PHYS 3322 Modern Laboratory Methods I Digital Devices

Size: px
Start display at page:

Download "PHYS 3322 Modern Laboratory Methods I Digital Devices"

Transcription

1 PHYS 3322 Modern Laboratory Methods I Digital Devices Purpose This experiment will introduce you to the basic operating principles of digital electronic devices. Background These circuits are called digital devices because the signals they receive and transmit carry discrete information. That is, the input and output voltages are interpreted by the circuits as representing discrete numerical quantities, like 0 and 1. The integrated circuits you will be using in this experiment are transistor-transistor logic (TTL) devices. TTL devices are designed to operate from a 5 V power supply. If the power supply voltage is below 4.75 V, the devices will work erratically, and if the voltage is above 5.25 V, the devices may be damaged. At an input of a TTL device, if the voltage is V, the signal is interpreted as a 0. If the voltage is V, the signal is interpreted as a 1. At an output of a TTL device, the voltage is guaranteed to be less than 0.5 V if the signal is to be interpreted as a 0, and greater than 2.4 V if the signal is to be interpreted as a 1. As you can see, there is a builtin error margin of about 0.4 V; this is intended to avoid problems if a small amount of noise is induced on the signal lines by nearby circuitry. By using these very simple logical interpretations of the voltages on the various conductors in a circuit, it is possible to build devices as complex as a computer, which contains the equivalent of many tens of thousands of simple TTL circuits. Procedure Clock oscillator: Most digital circuits require a clock signal. This is simply a periodic digital waveform, which alternates between 0 and 1 states at some chosen frequency. (When a personal computer is advertised as having a 66 MHz CPU, for example, the 66 MHz refers to the clock frequency used in the computer. As you might imagine, the higher the clock frequency, the more operations can be performed in a given amount of time.) For this experiment, you will build a clock oscillator using a common integrated circuit known as a 555 timer. (The 555 is actually not a TTL device, but if you operate it from a 5 V power supply, it produces a signal which is compatible with TTL devices.) Figure 1 shows the names of the connections to the 555. For now, you don't need to worry what all of the names mean, but do note that two of the pins have a horizontal bar over their names. This means that the signal is active low, rather than active high, which is the standard for TTL devices. So, for example, the reset pin on the 555 chip is active low, meaning that you need to place a 0 signal on that pin in order to reset the timer. Construct the oscillator circuit shown in Figure 2 on your breadboard. Place the circuit near one end of the breadboard, so that you have room for the other circuits which will be added later. Connect a 5 V power supply to your circuit, and observe the signal at the out pin of the 555 on an oscilloscope. Using the second channel of the oscilloscope, observe the signal at the threshold pin as well. Note the relationship between this signal and the output signal, and also note that the output transitions between the 0 and 1 states occur when the voltage at the threshold pin is at 1/3 and 2/3 of the power supply voltage. Sketch the waveforms, including the voltage scale. Measure the output frequency and record it. Revised: 13 November /5

2 Figure 1. Pinout of the 555 timer integrated circuit. Figure 2. Clock oscillator circuit. Binary-coded decimal counter: Next, you will use your clock oscillator to drive a counter. The counter device is a 74LS160, which counts in the sequence 0, 1, 2,..., 9, 0, 1, 2,..., 9, etc., repeating every ten counts. This is why it is called a decimal counter. Since TTL logic is only capable of representing 0 and 1, it is necessary to use a binary encoding to represent the numbers from 0 to 9, and this is done according to the following table: decimal binary Since a minimum of four binary digits (bits) are required to represent the numbers from 0 to 9, the circuit must use four signal lines, one for each bit. Figure 3 shows the connection diagram for the 74LS160 device. The input clock signal is applied to the CLK input, and the four output signals are QA through QD. (There are a number of other signal inputs and outputs, which will not be used in this experiment.) QA is the least-significant bit (LSB), the rightmost bit in the table above. QD is the most-significant bit (MSB), the leftmost bit in the table above. Every time the signal at the CLK input changes from 0 to 1, the counter increments its count and the output signals change accordingly. Construct the circuit shown in Figure 4 (place it next to the clock oscillator circuit). Connect the output of the clock oscillator to the CLK input of the counter. With channel 1 of the oscilloscope still connected to the output of the oscillator, connect channel 2 to the QA output of the counter. According to the table, the QA output should alternate between 0 and 1, changing for each Revised: 13 November /5

3 count. Verify that this is the case, and also note that the change does indeed occur when the clock input changes from 0 to 1. Sketch the waveforms. Next, connect channel 2 of the oscilloscope to the QD output. According to the table, this output should make a single 0 to 1 transition for every count cycle (i.e., for every ten input transitions). Verify that this is the case, and sketch the waveforms. Figure 3. Pinout of the 74LS160 binary-coded decimal counter integrated circuit. Figure 4. Binary-coded decimal counter circuit. Digital display: You now have a decimal counter, which is a useful building block and can be used in a variety of devices. However, the count is emitted in binary notation, while humans are used to seeing numbers in decimal notation. To display the numbers, you will use a 7-segment light-emitting diode array. And to convert the binary numbers so that they can be shown on this display, you will use a 74LS47 BCD to 7-segment converter. The connection diagram for the 74LS47 is shown in Figure 5, and the connection diagram for the 7-segment display is shown in Figure 6. Because of the way the 7-segment display is designed, a current-limiting resistor must be inserted between each output from the 74LS47 and the corresponding input of the display. Since handling so many individual resistors is unwieldy, you will use a 4116R resistor network device. This device consists simply of eight resistors in a single package, as shown in Figure 7. Revised: 13 November /5

4 Figure 5. Pinout of the 74LS47 BCD to 7-segment decoder integrated circuit. Figure 6. Pinout of the 7-segment display. Figure 7. Pinout of the 4116R resistor network. Construct the circuit shown in Figure 8. Place the 74LS47 nearest the 74LS160 counter, the resistor network adjacent to the 74LS47, and the display adjacent to the resistor network. Apply power to the circuit and observe the display. Since the counter is counting at a very high rate, the numbers on the display will be a blur, and will just look like an 8. To slow the counter down, replace the 100 nf capacitor in the clock oscillator with a 22 µf capacitor. Now observe the count and verify that it increments as expected. Revised: 13 November /5

5 Figure 8. Decoder and display circuit. Questions According to the manufacturer, the output frequency of a 555 timer connected as shown in Figure 2 should have an output frequency given by f = 1 ln R1 + R2 C1 ( 2)( 2 ). (1) Verify that this is the case in your circuit. Remember that ( 1F) ( 1 ) = ( 1s) Ω. Revised: 13 November /5

Laboratory 11. Required Components: Objectives. Introduction. Digital Displays and Logic (modified from lab text by Alciatore)

Laboratory 11. Required Components: Objectives. Introduction. Digital Displays and Logic (modified from lab text by Alciatore) Laboratory 11 Digital Displays and Logic (modified from lab text by Alciatore) Required Components: 2x lk resistors 1x 10M resistor 3x 0.1 F capacitor 1x 555 timer 1x 7490 decade counter 1x 7447 BCD to

More information

EECS 140 Laboratory Exercise 7 PLD Programming

EECS 140 Laboratory Exercise 7 PLD Programming 1. Objectives EECS 140 Laboratory Exercise 7 PLD Programming A. Become familiar with the capabilities of Programmable Logic Devices (PLDs) B. Implement a simple combinational logic circuit using a PLD.

More information

Laboratory 8. Digital Circuits - Counter and LED Display

Laboratory 8. Digital Circuits - Counter and LED Display Laboratory 8 Digital Circuits - Counter and Display Required Components: 2 1k resistors 1 10M resistor 3 0.1 F capacitor 1 555 timer 1 7490 decade counter 1 7447 BCD to decoder 1 MAN 6910 or LTD-482EC

More information

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit)

Laboratory 1 - Introduction to Digital Electronics and Lab Equipment (Logic Analyzers, Digital Oscilloscope, and FPGA-based Labkit) Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6. - Introductory Digital Systems Laboratory (Spring 006) Laboratory - Introduction to Digital Electronics

More information

Reaction Game Kit MitchElectronics 2019

Reaction Game Kit MitchElectronics 2019 Reaction Game Kit MitchElectronics 2019 www.mitchelectronics.co.uk CONTENTS Schematic 3 How It Works 4 Materials 6 Construction 8 Important Information 9 Page 2 SCHEMATIC Page 3 SCHEMATIC EXPLANATION The

More information

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops

PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops PHYSICS 5620 LAB 9 Basic Digital Circuits and Flip-Flops Objective Construct a two-bit binary decoder. Study multiplexers (MUX) and demultiplexers (DEMUX). Construct an RS flip-flop from discrete gates.

More information

Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10

Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10 School Course Name : : ELECTRICAL ENGINEERING 2 ND YEAR ELECTRONIC DESIGN LAB Review : 2 Release Date : 2019 Last Amendment : 2013 Course Code : SKEE 2742 Procedure Number : PK-UTM-FKE-(0)-10 School of

More information

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays

Today 3/8/11 Lecture 8 Sequential Logic, Clocks, and Displays Today 3/8/ Lecture 8 Sequential Logic, Clocks, and Displays Flip Flops and Ripple Counters One Shots and Timers LED Displays, Decoders, and Drivers Homework XXXX Reading H&H sections on sequential logic

More information

Contents Circuits... 1

Contents Circuits... 1 Contents Circuits... 1 Categories of Circuits... 1 Description of the operations of circuits... 2 Classification of Combinational Logic... 2 1. Adder... 3 2. Decoder:... 3 Memory Address Decoder... 5 Encoder...

More information

Laboratory 9 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter

Laboratory 9 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter page 1 of 5 Digital Circuits: Flip Flops, One-Shot, Shift Register, Ripple Counter Introduction In this lab, you will learn about the behavior of the D flip-flop, by employing it in 3 classic circuits:

More information

Digital Circuits I and II Nov. 17, 1999

Digital Circuits I and II Nov. 17, 1999 Physics 623 Digital Circuits I and II Nov. 17, 1999 Digital Circuits I 1 Purpose To introduce the basic principles of digital circuitry. To understand the small signal response of various gates and circuits

More information

Laboratory 10. Required Components: Objectives. Introduction. Digital Circuits - Logic and Latching (modified from lab text by Alciatore)

Laboratory 10. Required Components: Objectives. Introduction. Digital Circuits - Logic and Latching (modified from lab text by Alciatore) Laboratory 10 Digital Circuits - Logic and Latching (modified from lab text by Alciatore) Required Components: 1x 330 resistor 4x 1k resistor 2x 0.F capacitor 1x 2N3904 small signal transistor 1x LED 1x

More information

The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab

The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab The University of Texas at Dallas Department of Computer Science CS 4141: Digital Systems Lab Experiment #5 Shift Registers, Counters, and Their Architecture 1. Introduction: In Laboratory Exercise # 4,

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I The Light Emitting Diode: The light emitting diode (LED) is used as a probe in the digital experiments below. We begin by

More information

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MDETS UCTECH's Modular Digital Electronics Training System is a modular course covering the fundamentals, concepts, theory and applications of digital electronics.

More information

16 Stage Bi-Directional LED Sequencer

16 Stage Bi-Directional LED Sequencer 16 Stage Bi-Directional LED Sequencer The bi-directional sequencer uses a 4 bit binary up/down counter (CD4516) and two "1 of 8 line decoders" (74HC138 or 74HCT138) to generate the popular "Night Rider"

More information

Decade Counters Mod-5 counter: Decade Counter:

Decade Counters Mod-5 counter: Decade Counter: Decade Counters We can design a decade counter using cascade of mod-5 and mod-2 counters. Mod-2 counter is just a single flip-flop with the two stable states as 0 and 1. Mod-5 counter: A typical mod-5

More information

7 SEGMENT LED DISPLAY KIT

7 SEGMENT LED DISPLAY KIT ESSENTIAL INFORMATION BUILD INSTRUCTIONS CHECKING YOUR PCB & FAULT-FINDING MECHANICAL DETAILS HOW THE KIT WORKS CREATE YOUR OWN SCORE BOARD WITH THIS 7 SEGMENT LED DISPLAY KIT Version 2.0 Which pages of

More information

ME 515 Mechatronics. Introduction to Digital Electronics

ME 515 Mechatronics. Introduction to Digital Electronics ME 55 Mechatronics /5/26 ME 55 Mechatronics Digital Electronics Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 8239 (3627) Email: asangar@pdn.ac.lk Introduction to

More information

2 The Essentials of Binary Arithmetic

2 The Essentials of Binary Arithmetic ENGG1000: Engineering esign and Innovation Stream: School of EE&T Lecture Notes Chapter 5: igital Circuits A/Prof avid Taubman April5,2007 1 Introduction This chapter can be read at any time after Chapter

More information

Lab #6: Combinational Circuits Design

Lab #6: Combinational Circuits Design Lab #6: Combinational Circuits Design PURPOSE: The purpose of this laboratory assignment is to investigate the design of combinational circuits using SSI circuits. The combinational circuits being implemented

More information

successive approximation register (SAR) Q digital estimate

successive approximation register (SAR) Q digital estimate Physics 5 Lab 4 Analog / igital Conversion The goal of this lab is to construct a successive approximation analog-to-digital converter (AC). The block diagram of such a converter is shown below. CLK comparator

More information

University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Digital Electronics Laboratory Physics Department Physics 40 Laboratory Experiment 3: CMOS Digital Logic. Introduction The purpose of this lab is to continue

More information

LABORATORY # 1 LAB MANUAL. Digital Signals

LABORATORY # 1 LAB MANUAL. Digital Signals Department of Electrical Engineering University of California Riverside Laboratory #1 EE 120 A LABORATORY # 1 LAB MANUAL Digital Signals 2 Objectives Lab 1 contains 3 (three) parts and the objectives are

More information

Experiment (6) 2- to 4 Decoder. Figure 8.1 Block Diagram of 2-to-4 Decoder 0 X X

Experiment (6) 2- to 4 Decoder. Figure 8.1 Block Diagram of 2-to-4 Decoder 0 X X 8. Objectives : Experiment (6) Decoders / Encoders To study the basic operation and design of both decoder and encoder circuits. To describe the concept of active low and active-high logic signals. To

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 6 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

Analogue Versus Digital [5 M]

Analogue Versus Digital [5 M] Q.1 a. Analogue Versus Digital [5 M] There are two basic ways of representing the numerical values of the various physical quantities with which we constantly deal in our day-to-day lives. One of the ways,

More information

Experiment # 9. Clock generator circuits & Counters. Digital Design LAB

Experiment # 9. Clock generator circuits & Counters. Digital Design LAB Digital Design LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering Fall 2012 ECOM 2112: Digital Design LAB Eng: Ahmed M. Ayash Experiment # 9 Clock generator circuits & Counters

More information

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates, Timers, Flip-Flops & Counters Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates Transistor NOT Gate Let I C be the collector current.

More information

2. Counter Stages or Bits output bits least significant bit (LSB) most significant bit (MSB) 3. Frequency Division 4. Asynchronous Counters

2. Counter Stages or Bits output bits least significant bit (LSB) most significant bit (MSB) 3. Frequency Division 4. Asynchronous Counters 2. Counter Stages or Bits The number of output bits of a counter is equal to the flip-flop stages of the counter. A MOD-2 n counter requires n stages or flip-flops in order to produce a count sequence

More information

CPE 200L LABORATORY 3: SEQUENTIAL LOGIC CIRCUITS UNIVERSITY OF NEVADA, LAS VEGAS GOALS: BACKGROUND: SR FLIP-FLOP/LATCH

CPE 200L LABORATORY 3: SEQUENTIAL LOGIC CIRCUITS UNIVERSITY OF NEVADA, LAS VEGAS GOALS: BACKGROUND: SR FLIP-FLOP/LATCH CPE 200L LABORATORY 3: SEUENTIAL LOGIC CIRCUITS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOALS: Learn to use Function Generator and Oscilloscope on the breadboard.

More information

Bell. Program of Study. Accelerated Digital Electronics. Dave Bell TJHSST

Bell. Program of Study. Accelerated Digital Electronics. Dave Bell TJHSST Program of Study Accelerated Digital Electronics TJHSST Dave Bell Course Selection Guide Description: Students learn the basics of digital electronics technology as they engineer a complex electronic system.

More information

ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University

ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University EECTRICA ENGINEERING DEPARTMENT California Polytechnic State University EE 361 NAND ogic Gate, RS Flip-Flop & JK Flip-Flop Pre-lab 7 1. Draw the logic symbol and construct the truth table for a NAND gate.

More information

Sequential Digital Design. Laboratory Manual. Experiment #7. Counters

Sequential Digital Design. Laboratory Manual. Experiment #7. Counters The Islamic University of Gaza Engineering Faculty Department of Computer Engineering Spring 2018 ECOM 2022 Khaleel I. Shaheen Sequential Digital Design Laboratory Manual Experiment #7 Counters Objectives

More information

LAB #6 State Machine, Decoder, Buffer/Driver and Seven Segment Display

LAB #6 State Machine, Decoder, Buffer/Driver and Seven Segment Display LAB #6 State Machine, Decoder, Buffer/Driver and Seven Segment Display LAB OBJECTIVES 1. Design a more complex state machine 2. Design a larger combination logic solution on a PLD 3. Integrate two designs

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I Tasks marked by an asterisk (*) may be carried out before coming to the lab. The Light Emitting Diode: The light emitting

More information

Main Design Project. The Counter. Introduction. Macros. Procedure

Main Design Project. The Counter. Introduction. Macros. Procedure Main Design Project Introduction In order to gain some experience with using macros we will exploit some of the features of our boards to construct a counter that will count from 0 to 59 with the counts

More information

INTRODUCTION (EE2499_Introduction.doc revised 1/1/18)

INTRODUCTION (EE2499_Introduction.doc revised 1/1/18) INTRODUCTION (EE2499_Introduction.doc revised 1/1/18) A. PARTS AND TOOLS: This lab involves designing, building, and testing circuits using design concepts from the Digital Logic course EE-2440. A locker

More information

Laboratory 7. Lab 7. Digital Circuits - Logic and Latching

Laboratory 7. Lab 7. Digital Circuits - Logic and Latching Laboratory 7 igital Circuits - Logic and Latching Required Components: 1 330 resistor 4 resistor 2 0.1 F capacitor 1 2N3904 small signal transistor 1 LE 1 7408 AN gate IC 1 7474 positive edge triggered

More information

ECE Lab 5. MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output

ECE Lab 5. MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output ECE 201 - Lab 5 MSI Circuits - Four-Bit Adder/Subtractor with Decimal Output PURPOSE To familiarize students with Medium Scale Integration (MSI) technology, specifically adders. The student should also

More information

Chapter 9 MSI Logic Circuits

Chapter 9 MSI Logic Circuits Chapter 9 MSI Logic Circuits Chapter 9 Objectives Selected areas covered in this chapter: Analyzing/using decoders & encoders in circuits. Advantages and disadvantages of LEDs and LCDs. Observation/analysis

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I Tasks marked by an asterisk (*) may be carried out before coming to the lab. The Light Emitting Diode: The light emitting

More information

Main Design Project. The Counter. Introduction. Macros. Procedure

Main Design Project. The Counter. Introduction. Macros. Procedure Main Design Project Introduction In order to gain some experience with using macros we will exploit some of the features of our boards to construct a counter that will count from 0 to 59 with the counts

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Event Counter Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

More information

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1 Interfacing Analog to Digital Data Converters A/D D/A Converter 1 In most of the cases, the PPI 8255 is used for interfacing the analog to digital converters with microprocessor. The analog to digital

More information

Chapter 4: Table of Contents. Decoders

Chapter 4: Table of Contents. Decoders 0/26/20 OF 7 Chapter 4: Table of Contents Decoders Table of Contents Modular Combinational Logic - Decoders... 2 The generic decoder... 2 The 7439 decoder... 3 The decoder specification sheet... 4 decoder

More information

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) COUNTERS

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) COUNTERS COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) COUNTERS One common requirement in digital circuits is counting, both forward and backward. Digital clocks and

More information

EECS 270 Midterm 2 Exam Closed book portion Fall 2014

EECS 270 Midterm 2 Exam Closed book portion Fall 2014 EECS 270 Midterm 2 Exam Closed book portion Fall 2014 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: Page # Points

More information

Digital Electronics II 2016 Imperial College London Page 1 of 8

Digital Electronics II 2016 Imperial College London Page 1 of 8 Information for Candidates: The following notation is used in this paper: 1. Unless explicitly indicated otherwise, digital circuits are drawn with their inputs on the left and their outputs on the right.

More information

Table of Contents Introduction

Table of Contents Introduction Page 1/9 Waveforms 2015 tutorial 3-Jan-18 Table of Contents Introduction Introduction to DAD/NAD and Waveforms 2015... 2 Digital Functions Static I/O... 2 LEDs... 2 Buttons... 2 Switches... 2 Pattern Generator...

More information

PHY 351/651 LABORATORY 9 Digital Electronics The Basics

PHY 351/651 LABORATORY 9 Digital Electronics The Basics PHY 351/651 LABORATORY 9 Digital Electronics The Basics Reading Assignment Horowitz, Hill Chap. 8 Data sheets 74HC10N, 74HC86N, 74HC04N, 74HC03N, 74HC32N, 74HC08N, CD4007UBE, 74HC76N, LM555 Overview Over

More information

Chapter 5 Flip-Flops and Related Devices

Chapter 5 Flip-Flops and Related Devices Chapter 5 Flip-Flops and Related Devices Chapter 5 Objectives Selected areas covered in this chapter: Constructing/analyzing operation of latch flip-flops made from NAND or NOR gates. Differences of synchronous/asynchronous

More information

006 Dual Divider. Two clock/frequency dividers with reset

006 Dual Divider. Two clock/frequency dividers with reset 006 Dual Divider Two clock/frequency dividers with reset Comments, suggestions, questions and corrections are welcomed & encouraged: contact@castlerocktronics.com 1 castlerocktronics.com Contents 3 0.

More information

ECE 2274 Pre-Lab for Experiment Timer Chip

ECE 2274 Pre-Lab for Experiment Timer Chip ECE 2274 Pre-Lab for Experiment 6 555 Timer Chip Introduction to the 555 Timer The 555 IC is a popular chip for acting as multivibrators. Go to the web to obtain a data sheet to be turn-in with the pre-lab.

More information

Introduction. NAND Gate Latch. Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1

Introduction. NAND Gate Latch.  Digital Logic Design 1 FLIP-FLOP. Digital Logic Design 1 2007 Introduction BK TP.HCM FLIP-FLOP So far we have seen Combinational Logic The output(s) depends only on the current values of the input variables Here we will look at Sequential Logic circuits The

More information

Scans and encodes up to a 64-key keyboard. DB 1 DB 2 DB 3 DB 4 DB 5 DB 6 DB 7 V SS. display information.

Scans and encodes up to a 64-key keyboard. DB 1 DB 2 DB 3 DB 4 DB 5 DB 6 DB 7 V SS. display information. Programmable Keyboard/Display Interface - 8279 A programmable keyboard and display interfacing chip. Scans and encodes up to a 64-key keyboard. Controls up to a 16-digit numerical display. Keyboard has

More information

NAND/NOR Implementation of Logic Functions

NAND/NOR Implementation of Logic Functions NAND/NOR Implementation of Logic Functions By: Dr. A. D. Johnson Lab Assignment #6 EECS: 1100 Digital Logic Design The University of Toledo 1. Objectives - implementing logic functions expressed in nonstandard

More information

Lesson 12. Advanced Digital Integrated Circuits Flip-Flops, Counters, Decoders, Displays

Lesson 12. Advanced Digital Integrated Circuits Flip-Flops, Counters, Decoders, Displays Lesson 12 Sierra College CIE-01 Jim Weir 530.272.2203 jweir43@gmail.com www.rstengineering.com/sierra Advanced Digital Integrated Circuits Flip-Flops, Counters, Decoders, Displays Flip-Flops: True name

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Registers

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Registers Registers Registers are a very important digital building block. A data register is used to store binary information appearing at the output of an encoding matrix.shift registers are a type of sequential

More information

Chapter 3: Sequential Logic Systems

Chapter 3: Sequential Logic Systems Chapter 3: Sequential Logic Systems 1. The S-R Latch Learning Objectives: At the end of this topic you should be able to: design a Set-Reset latch based on NAND gates; complete a sequential truth table

More information

DIGITAL LOGIC DESIGN. Press No: 42. Second Edition

DIGITAL LOGIC DESIGN. Press No: 42. Second Edition DIGITAL LOGIC DESIGN DIGITAL LOGIC DESIGN Press No: 42 Second Edition Qafqaz University Press Bakı - 2010 Ministry of Education of Azerbaijan Republic Institute of Educational Problems Çağ Educational

More information

EXPERIMENT #6 DIGITAL BASICS

EXPERIMENT #6 DIGITAL BASICS EXPERIMENT #6 DIGITL SICS Digital electronics is based on the binary number system. Instead of having signals which can vary continuously as in analog circuits, digital signals are characterized by only

More information

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil ADC Peripheral in s Petr Cesak, Jan Fischer, Jaroslav Roztocil Czech Technical University in Prague, Faculty of Electrical Engineering Technicka 2, CZ-16627 Prague 6, Czech Republic Phone: +420-224 352

More information

Physics 323. Experiment # 10 - Digital Circuits

Physics 323. Experiment # 10 - Digital Circuits Physics 323 Experiment # 10 - Digital Circuits Purpose This is a brief introduction to digital (logic) circuits using both combinational and sequential logic. The basic building blocks will be the Transistor

More information

Lab #11: Register Files

Lab #11: Register Files Lab #11: Register Files ECE/COE 0501 Date of Experiment: 3/20/2017 Report Written: 3/22/2017 Submission Date: 3/27/2017 Nicholas Haver nicholas.haver@pitt.edu 1 H a v e r PURPOSE The purpose of this lab

More information

Part IA Computer Science Tripos. Hardware Practical Classes

Part IA Computer Science Tripos. Hardware Practical Classes Part IA Computer Science Tripos Hardware Practical Classes Year: 2014 2015 Dr. I. J. Wassell, Mr. N. Batterham. 1 2 Digital Hardware Labs - Introduction Many materials are available on which to build prototype

More information

CHAPTER 6 COUNTERS & REGISTERS

CHAPTER 6 COUNTERS & REGISTERS CHAPTER 6 COUNTERS & REGISTERS 6.1 Asynchronous Counter 6.2 Synchronous Counter 6.3 State Machine 6.4 Basic Shift Register 6.5 Serial In/Serial Out Shift Register 6.6 Serial In/Parallel Out Shift Register

More information

Introduction to Digital Electronics

Introduction to Digital Electronics Introduction to Digital Electronics by Agner Fog, 2018-10-15. Contents 1. Number systems... 3 1.1. Decimal, binary, and hexadecimal numbers... 3 1.2. Conversion from another number system to decimal...

More information

DIGITAL ELECTRONICS LAB MANUAL FOR 2/4 B.Tech (ECE) COURSE CODE: EC-252

DIGITAL ELECTRONICS LAB MANUAL FOR 2/4 B.Tech (ECE) COURSE CODE: EC-252 DIGITAL ELECTRONICS LAB MANUAL FOR /4 B.Tech (ECE) COURSE CODE: EC-5 PREPARED BY P.SURENDRA KUMAR M.TECH, Lecturer D.SWETHA M.TECH, Lecturer T Srinivasa Rao M.TECH, Lecturer Ch.Madhavi, Lab Assistant 009-00

More information

Chapter 4: One-Shots, Counters, and Clocks

Chapter 4: One-Shots, Counters, and Clocks Chapter 4: One-Shots, Counters, and Clocks I. The Monostable Multivibrator (One-Shot) The timing pulse is one of the most common elements of laboratory electronics. Pulses can control logical sequences

More information

University of Victoria. Department of Electrical and Computer Engineering. CENG 290 Digital Design I Lab Manual

University of Victoria. Department of Electrical and Computer Engineering. CENG 290 Digital Design I Lab Manual University of Victoria Department of Electrical and Computer Engineering CENG 290 Digital Design I Lab Manual INDEX Introduction to the labs Lab1: Digital Instrumentation Lab2: Basic Digital Components

More information

The Micropython Microcontroller

The Micropython Microcontroller Please do not remove this manual from the lab. It is available via Canvas Electronics Aims of this experiment Explore the capabilities of a modern microcontroller and some peripheral devices. Understand

More information

Name: Date: Suggested Reading Chapter 7, Digital Systems, Principals and Applications; Tocci

Name: Date: Suggested Reading Chapter 7, Digital Systems, Principals and Applications; Tocci Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003) J. Horne Rev. 2 (1/2008) J. Bradbury Digital Fundamentals CETT 1425 Lab 7 Asynchronous Ripple Counters Name: Date: Objectives: To

More information

1 Hour Sample Test Papers: Sample Test Paper 1. Roll No.

1 Hour Sample Test Papers: Sample Test Paper 1. Roll No. 6.1.2 Sample Test Papers: Sample Test Paper 1 Roll No. Institute Name: Course Code: EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ED/ET/IU Subject: Principles of Digital Techniques Marks: 25 1 Hour 1. All questions are

More information

Microcontrollers and Interfacing week 7 exercises

Microcontrollers and Interfacing week 7 exercises SERIL TO PRLLEL CONVERSION Serial to parallel conversion Microcontrollers and Interfacing week exercises Using many LEs (e.g., several seven-segment displays or bar graphs) is difficult, because only a

More information

Monday 28 January 2013 Morning

Monday 28 January 2013 Morning Monday 28 January 2013 Morning GCSE DESIGN AND TECHNOLOGY Electronics and Control Systems A514/01 Technical Aspects of Designing and Making: Electronics *A528620113* Candidates answer on the Question Paper.

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Lab Manual for Computer Organization Lab

More information

Part (A) Controlling 7-Segment Displays with Pushbuttons. Part (B) Controlling 7-Segment Displays with the PIC

Part (A) Controlling 7-Segment Displays with Pushbuttons. Part (B) Controlling 7-Segment Displays with the PIC Name Name ME430 Mechatronic Systems: Lab 6: Preparing for the Line Following Robot The lab team has demonstrated the following tasks: Part (A) Controlling 7-Segment Displays with Pushbuttons Part (B) Controlling

More information

Logic Design Viva Question Bank Compiled By Channveer Patil

Logic Design Viva Question Bank Compiled By Channveer Patil Logic Design Viva Question Bank Compiled By Channveer Patil Title of the Practical: Verify the truth table of logic gates AND, OR, NOT, NAND and NOR gates/ Design Basic Gates Using NAND/NOR gates. Q.1

More information

Catch or Die! Julia A. and Andrew C. ECE 150 Cooper Union Spring 2010

Catch or Die! Julia A. and Andrew C. ECE 150 Cooper Union Spring 2010 Catch or Die! Julia A. and Andrew C. ECE 150 Cooper Union Spring 2010 Andrew C. and Julia A. DLD Final Project Spring 2010 Abstract For our final project, we created a game on a grid of 72 LED s (9 rows

More information

ASYNCHRONOUS COUNTER CIRCUITS

ASYNCHRONOUS COUNTER CIRCUITS ASYNCHRONOUS COUNTER CIRCUITS Asynchronous counters do not have a common clock that controls all the Hipflop stages. The control clock is input into the first stage, or the LSB stage of the counter. The

More information

Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours

Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours Digital Networks and Systems Laboratory 2 Basic Digital Building Blocks Time 4 hours Aim To investigate the basic digital circuit building blocks constructed from combinatorial logic or dedicated Integrated

More information

OFC & VLSI SIMULATION LAB MANUAL

OFC & VLSI SIMULATION LAB MANUAL DEVBHOOMI INSTITUTE OF TECHNOLOGY FOR WOMEN, DEHRADUN - 24847 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Prepared BY: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering

More information

DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201)

DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201) DepartmentofElectronicEngineering NEDUniversity ofengineering &Technology LABORATORY WORKBOOK DIGITAL LOGIC DESIGN (TC-201) Instructor Name: Student Name: Roll Number: Semester: Batch: Year: Department:

More information

TV Synchronism Generation with PIC Microcontroller

TV Synchronism Generation with PIC Microcontroller TV Synchronism Generation with PIC Microcontroller With the widespread conversion of the TV transmission and coding standards, from the early analog (NTSC, PAL, SECAM) systems to the modern digital formats

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - III Sequential Logic I Sequential circuits: latches flip flops analysis of clocked sequential circuits state reduction and assignments Registers and Counters: Registers shift registers ripple counters

More information

Experiment # 4 Counters and Logic Analyzer

Experiment # 4 Counters and Logic Analyzer EE20L - Introduction to Digital Circuits Experiment # 4. Synopsis: Experiment # 4 Counters and Logic Analyzer In this lab we will build an up-counter and a down-counter using 74LS76A - Flip Flops. The

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Digital Circuits. Innovation Fellows Program

Digital Circuits. Innovation Fellows Program Innovation Fellows Program Digital Circuits, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Digital Electronics TTL and CMOS Logic National Instrument s

More information

EET 1131 Lab #12 - Page 1 Revised 8/10/2018

EET 1131 Lab #12 - Page 1 Revised 8/10/2018 Name EET 1131 Lab #12 Shift Registers Equipment and Components Safety glasses ETS-7000 Digital-Analog Training System Integrated Circuits: 74164, 74195 Quartus II software and Altera DE2-115 board Shift

More information

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Analog to Digital Converter

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Analog to Digital Converter ME6405 Introduction to Mechatronics Fall 2006 Instructor: Professor Charles Ume Analog to Digital Converter Analog and Digital Signals Analog signals have infinite states available mercury thermometer

More information

Notes on Digital Circuits

Notes on Digital Circuits PHYS 331: Junior Physics Laboratory I Notes on Digital Circuits Digital circuits are collections of devices that perform logical operations on two logical states, represented by voltage levels. Standard

More information

Semester 6 DIGITAL ELECTRONICS- core subject -10 Credit-4

Semester 6 DIGITAL ELECTRONICS- core subject -10 Credit-4 Semester 6 DIGITAL ELECTRONICS- core subject -10 Credit-4 Unit I Number system, Binary, decimal, octal, hexadecimal-conversion from one another-binary addition, subtraction, multiplication, division-binary

More information

Lab #11: Register Files

Lab #11: Register Files Lab #11: Register Files Zack Mattis Lab: 3/21/17 Report: 3/26/17 Partner: Brendan Schuster Purpose In this lab, 4x4 register was designed and fully implemented onto a protoboard that emulates the local

More information

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE

NORTHWESTERN UNIVERSITY TECHNOLOGICAL INSTITUTE NORTHWESTERN UNIVERSITY TECHNOLOGICL INSTITUTE ECE 270 Experiment #8 DIGITL CIRCUITS Prelab 1. Draw the truth table for the S-R Flip-Flop as shown in the textbook. Draw the truth table for Figure 7. 2.

More information

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL

MUHAMMAD NAEEM LATIF MCS 3 RD SEMESTER KHANEWAL 1. A stage in a shift register consists of (a) a latch (b) a flip-flop (c) a byte of storage (d) from bits of storage 2. To serially shift a byte of data into a shift register, there must be (a) one click

More information

University of Pennsylvania Department of Electrical and Systems Engineering. Digital Design Laboratory. Lab8 Calculator

University of Pennsylvania Department of Electrical and Systems Engineering. Digital Design Laboratory. Lab8 Calculator University of Pennsylvania Department of Electrical and Systems Engineering Digital Design Laboratory Purpose Lab Calculator The purpose of this lab is: 1. To get familiar with the use of shift registers

More information

Checkpoint 2 Video Interface

Checkpoint 2 Video Interface University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS150 Fall 1998 R. Fearing and Kevin Cho 1. Objective Checkpoint 2 Video Interface

More information

TYPICAL QUESTIONS & ANSWERS

TYPICAL QUESTIONS & ANSWERS DIGITALS ELECTRONICS TYPICAL QUESTIONS & ANSWERS OBJECTIVE TYPE QUESTIONS Each Question carries 2 marks. Choose correct or the best alternative in the following: Q.1 The NAND gate output will be low if

More information

Digital Clock. Perry Andrews. A Project By. Based on the PIC16F84A Micro controller. Revision C

Digital Clock. Perry Andrews. A Project By. Based on the PIC16F84A Micro controller. Revision C Digital Clock A Project By Perry Andrews Based on the PIC16F84A Micro controller. Revision C 23 rd January 2011 Contents Contents... 2 Introduction... 2 Design and Development... 3 Construction... 7 Conclusion...

More information