. Kubasov, K. Lajnef and C. Guillemot, "A hybrid encoder/decoder rate control for Wyner-Ziv video coding with a feedback channel," IEEE 9th Workshop on Multimedia Signal Processing, MMSP 2007., pp , 1-3 Oct C. Brites and F. Pereira, "Encoder rate control for transform domain Wyner-Ziv video coding," IEEE International Conference on Image Processing, ICIP 2007., vol.2, pp.ii -5-II -8, Sept A. Roca, et al, "Rate control algorithm for pixel-domain Wyner-Ziv video coding," Proc. SPIE, vol. 6822, 68221T (2008). 16. D. Mukherjee, Optimal parameter choice for Wyner-Ziv coding of Laplacian sources with decoder side information, HP Labs Technical Report HPL , Z. Wang, et al, "Image quality assessment: From error visibility to structural similarity," IEEE Trans., Image Processing, vol.13, pp , April I. Richardson, The H.264 advanced video compression standard, Hoboken, NJ: Wiley, List of acronyms in alphabetical order: CIF: Common intermediate format. Video resolution of 352x288. JM: Joint Model. The joint model (JM) implementation of the H.264 encoder and decoder. LDPCA: Low-Density-Parity-Check Accumulated. MV: Motion Vector ME: Motion Estimation PSNR: Peak Signal to Noise Ratio QCIF: Quarter CIF. 176 by 144 resolution. SI: Side Information WZ: Wyner-Ziv

Error concealment techniques in H.264 video transmission over wireless networks

Error concealment techniques in H.264 video transmission over wireless networks Error concealment techniques in H.264 video transmission over wireless networks M U L T I M E D I A P R O C E S S I N G ( E E 5 3 5 9 ) S P R I N G 2 0 1 1 D R. K. R. R A O F I N A L R E P O R T Murtaza

More information

CHROMA CODING IN DISTRIBUTED VIDEO CODING

CHROMA CODING IN DISTRIBUTED VIDEO CODING International Journal of Computer Science and Communication Vol. 3, No. 1, January-June 2012, pp. 67-72 CHROMA CODING IN DISTRIBUTED VIDEO CODING Vijay Kumar Kodavalla 1 and P. G. Krishna Mohan 2 1 Semiconductor

More information

Research Topic. Error Concealment Techniques in H.264/AVC for Wireless Video Transmission in Mobile Networks

Research Topic. Error Concealment Techniques in H.264/AVC for Wireless Video Transmission in Mobile Networks Research Topic Error Concealment Techniques in H.264/AVC for Wireless Video Transmission in Mobile Networks July 22 nd 2008 Vineeth Shetty Kolkeri EE Graduate,UTA 1 Outline 2. Introduction 3. Error control

More information

Free Viewpoint Switching in Multi-view Video Streaming Using. Wyner-Ziv Video Coding

Free Viewpoint Switching in Multi-view Video Streaming Using. Wyner-Ziv Video Coding Free Viewpoint Switching in Multi-view Video Streaming Using Wyner-Ziv Video Coding Xun Guo 1,, Yan Lu 2, Feng Wu 2, Wen Gao 1, 3, Shipeng Li 2 1 School of Computer Sciences, Harbin Institute of Technology,

More information

Selective Intra Prediction Mode Decision for H.264/AVC Encoders

Selective Intra Prediction Mode Decision for H.264/AVC Encoders Selective Intra Prediction Mode Decision for H.264/AVC Encoders Jun Sung Park, and Hyo Jung Song Abstract H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ISCAS.2005.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ISCAS.2005. Wang, D., Canagarajah, CN., & Bull, DR. (2005). S frame design for multiple description video coding. In IEEE International Symposium on Circuits and Systems (ISCAS) Kobe, Japan (Vol. 3, pp. 19 - ). Institute

More information

WYNER-ZIV VIDEO CODING WITH LOW ENCODER COMPLEXITY

WYNER-ZIV VIDEO CODING WITH LOW ENCODER COMPLEXITY WYNER-ZIV VIDEO CODING WITH LOW ENCODER COMPLEXITY (Invited Paper) Anne Aaron and Bernd Girod Information Systems Laboratory Stanford University, Stanford, CA 94305 {amaaron,bgirod}@stanford.edu Abstract

More information

UC San Diego UC San Diego Previously Published Works

UC San Diego UC San Diego Previously Published Works UC San Diego UC San Diego Previously Published Works Title Wyner-Ziv Video Coding With Classified Correlation Noise Estimation and Key Frame Coding Mode Selection Permalink https://escholarship.org/uc/item/26n2f9r4

More information

Fast Mode Decision Algorithm for Intra prediction in H.264/AVC Video Coding

Fast Mode Decision Algorithm for Intra prediction in H.264/AVC Video Coding 356 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 27 Fast Mode Decision Algorithm for Intra prediction in H.264/AVC Video Coding Abderrahmane Elyousfi 12, Ahmed

More information

Fast MBAFF/PAFF Motion Estimation and Mode Decision Scheme for H.264

Fast MBAFF/PAFF Motion Estimation and Mode Decision Scheme for H.264 Fast MBAFF/PAFF Motion Estimation and Mode Decision Scheme for H.264 Ju-Heon Seo, Sang-Mi Kim, Jong-Ki Han, Nonmember Abstract-- In the H.264, MBAFF (Macroblock adaptive frame/field) and PAFF (Picture

More information

Comparative Study of JPEG2000 and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences

Comparative Study of JPEG2000 and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences Comparative Study of and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences Pankaj Topiwala 1 FastVDO, LLC, Columbia, MD 210 ABSTRACT This paper reports the rate-distortion performance comparison

More information

Systematic Lossy Error Protection of Video based on H.264/AVC Redundant Slices

Systematic Lossy Error Protection of Video based on H.264/AVC Redundant Slices Systematic Lossy Error Protection of based on H.264/AVC Redundant Slices Shantanu Rane and Bernd Girod Information Systems Laboratory Stanford University, Stanford, CA 94305. {srane,bgirod}@stanford.edu

More information

MULTI-STATE VIDEO CODING WITH SIDE INFORMATION. Sila Ekmekci Flierl, Thomas Sikora

MULTI-STATE VIDEO CODING WITH SIDE INFORMATION. Sila Ekmekci Flierl, Thomas Sikora MULTI-STATE VIDEO CODING WITH SIDE INFORMATION Sila Ekmekci Flierl, Thomas Sikora Technical University Berlin Institute for Telecommunications D-10587 Berlin / Germany ABSTRACT Multi-State Video Coding

More information

PERCEPTUAL QUALITY OF H.264/AVC DEBLOCKING FILTER

PERCEPTUAL QUALITY OF H.264/AVC DEBLOCKING FILTER PERCEPTUAL QUALITY OF H./AVC DEBLOCKING FILTER Y. Zhong, I. Richardson, A. Miller and Y. Zhao School of Enginnering, The Robert Gordon University, Schoolhill, Aberdeen, AB1 1FR, UK Phone: + 1, Fax: + 1,

More information

FAST SPATIAL AND TEMPORAL CORRELATION-BASED REFERENCE PICTURE SELECTION

FAST SPATIAL AND TEMPORAL CORRELATION-BASED REFERENCE PICTURE SELECTION FAST SPATIAL AND TEMPORAL CORRELATION-BASED REFERENCE PICTURE SELECTION 1 YONGTAE KIM, 2 JAE-GON KIM, and 3 HAECHUL CHOI 1, 3 Hanbat National University, Department of Multimedia Engineering 2 Korea Aerospace

More information

A Study on AVS-M video standard

A Study on AVS-M video standard 1 A Study on AVS-M video standard EE 5359 Sahana Devaraju University of Texas at Arlington Email:sahana.devaraju@mavs.uta.edu 2 Outline Introduction Data Structure of AVS-M AVS-M CODEC Profiles & Levels

More information

ERROR CONCEALMENT TECHNIQUES IN H.264 VIDEO TRANSMISSION OVER WIRELESS NETWORKS

ERROR CONCEALMENT TECHNIQUES IN H.264 VIDEO TRANSMISSION OVER WIRELESS NETWORKS Multimedia Processing Term project on ERROR CONCEALMENT TECHNIQUES IN H.264 VIDEO TRANSMISSION OVER WIRELESS NETWORKS Interim Report Spring 2016 Under Dr. K. R. Rao by Moiz Mustafa Zaveri (1001115920)

More information

1. INTRODUCTION. Index Terms Video Transcoding, Video Streaming, Frame skipping, Interpolation frame, Decoder, Encoder.

1. INTRODUCTION. Index Terms Video Transcoding, Video Streaming, Frame skipping, Interpolation frame, Decoder, Encoder. Video Streaming Based on Frame Skipping and Interpolation Techniques Fadlallah Ali Fadlallah Department of Computer Science Sudan University of Science and Technology Khartoum-SUDAN fadali@sustech.edu

More information

Analysis of Packet Loss for Compressed Video: Does Burst-Length Matter?

Analysis of Packet Loss for Compressed Video: Does Burst-Length Matter? Analysis of Packet Loss for Compressed Video: Does Burst-Length Matter? Yi J. Liang 1, John G. Apostolopoulos, Bernd Girod 1 Mobile and Media Systems Laboratory HP Laboratories Palo Alto HPL-22-331 November

More information

Systematic Lossy Forward Error Protection for Error-Resilient Digital Video Broadcasting

Systematic Lossy Forward Error Protection for Error-Resilient Digital Video Broadcasting Systematic Lossy Forward Error Protection for Error-Resilient Digital Broadcasting Shantanu Rane, Anne Aaron and Bernd Girod Information Systems Laboratory, Stanford University, Stanford, CA 94305 {srane,amaaron,bgirod}@stanford.edu

More information

ERROR CONCEALMENT TECHNIQUES IN H.264

ERROR CONCEALMENT TECHNIQUES IN H.264 Final Report Multimedia Processing Term project on ERROR CONCEALMENT TECHNIQUES IN H.264 Spring 2016 Under Dr. K. R. Rao by Moiz Mustafa Zaveri (1001115920) moiz.mustafazaveri@mavs.uta.edu 1 Acknowledgement

More information

A Study of Encoding and Decoding Techniques for Syndrome-Based Video Coding

A Study of Encoding and Decoding Techniques for Syndrome-Based Video Coding MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com A Study of Encoding and Decoding Techniques for Syndrome-Based Video Coding Min Wu, Anthony Vetro, Jonathan Yedidia, Huifang Sun, Chang Wen

More information

WE CONSIDER an enhancement technique for degraded

WE CONSIDER an enhancement technique for degraded 1140 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 9, SEPTEMBER 2014 Example-based Enhancement of Degraded Video Edson M. Hung, Member, IEEE, Diogo C. Garcia, Member, IEEE, and Ricardo L. de Queiroz, Senior

More information

Video Quality Monitoring for Mobile Multicast Peers Using Distributed Source Coding

Video Quality Monitoring for Mobile Multicast Peers Using Distributed Source Coding Quality Monitoring for Mobile Multicast Peers Using Distributed Source Coding Yao-Chung Lin, David Varodayan, and Bernd Girod Information Systems Laboratory Electrical Engineering Department, Stanford

More information

Skip Length and Inter-Starvation Distance as a Combined Metric to Assess the Quality of Transmitted Video

Skip Length and Inter-Starvation Distance as a Combined Metric to Assess the Quality of Transmitted Video Skip Length and Inter-Starvation Distance as a Combined Metric to Assess the Quality of Transmitted Video Mohamed Hassan, Taha Landolsi, Husameldin Mukhtar, and Tamer Shanableh College of Engineering American

More information

Reduced complexity MPEG2 video post-processing for HD display

Reduced complexity MPEG2 video post-processing for HD display Downloaded from orbit.dtu.dk on: Dec 17, 2017 Reduced complexity MPEG2 video post-processing for HD display Virk, Kamran; Li, Huiying; Forchhammer, Søren Published in: IEEE International Conference on

More information

Study of AVS China Part 7 for Mobile Applications. By Jay Mehta EE 5359 Multimedia Processing Spring 2010

Study of AVS China Part 7 for Mobile Applications. By Jay Mehta EE 5359 Multimedia Processing Spring 2010 Study of AVS China Part 7 for Mobile Applications By Jay Mehta EE 5359 Multimedia Processing Spring 2010 1 Contents Parts and profiles of AVS Standard Introduction to Audio Video Standard for Mobile Applications

More information

Wyner-Ziv Coding of Motion Video

Wyner-Ziv Coding of Motion Video Wyner-Ziv Coding of Motion Video Anne Aaron, Rui Zhang, and Bernd Girod Information Systems Laboratory, Department of Electrical Engineering Stanford University, Stanford, CA 94305 {amaaron, rui, bgirod}@stanford.edu

More information

Reduced Decoder Complexity and Latency in Pixel-Domain Wyner-Ziv Video Coders

Reduced Decoder Complexity and Latency in Pixel-Domain Wyner-Ziv Video Coders Reduced Decoder Complexity and Latency in Pixel-Domain Wyner-Ziv Video Coders Marleen Morbee Antoni Roca Josep Prades-Nebot Aleksandra Pižurica Wilfried Philips Abstract In some video coding applications,

More information

ABSTRACT ERROR CONCEALMENT TECHNIQUES IN H.264/AVC, FOR VIDEO TRANSMISSION OVER WIRELESS NETWORK. Vineeth Shetty Kolkeri, M.S.

ABSTRACT ERROR CONCEALMENT TECHNIQUES IN H.264/AVC, FOR VIDEO TRANSMISSION OVER WIRELESS NETWORK. Vineeth Shetty Kolkeri, M.S. ABSTRACT ERROR CONCEALMENT TECHNIQUES IN H.264/AVC, FOR VIDEO TRANSMISSION OVER WIRELESS NETWORK Vineeth Shetty Kolkeri, M.S. The University of Texas at Arlington, 2008 Supervising Professor: Dr. K. R.

More information

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur Module 8 VIDEO CODING STANDARDS Lesson 27 H.264 standard Lesson Objectives At the end of this lesson, the students should be able to: 1. State the broad objectives of the H.264 standard. 2. List the improved

More information

Chapter 2 Introduction to

Chapter 2 Introduction to Chapter 2 Introduction to H.264/AVC H.264/AVC [1] is the newest video coding standard of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). The main improvements

More information

MULTIVIEW DISTRIBUTED VIDEO CODING WITH ENCODER DRIVEN FUSION

MULTIVIEW DISTRIBUTED VIDEO CODING WITH ENCODER DRIVEN FUSION MULTIVIEW DISTRIBUTED VIDEO CODING WITH ENCODER DRIVEN FUSION Mourad Ouaret, Frederic Dufaux and Touradj Ebrahimi Institut de Traitement des Signaux Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015

More information

Performance Comparison of JPEG2000 and H.264/AVC High Profile Intra Frame Coding on HD Video Sequences

Performance Comparison of JPEG2000 and H.264/AVC High Profile Intra Frame Coding on HD Video Sequences Performance Comparison of and H.264/AVC High Profile Intra Frame Coding on HD Video Sequences Pankaj Topiwala, Trac Tran, Wei Dai {pankaj, trac, daisy} @ fastvdo.com FastVDO, LLC, Columbia, MD 210 ABSTRACT

More information

Motion Re-estimation for MPEG-2 to MPEG-4 Simple Profile Transcoding. Abstract. I. Introduction

Motion Re-estimation for MPEG-2 to MPEG-4 Simple Profile Transcoding. Abstract. I. Introduction Motion Re-estimation for MPEG-2 to MPEG-4 Simple Profile Transcoding Jun Xin, Ming-Ting Sun*, and Kangwook Chun** *Department of Electrical Engineering, University of Washington **Samsung Electronics Co.

More information

Quarter-Pixel Accuracy Motion Estimation (ME) - A Novel ME Technique in HEVC

Quarter-Pixel Accuracy Motion Estimation (ME) - A Novel ME Technique in HEVC International Transaction of Electrical and Computer Engineers System, 2014, Vol. 2, No. 3, 107-113 Available online at http://pubs.sciepub.com/iteces/2/3/5 Science and Education Publishing DOI:10.12691/iteces-2-3-5

More information

Exploring the Distributed Video Coding in a Quality Assessment Context

Exploring the Distributed Video Coding in a Quality Assessment Context Exploring the Distributed Video Coding in a Quality Assessment Context A. Banitalebi *, H. R. Tohidypour Digital Multimedia Lab, ECE Dept., University of British Columbia Abstract In the popular video

More information

Modeling and Optimization of a Systematic Lossy Error Protection System based on H.264/AVC Redundant Slices

Modeling and Optimization of a Systematic Lossy Error Protection System based on H.264/AVC Redundant Slices Modeling and Optimization of a Systematic Lossy Error Protection System based on H.264/AVC Redundant Slices Shantanu Rane, Pierpaolo Baccichet and Bernd Girod Information Systems Laboratory, Department

More information

Dual Frame Video Encoding with Feedback

Dual Frame Video Encoding with Feedback Video Encoding with Feedback Athanasios Leontaris and Pamela C. Cosman Department of Electrical and Computer Engineering University of California, San Diego, La Jolla, CA 92093-0407 Email: pcosman,aleontar

More information

SCALABLE video coding (SVC) is currently being developed

SCALABLE video coding (SVC) is currently being developed IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006 889 Fast Mode Decision Algorithm for Inter-Frame Coding in Fully Scalable Video Coding He Li, Z. G. Li, Senior

More information

INFORMATION THEORY INSPIRED VIDEO CODING METHODS : TRUTH IS SOMETIMES BETTER THAN FICTION

INFORMATION THEORY INSPIRED VIDEO CODING METHODS : TRUTH IS SOMETIMES BETTER THAN FICTION INFORMATION THEORY INSPIRED VIDEO CODING METHODS : TRUTH IS SOMETIMES BETTER THAN FICTION Nitin Khanna, Fengqing Zhu, Marc Bosch, Meilin Yang, Mary Comer and Edward J. Delp Video and Image Processing Lab

More information

ROBUST REGION-OF-INTEREST SCALABLE CODING WITH LEAKY PREDICTION IN H.264/AVC. Qian Chen, Li Song, Xiaokang Yang, Wenjun Zhang

ROBUST REGION-OF-INTEREST SCALABLE CODING WITH LEAKY PREDICTION IN H.264/AVC. Qian Chen, Li Song, Xiaokang Yang, Wenjun Zhang ROBUST REGION-OF-INTEREST SCALABLE CODING WITH LEAKY PREDICTION IN H.264/AVC Qian Chen, Li Song, Xiaokang Yang, Wenjun Zhang Institute of Image Communication & Information Processing Shanghai Jiao Tong

More information

Error Concealment for SNR Scalable Video Coding

Error Concealment for SNR Scalable Video Coding Error Concealment for SNR Scalable Video Coding M. M. Ghandi and M. Ghanbari University of Essex, Wivenhoe Park, Colchester, UK, CO4 3SQ. Emails: (mahdi,ghan)@essex.ac.uk Abstract This paper proposes an

More information

Video coding standards

Video coding standards Video coding standards Video signals represent sequences of images or frames which can be transmitted with a rate from 5 to 60 frames per second (fps), that provides the illusion of motion in the displayed

More information

COMPLEXITY REDUCTION FOR HEVC INTRAFRAME LUMA MODE DECISION USING IMAGE STATISTICS AND NEURAL NETWORKS.

COMPLEXITY REDUCTION FOR HEVC INTRAFRAME LUMA MODE DECISION USING IMAGE STATISTICS AND NEURAL NETWORKS. COMPLEXITY REDUCTION FOR HEVC INTRAFRAME LUMA MODE DECISION USING IMAGE STATISTICS AND NEURAL NETWORKS. DILIP PRASANNA KUMAR 1000786997 UNDER GUIDANCE OF DR. RAO UNIVERSITY OF TEXAS AT ARLINGTON. DEPT.

More information

Distributed Video Coding Using LDPC Codes for Wireless Video

Distributed Video Coding Using LDPC Codes for Wireless Video Wireless Sensor Network, 2009, 1, 334-339 doi:10.4236/wsn.2009.14041 Published Online November 2009 (http://www.scirp.org/journal/wsn). Distributed Video Coding Using LDPC Codes for Wireless Video Abstract

More information

Overview: Video Coding Standards

Overview: Video Coding Standards Overview: Video Coding Standards Video coding standards: applications and common structure ITU-T Rec. H.261 ISO/IEC MPEG-1 ISO/IEC MPEG-2 State-of-the-art: H.264/AVC Video Coding Standards no. 1 Applications

More information

Joint Optimization of Source-Channel Video Coding Using the H.264/AVC encoder and FEC Codes. Digital Signal and Image Processing Lab

Joint Optimization of Source-Channel Video Coding Using the H.264/AVC encoder and FEC Codes. Digital Signal and Image Processing Lab Joint Optimization of Source-Channel Video Coding Using the H.264/AVC encoder and FEC Codes Digital Signal and Image Processing Lab Simone Milani Ph.D. student simone.milani@dei.unipd.it, Summer School

More information

STUDY OF AVS CHINA PART 7 JIBEN PROFILE FOR MOBILE APPLICATIONS

STUDY OF AVS CHINA PART 7 JIBEN PROFILE FOR MOBILE APPLICATIONS EE 5359 SPRING 2010 PROJECT REPORT STUDY OF AVS CHINA PART 7 JIBEN PROFILE FOR MOBILE APPLICATIONS UNDER: DR. K. R. RAO Jay K Mehta Department of Electrical Engineering, University of Texas, Arlington

More information

Performance Evaluation of Error Resilience Techniques in H.264/AVC Standard

Performance Evaluation of Error Resilience Techniques in H.264/AVC Standard Performance Evaluation of Error Resilience Techniques in H.264/AVC Standard Ram Narayan Dubey Masters in Communication Systems Dept of ECE, IIT-R, India Varun Gunnala Masters in Communication Systems Dept

More information

Distributed video coding supporting hierarchical GOP structures with transmitted motion vectors

Distributed video coding supporting hierarchical GOP structures with transmitted motion vectors Min et al. EURASIP Journal on Image and Video Processing (2015) 2015:12 DOI 10.1186/s13640-015-0068-3 RESEARCH Open Access Distributed video coding supporting hierarchical GOP structures with transmitted

More information

Principles of Video Compression

Principles of Video Compression Principles of Video Compression Topics today Introduction Temporal Redundancy Reduction Coding for Video Conferencing (H.261, H.263) (CSIT 410) 2 Introduction Reduce video bit rates while maintaining an

More information

Parameters optimization for a scalable multiple description coding scheme based on spatial subsampling

Parameters optimization for a scalable multiple description coding scheme based on spatial subsampling Parameters optimization for a scalable multiple description coding scheme based on spatial subsampling ABSTRACT Marco Folli and Lorenzo Favalli Universitá degli studi di Pavia Via Ferrata 1 100 Pavia,

More information

ROBUST ADAPTIVE INTRA REFRESH FOR MULTIVIEW VIDEO

ROBUST ADAPTIVE INTRA REFRESH FOR MULTIVIEW VIDEO ROBUST ADAPTIVE INTRA REFRESH FOR MULTIVIEW VIDEO Sagir Lawan1 and Abdul H. Sadka2 1and 2 Department of Electronic and Computer Engineering, Brunel University, London, UK ABSTRACT Transmission error propagation

More information

OBJECT-BASED IMAGE COMPRESSION WITH SIMULTANEOUS SPATIAL AND SNR SCALABILITY SUPPORT FOR MULTICASTING OVER HETEROGENEOUS NETWORKS

OBJECT-BASED IMAGE COMPRESSION WITH SIMULTANEOUS SPATIAL AND SNR SCALABILITY SUPPORT FOR MULTICASTING OVER HETEROGENEOUS NETWORKS OBJECT-BASED IMAGE COMPRESSION WITH SIMULTANEOUS SPATIAL AND SNR SCALABILITY SUPPORT FOR MULTICASTING OVER HETEROGENEOUS NETWORKS Habibollah Danyali and Alfred Mertins School of Electrical, Computer and

More information

Adaptive mode decision with residual motion compensation for distributed video coding

Adaptive mode decision with residual motion compensation for distributed video coding SIP (2015),vol.4,e1,page1of10 TheAuthors,2015. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which

More information

Energy Efficient Video Compression for Wireless Sensor Networks *

Energy Efficient Video Compression for Wireless Sensor Networks * 1 Energy Efficient Video Compression for Wireless Sensor Networks * Junaid Jameel Ahmad 1,2, Hassan Aqeel Khan 2, and Syed Ali Khayam 2 1 College of Signals, 2 School of Electrical Engineering & Computer

More information

Video Over Mobile Networks

Video Over Mobile Networks Video Over Mobile Networks Professor Mohammed Ghanbari Department of Electronic systems Engineering University of Essex United Kingdom June 2005, Zadar, Croatia (Slides prepared by M. Mahdi Ghandi) INTRODUCTION

More information

WITH the rapid development of high-fidelity video services

WITH the rapid development of high-fidelity video services 896 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 7, JULY 2015 An Efficient Frame-Content Based Intra Frame Rate Control for High Efficiency Video Coding Miaohui Wang, Student Member, IEEE, KingNgiNgan,

More information

AN IMPROVED ERROR CONCEALMENT STRATEGY DRIVEN BY SCENE MOTION PROPERTIES FOR H.264/AVC DECODERS

AN IMPROVED ERROR CONCEALMENT STRATEGY DRIVEN BY SCENE MOTION PROPERTIES FOR H.264/AVC DECODERS AN IMPROVED ERROR CONCEALMENT STRATEGY DRIVEN BY SCENE MOTION PROPERTIES FOR H.264/AVC DECODERS Susanna Spinsante, Ennio Gambi, Franco Chiaraluce Dipartimento di Elettronica, Intelligenza artificiale e

More information

The H.263+ Video Coding Standard: Complexity and Performance

The H.263+ Video Coding Standard: Complexity and Performance The H.263+ Video Coding Standard: Complexity and Performance Berna Erol (bernae@ee.ubc.ca), Michael Gallant (mikeg@ee.ubc.ca), Guy C t (guyc@ee.ubc.ca), and Faouzi Kossentini (faouzi@ee.ubc.ca) Department

More information

An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions

An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions 1128 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 10, OCTOBER 2001 An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions Kwok-Wai Wong, Kin-Man Lam,

More information

Compressed Domain H.264 Baseline Encoder in Video Transcoding Architecture

Compressed Domain H.264 Baseline Encoder in Video Transcoding Architecture Compressed Domain H.264 Baseline Encoder in Video Transcoding Architecture P. Essaki Muthu #1 # Scholar, Dept of ECE, Dr. MGR Educational and Institute University, Chennai, Tamil Nadu, INDIA 1 pessakimuthu@yahoo.com

More information

Robust 3-D Video System Based on Modified Prediction Coding and Adaptive Selection Mode Error Concealment Algorithm

Robust 3-D Video System Based on Modified Prediction Coding and Adaptive Selection Mode Error Concealment Algorithm International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014 Robust 3-D Video System Based on Modified Prediction Coding and Adaptive Selection Mode Error Concealment Algorithm Walid

More information

Multiple Description H.264 Video Coding with Redundant Pictures

Multiple Description H.264 Video Coding with Redundant Pictures Multiple Description H.4 Video Coding with Redundant Pictures Ivana Radulovic Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland ivana.radulovic@epfl.ch Ye-Kui Wang, Stephan

More information

An Overview of Video Coding Algorithms

An Overview of Video Coding Algorithms An Overview of Video Coding Algorithms Prof. Ja-Ling Wu Department of Computer Science and Information Engineering National Taiwan University Video coding can be viewed as image compression with a temporal

More information

PACKET-SWITCHED networks have become ubiquitous

PACKET-SWITCHED networks have become ubiquitous IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 7, JULY 2004 885 Video Compression for Lossy Packet Networks With Mode Switching and a Dual-Frame Buffer Athanasios Leontaris, Student Member, IEEE,

More information

Marie Ramon, François-XavierCoudoux, andmarcgazalet. 1. Introduction

Marie Ramon, François-XavierCoudoux, andmarcgazalet. 1. Introduction Digital Multimedia Broadcasting Volume 2009, Article ID 709813, 7 pages doi:10.1155/2009/709813 Research Article An Adaptive Systematic Lossy Error Protection Scheme for Broadcast Applications Based on

More information

Speeding up Dirac s Entropy Coder

Speeding up Dirac s Entropy Coder Speeding up Dirac s Entropy Coder HENDRIK EECKHAUT BENJAMIN SCHRAUWEN MARK CHRISTIAENS JAN VAN CAMPENHOUT Parallel Information Systems (PARIS) Electronics and Information Systems (ELIS) Ghent University

More information

SKIP Prediction for Fast Rate Distortion Optimization in H.264

SKIP Prediction for Fast Rate Distortion Optimization in H.264 SKIP Prediction for Fast Rate Distortion Optimization in H.264 Avishek Saha, Kallol Mallick, Jayanta Mukherjee, Senior Member, IEEE and Shamik Sural, Senior Member, IEEE Abstract In H.264, the optimal

More information

SCENE CHANGE ADAPTATION FOR SCALABLE VIDEO CODING

SCENE CHANGE ADAPTATION FOR SCALABLE VIDEO CODING 17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009 SCENE CHANGE ADAPTATION FOR SCALABLE VIDEO CODING Tea Anselmo, Daniele Alfonso Advanced System Technology

More information

The H.26L Video Coding Project

The H.26L Video Coding Project The H.26L Video Coding Project New ITU-T Q.6/SG16 (VCEG - Video Coding Experts Group) standardization activity for video compression August 1999: 1 st test model (TML-1) December 2001: 10 th test model

More information

AUDIOVISUAL COMMUNICATION

AUDIOVISUAL COMMUNICATION AUDIOVISUAL COMMUNICATION Laboratory Session: Recommendation ITU-T H.261 Fernando Pereira The objective of this lab session about Recommendation ITU-T H.261 is to get the students familiar with many aspects

More information

Contents. xv xxi xxiii xxiv. 1 Introduction 1 References 4

Contents. xv xxi xxiii xxiv. 1 Introduction 1 References 4 Contents List of figures List of tables Preface Acknowledgements xv xxi xxiii xxiv 1 Introduction 1 References 4 2 Digital video 5 2.1 Introduction 5 2.2 Analogue television 5 2.3 Interlace 7 2.4 Picture

More information

Systematic Lossy Error Protection based on H.264/AVC Redundant Slices and Flexible Macroblock Ordering

Systematic Lossy Error Protection based on H.264/AVC Redundant Slices and Flexible Macroblock Ordering Systematic Lossy Error Protection based on H.264/AVC Redundant Slices and Flexible Macroblock Ordering Pierpaolo Baccichet, Shantanu Rane, and Bernd Girod Information Systems Lab., Dept. of Electrical

More information

Adaptive Key Frame Selection for Efficient Video Coding

Adaptive Key Frame Selection for Efficient Video Coding Adaptive Key Frame Selection for Efficient Video Coding Jaebum Jun, Sunyoung Lee, Zanming He, Myungjung Lee, and Euee S. Jang Digital Media Lab., Hanyang University 17 Haengdang-dong, Seongdong-gu, Seoul,

More information

Interim Report Time Optimization of HEVC Encoder over X86 Processors using SIMD. Spring 2013 Multimedia Processing EE5359

Interim Report Time Optimization of HEVC Encoder over X86 Processors using SIMD. Spring 2013 Multimedia Processing EE5359 Interim Report Time Optimization of HEVC Encoder over X86 Processors using SIMD Spring 2013 Multimedia Processing Advisor: Dr. K. R. Rao Department of Electrical Engineering University of Texas, Arlington

More information

Systematic Lossy Error Protection of Video Signals Shantanu Rane, Member, IEEE, Pierpaolo Baccichet, Member, IEEE, and Bernd Girod, Fellow, IEEE

Systematic Lossy Error Protection of Video Signals Shantanu Rane, Member, IEEE, Pierpaolo Baccichet, Member, IEEE, and Bernd Girod, Fellow, IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 10, OCTOBER 2008 1347 Systematic Lossy Error Protection of Video Signals Shantanu Rane, Member, IEEE, Pierpaolo Baccichet, Member,

More information

Power Reduction via Macroblock Prioritization for Power Aware H.264 Video Applications

Power Reduction via Macroblock Prioritization for Power Aware H.264 Video Applications Power Reduction via Macroblock Prioritization for Power Aware H.264 Video Applications Michael A. Baker, Viswesh Parameswaran, Karam S. Chatha, and Baoxin Li Department of Computer Science and Engineering

More information

Camera Motion-constraint Video Codec Selection

Camera Motion-constraint Video Codec Selection Camera Motion-constraint Video Codec Selection Andreas Krutz #1, Sebastian Knorr 2, Matthias Kunter 3, and Thomas Sikora #4 # Communication Systems Group, TU Berlin Einsteinufer 17, Berlin, Germany 1 krutz@nue.tu-berlin.de

More information

A High Performance VLSI Architecture with Half Pel and Quarter Pel Interpolation for A Single Frame

A High Performance VLSI Architecture with Half Pel and Quarter Pel Interpolation for A Single Frame I J C T A, 9(34) 2016, pp. 673-680 International Science Press A High Performance VLSI Architecture with Half Pel and Quarter Pel Interpolation for A Single Frame K. Priyadarshini 1 and D. Jackuline Moni

More information

Visual Communication at Limited Colour Display Capability

Visual Communication at Limited Colour Display Capability Visual Communication at Limited Colour Display Capability Yan Lu, Wen Gao and Feng Wu Abstract: A novel scheme for visual communication by means of mobile devices with limited colour display capability

More information

ARTICLE IN PRESS. Signal Processing: Image Communication

ARTICLE IN PRESS. Signal Processing: Image Communication Signal Processing: Image Communication 23 (2008) 677 691 Contents lists available at ScienceDirect Signal Processing: Image Communication journal homepage: www.elsevier.com/locate/image H.264/AVC-based

More information

A Novel Approach towards Video Compression for Mobile Internet using Transform Domain Technique

A Novel Approach towards Video Compression for Mobile Internet using Transform Domain Technique A Novel Approach towards Video Compression for Mobile Internet using Transform Domain Technique Dhaval R. Bhojani Research Scholar, Shri JJT University, Jhunjunu, Rajasthan, India Ved Vyas Dwivedi, PhD.

More information

Scalable multiple description coding of video sequences

Scalable multiple description coding of video sequences Scalable multiple description coding of video sequences Marco Folli, and Lorenzo Favalli Electronics Department University of Pavia, Via Ferrata 1, 100 Pavia, Italy Email: marco.folli@unipv.it, lorenzo.favalli@unipv.it

More information

Robust Transmission of H.264/AVC Video using 64-QAM and unequal error protection

Robust Transmission of H.264/AVC Video using 64-QAM and unequal error protection Robust Transmission of H.264/AVC Video using 64-QAM and unequal error protection Ahmed B. Abdurrhman 1, Michael E. Woodward 1 and Vasileios Theodorakopoulos 2 1 School of Informatics, Department of Computing,

More information

Region Adaptive Unsharp Masking based DCT Interpolation for Efficient Video Intra Frame Up-sampling

Region Adaptive Unsharp Masking based DCT Interpolation for Efficient Video Intra Frame Up-sampling International Conference on Electronic Design and Signal Processing (ICEDSP) 0 Region Adaptive Unsharp Masking based DCT Interpolation for Efficient Video Intra Frame Up-sampling Aditya Acharya Dept. of

More information

1934 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 4, APRIL 2012

1934 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 4, APRIL 2012 1934 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 4, APRIL 2012 Side-Information-Dependent Correlation Channel Estimation in Hash-Based Distributed Video Coding Nikos Deligiannis, Member, IEEE,

More information

an organization for standardization in the

an organization for standardization in the International Standardization of Next Generation Video Coding Scheme Realizing High-quality, High-efficiency Video Transmission and Outline of Technologies Proposed by NTT DOCOMO Video Transmission Video

More information

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Motion Compensation Techniques Adopted In HEVC

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Motion Compensation Techniques Adopted In HEVC Motion Compensation Techniques Adopted In HEVC S.Mahesh 1, K.Balavani 2 M.Tech student in Bapatla Engineering College, Bapatla, Andahra Pradesh Assistant professor in Bapatla Engineering College, Bapatla,

More information

Decoder-driven mode decision in a block-based distributed video codec

Decoder-driven mode decision in a block-based distributed video codec DOI 10.1007/s11042-010-0718-5 Decoder-driven mode decision in a block-based distributed video codec Stefaan Mys Jürgen Slowack Jozef Škorupa Nikos Deligiannis Peter Lambert Adrian Munteanu Rik Van de Walle

More information

Adaptive Distributed Compressed Video Sensing

Adaptive Distributed Compressed Video Sensing Journal of Information Hiding and Multimedia Signal Processing 2014 ISSN 2073-4212 Ubiquitous International Volume 5, Number 1, January 2014 Adaptive Distributed Compressed Video Sensing Xue Zhang 1,3,

More information

Low Complexity Hybrid Rate Control Schemes for Distributed Video Coding

Low Complexity Hybrid Rate Control Schemes for Distributed Video Coding Proceedings of the World Congress on Engineering and Computer Science 212 Vol I WCECS 212, October 24-26, 212, San Francisco, USA Low Complexit Hbrid Rate Control Schemes for Distributed Video Coding Mohamed

More information

HEVC Subjective Video Quality Test Results

HEVC Subjective Video Quality Test Results HEVC Subjective Video Quality Test Results T. K. Tan M. Mrak R. Weerakkody N. Ramzan V. Baroncini G. J. Sullivan J.-R. Ohm K. D. McCann NTT DOCOMO, Japan BBC, UK BBC, UK University of West of Scotland,

More information

A parallel HEVC encoder scheme based on Multi-core platform Shu Jun1,2,3,a, Hu Dong1,2,3,b

A parallel HEVC encoder scheme based on Multi-core platform Shu Jun1,2,3,a, Hu Dong1,2,3,b 4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) A parallel HEVC encoder scheme based on Multi-core platform Shu Jun1,2,3,a, Hu Dong1,2,3,b 1 Education Ministry

More information

Conference object, Postprint version This version is available at

Conference object, Postprint version This version is available at Benjamin Bross, Valeri George, Mauricio Alvarez-Mesay, Tobias Mayer, Chi Ching Chi, Jens Brandenburg, Thomas Schierl, Detlev Marpe, Ben Juurlink HEVC performance and complexity for K video Conference object,

More information

Drift Compensation for Reduced Spatial Resolution Transcoding

Drift Compensation for Reduced Spatial Resolution Transcoding MERL A MITSUBISHI ELECTRIC RESEARCH LABORATORY http://www.merl.com Drift Compensation for Reduced Spatial Resolution Transcoding Peng Yin Anthony Vetro Bede Liu Huifang Sun TR-2002-47 August 2002 Abstract

More information

Real-Time Distributed Video Coding for 1K-pixel Visual Sensor Networks

Real-Time Distributed Video Coding for 1K-pixel Visual Sensor Networks Real-Time Distributed Video Coding for 1K-pixel Visual Sensor Networks Jan Hanca a, Nikos Deligiannis a, Adrian Munteanu a a Vrije Universiteit Brussel (VUB), Department of Electronics and Informatics/iMinds,

More information

Using enhancement data to deinterlace 1080i HDTV

Using enhancement data to deinterlace 1080i HDTV Using enhancement data to deinterlace 1080i HDTV The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Andy

More information

Highly Efficient Video Codec for Entertainment-Quality

Highly Efficient Video Codec for Entertainment-Quality Highly Efficient Video Codec for Entertainment-Quality Seyoon Jeong, Sung-Chang Lim, Hahyun Lee, Jongho Kim, Jin Soo Choi, and Haechul Choi We present a novel video codec for supporting entertainment-quality

More information