A Novel Parallel-friendly Rate Control Scheme for HEVC

Size: px
Start display at page:

Download "A Novel Parallel-friendly Rate Control Scheme for HEVC"

Transcription

1 A Novel Parallel-friendly Rate Control Scheme for HEVC Jianfeng Xie, Li Song, Rong Xie, Zhengyi Luo, Min Chen Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University Cooperative Medianet Innovation Center, Shanghai, China School of Electronics and Information Engineering, Shanghai University of Electric Power Multicoreware {richrd, song li, Abstract Rate control plays a key role in video coding, which has a significant effect on encoder performance. With parallel video coding frameworks more and more popular, rate control suitable for parallel coding is highly desired. However, most rate control algorithms only focus on the rate distortion performance but ignoring the data correlation in parallel coding. In this paper, based on the parallel framework of the x265 encoder, we propose a parallel-friendly rate control scheme for HEVC coding, which supports both frame level and slice level parallel. Experimental results show that the algorithm can achieve not only highly accurate rate control but also excellent rate distortion performance under parallel coding. I. INTRODUCTION In recent years, high resolution video application becomes more and more popular. In order to satisfy the demands of high quality video services, multiple parallel technologies, such as frame parallel, slice/tile parallel, Wavefront Parallel Processing(WPP) [1] are designed to accomplish real-time video coding. However video encoder which uses parallel framework will introduce the challenge of data dependency. Data dependence effects not only the speedup, but also rate control (RC) algorithm in the parallel framework. Rate control, which is closed related to RD performance, is adopted to minimize distortion under a target bitrate limitation. Rate control roughly includes two steps. Firstly, appropriate target bits or bit budgets are allocated at different coding levels. Then appropriate coding parameters are set to produce bits as allocated. The bit budgets should be should be dynamically adjusted according to previous coding information, such as actually used bits, content complexity, buffer status, etc. However, with the introduction of parallel coding, multiple coding units may be encoded at the same time, which usually makes coding information of immediately previous units unavailable and degrades the rate control performance. Therefore, conventional rate control algorithms have to be adapted for the parallel coding frameworks. In [2][3], a parallel rate control algorithm based on image spatial division was for MPEG-2 MP@HL (Main Profile at High level). Every frame is divided into several parts of equal size, which are encoded independently at the same time. After finishing encoding, all bit streams are merged into an integrated stream. A global rate control algorithm is designed to allocate target bit for different parts according to previous coding information. In [4], a parallel rate control algorithm for H.264 SVC (Scalable Video Coding) was based on the dependency between different layers. For every slice in one frame, target bit is allocated according to the co-located slice s coding complexity in the previous frame, where coding complexity is defined as the product of actual bit and quantization step. A similar strategy is adopted to allocate target bits at the MB level. In [5], a parallel rate control algorithm for H.264/AVC was. This scheme performs target bit allocation at the GOP and the frame level. At the GOP level, target bit is allocated based on buffer occupancy rate. For every frame in one GOP, target bit is calculated according to their frame types in advance, which enables parallel encoding of multiple frames. All of above methods are designed for the previous generations of coding standard. As far as we known, there does not exist specifically designed rate control algorithm for HEVC. In this paper, we propose a novel parallel-friendly rate control scheme, which supports parallel coding both at the frame and the slice level. If applied the scheme necessitates few modifications of original parallel frameworks. Besides, low computational complexity is still maintained, which enables real-time application as well. The rest of this paper is organized as follows. Section II describes the parallel-friendly rate control algorithm. Section III shows the experimental results and discusses the coding performance. Section IV draws the conclusion. II. PROPOSED PARALLEL-FRIENDLY RATE CONTROL SCHEME The rate control algorithm can be applied to parallel coding down to slice level. As shown in Fig 1, every frame is divided into multiple parts of equal sizes, i.e. slices, which get encoded independently at the same time. The output stream is composed of bit streams from different sub coders. Except for respective internal rate control in every coder, a global rate control module is designed to periodically synchronize internal control and reallocate bit rates for different slices based on previous coding information. This method can efficiently adapt to slice parallel and minimize the target bit estimation error due to content variation.

2 Fig. 1. Joint rate control scheme of parallel video coding architecture This parallel rate control scheme mainly consists of four modules: frame level bit allocation, slice level bit allocation, rate-lambda (R-λ) model and rate control status update. Bit allocation modules allocate bits to different granularity levels according to actually coded bits, content complexity, buffer status, frame type, etc. R-λ model is used to set appropriate encoding parameters, i.e. lambda and QP, to produce allocated bits. Rate control status update module includes R-λ model parameter update and buffer status update. A. Frame level target bit allocation All frames are classified into four types: I, P, B and b, where B denotes the reference B frame and b denotes the nonreference B frame. Frames of different types receive different rate control. For the non-i frame, QP determination by R-λ model can be applied. As far as I frames are concerned, in light of an usual large interval, weak correlation between different I frames are assumed and neglected. Hence the original R-λ model used to set encoding parameters is no longer applicable and a simple QP estimation method is designed for I frames. 1) Non-I frame: The bit allocation depends mainly on three conditions: global target bitrate, virtual buffer status and frame type. Firstly, the average bits per frame is calculated as T avg = R tar fps where R tar is the global target bitrate and fps is the frame rate. The average frame bit is set as the benchmark of adaptive bit allocation. Secondly, the virtual buffer occupancy can be calculated by { V i = L i = 0 V i 1 + b i T avg otherwise where L denotes target buffer occupancy, which is set as 0.5 times of R tar. (1) (2) L = 0.5 R tar (3) In other words, the buffer can tolerate 0.5 second s bitrate fluctuation at most. A bigger target occupancy means virtual buffer can tolerate more bitrate fluctuation but a bigger delay. In our experiment, 0.5 times of R tar is a good experience value which compromises between bitrate fluctuation and delay. The virtual buffer size is also initialized as target buffer occupancy L, and after encoding one frame, the buffer occupancy is updated using the actually generated bit b i. Buffer status directs bit allocation in two ways. When the buffer occupancy ranges from 10% to 90% of target buffer occupancy, low risk of overflow or underflow is assumed and the frame target bit is slightly corrected as B = L V (4) SW where SW is the size of sliding window, which is used for smooth bit rate adjustment. The SW used in our experiments is set to 40. When the buffer occupancy is less than 10% or larger than 90% of the buffer size, a high risk of underflow or overflow is assumed. So the frame target bit needs a further adjustment to avoid that situation happening. The target bit considering buffer status is calculated by T norm = α T avg + B (5) where α is defined as 0.9 V > 0.9 T avg α = T avg V 0.9 T avg (6) 1.1 V < 0.1 T avg Thirdly, frame type should be also taken into account. The final target bit is defined as T = T norm ω p = (α T avg + B) ω p (7) where ω p is the frame type dependent weight and can be fitted by pre-analysis of coding information. It is decided by the setting of GOP structure, mainly including key frame interval keyint and number of consecutive b-frames bf rames. For example, when bframes is set as the default value 4, frame weight can be determined as ω p = a keyint b + c (8) where parameter a, b and c are shown as Table I. TABLE I PARAMETER OF FRAME WEIGHT CALCULATION Frame type a b c P B b For other GOP structures, corresponding parameter can be fitted with the similar method. 2) I frame: I frames coding pattern is quite different from that of non-i frames, which makes it typically consume much more bits than others. Usually, exact bit allocation and QP estimation is still a challenge for I frames, for which the main reason is the weak correlation between neighboring I frames due to large intervals. Fortunately, since rate control usually

3 runs for a number of frames but not for a single one, bit rates can still be regulated afterwards in despite of possible inaccuracy. Here we use a simple QP estimation method to determine the quantization parameter for I frames. Usually, in view of the roles different frame types play, B frames QP should be larger than P frame, while P frames QP should be larger than the periodically inserted I frame. QP of I and B frames can be expressed with a rough conversion of that of P frames as follows QP I = QP P 6 ipf actor (9) QP B = QP P + 6 pbf actor (10) where ipf actor and pbf actor are the transfer factors for I and P frames and are set to 1.4 and 1.3, respectively. So all frames QP in an equivalent P frame format can be updated via an exponential average of coded frames QP with a forgetting factor set to 0.95 QP n = n 1 i=0 QP i 0.95 n 1 i n n (11) 0.95 n i n i=1 where QP i is the QP of the i-th coded frame in equivalent P frame format and QP n is the estimated QP value of current frame in the equivalent P frame format. If the current frame is I frame, the QP will be estimated through the above equation. Notice that the above equation only applies to I frames. Consider the limited number of I frames, the method is undoubtedly feasible despite of slight inaccuracy. B. Slice level target bit allocation As is shown in Fig 1, the component slices from one image are independently encoded. Consider the possible content differences between slices, uniform allocation of bits for all slices may lead to significantly different quality. For example, band phenomenon may appear at the slice boundaries. To avoid that, a global rate control module is designed to periodically synchronize all coders rate control status and reallocate target bitrate for different slices according to the previous coding information. Specifically, every slice should have three parameters calculated before one frame is encoded: average target bit, target buffer occupancy and actual buffer occupancy. Let m denotes the number of slices, the jth slice s average target bit T j avg, target buffer occupancy L j and actual buffer occupancy V j can be recalculated through (12) (13) (14), respectively. T j avg = L j = SAT Dj m T avg (12) SAT D k k=1 SAT Dj m L (13) SAT D k k=1 V j = SAT Dj m V (14) SAT D k k=1 where SAT D j indicates the jth slice s weighted Sum of Absolute Transformed Difference(SATD) value with previous co-located slices, with a forgetting factor set to 0.5. This can make the reallocating adjustment more smoothly. The weight indicates how important is the history frame SATD to current frame. The frame far from current frame has a low weight. n SAT Dn j = w i SAT D j i (15) i=0 w i = 0.5 n i / n 0.5 n k (16) k=0 After the reallocation adjustment, the target bit calculation can be conducted as the frame level bit allocation. C. λ and QP determination with R-λ model Except for the I frames QP determination using the above method, the R-λ model is adopted to determine QP of non I-frames. The R-λ model is the latest rate control model in HEVC, which has been adopted by the HEVC reference software HM. According to the RD relationship analysis on HEVC, Li [6] builds an exponential relationship between rate and lagrange multiplier λ, which is modeled as λ = α bpp β (17) where bpp indicates the bit per pixel. If the target bit is T and the number of pixels is N, then the bpp is defined as bpp = T (18) N The model parameters α and β are updated according to the actually used bits after coding every frame. λ comp = α old bpp β old real (19) α new = α old + δ α (ln λ real ln λ comp ) α old (20) β new = β old + δ β (ln λ real ln λ comp ) ln bpp real (21) where bpp real is the actual bit per pixel. QP can be determined through the empirical equation between λ and QP λ QP = 3 log (22) To keep consistent quality of coded video, QP is clipped into an appropriate range as follows. First, the difference from that of the last frame with different frame type should not exceed 10. QP last diff type 10 QP QP last diff type + 10 (23) Second, the difference from that of the last frame with same frame type should not exceed 3. QP last same type 3 QP QP last same type + 3 (24)

4 III. EXPERIMENTAL RESULTS Experiments are conducted to test the performance of the rate control scheme. Main indexes include R-D performance and rate control accuracy, where R-D performance is measured by PSNR and, rate control accuracy is measured by bitrate error between target bitrate and actual bitrate. The benchmark we used in our experiment is x which supports frame parallel and WPP encoding. Two kinds of rate control scheme in original x265 including and is used as the comparing object, where means average bit rate, and VBV means video buffer verifier. mode has a good RD performance while rate control accuracy is terrible. VBV mode is a plug-in mode which can be used in most of rate control scheme to further subtly adapt the QP and achieve better rate control accuracy, but the RD performance will suffer a great degradation. Our ultimate goal is to obtain a enough accurate rate control accuracy close to mode, with a RD performance improvement. The preset of x265 is set as medium. Considering the demand of rate stability, scene cut detection is turn off, because the uncertain I frame introduced by it will lead to drastic rate fluctuation and have a significant harmful influence to rate control performance. Actually, in most of real-time coding application, scene cut detection is usually not used. The key frame interval is set as 30 frames. Number of consecutive b- frames is set as 4. The hierarchical depth is two by default. All the 1080p HD sequences (Kimono1, P arkscene, Cactus, BasketballDrive and BQT errace) in the HEVC standard test sequences Class B are adopted. Target bitrate is set according to HEVC call for proposal [7]. Specially, for VBV mode, the vbv buffer size is set as one second s rate bit. The vbv max rate and vbv init size is set by encoder default. A. Performance comparing to x265 anchor Firstly, to validate the RD-performance improvement, two quality metrics, PSNR and, are used in our experiment. More and more researches have reached a consensus that is a more effective video quality metric than PSNR which provides a good approximation of the perceptual visual quality degradation. TABLE II BD-RATE TO ORIGINAL RC ALGORITHM BD-Rate psnr ssim psnr ssim Kimono1 6.00% 6.39% -0.34% -1.32% ParkScene 1.29% 1.77% -3.13% -3.78% Cactus -1.50% -2.54% -2.95% -4.32% BasketballDrive 1.77% -0.70% 0.11% -3.38% BQTerrace -2.40% -1.88% -4.44% -5.06% Average 1.03% 0.61% -2.15% -3.57% The BD-Rate comparing to x265 original mode and mode is list in Table II. The two columns of psnr and ssim list the BD-rate on quality metric with PSNR and, respectively. From this table, we can find that algorithm s RD performance is slightly worse than mode, Rate-PSNR curve of Cactus (a) Rate- curve of Cactus (b) Rate-PSNR curve of BQTerrace (c) Rate- curve of BQTerrace (d) Fig. 2. R-D curve ( (a) Rate-PSNR curve of Cactus (b) Rate- curve of Cactus (c) Rate-PSNR curve of BQT errace (d) Rate- curve of BQT errace) ) while has a significant improvement to mode. Specially, for the metric, algorithm has a close performance to mode, even better on some sequences. Comparing to mode, method achieves a

5 great gain up to 3.57% on average. Fig 2 shows the Rate-PSNR curve and Rate- curve of two sequences, Cactus and BQT errace. RD performance achieves a improvement to both the original and algorithm. This is largely because we adopt the more reasonable target bit allocation method and more accurate R-Q model than the original rate control module. Secondly, to compare the rate control accuracy of our algorithm, a mismatch ratio is defined by M% = R actual R t arg et R t arg et 100% (25) where R target and R actual denote the target bit rate and the actual bit rate, respectively. As stated before, a sequence adopts the same target bitrate for the anchor algorithm and the algorithm. Table III states the bit rate mismatch comparisons of the two x265 anchor rate control algorithm and the rate control algorithm. It shows that the rate control accuracy of algorithm is much better than mode, while slightly worse than mode. Observing all the sequences result, we can find that the worst performance sequence is Kimono1. The main reason is that there exists a scene cut in this sequence, which causes a rate control performance degradation. But method s performance is still much better than mode where maximum mismatch is up to 18%. Kimono1 ParkScene Cactus BasketballDrive BQTerrace TABLE III MISMATCH COMPARING target/kbps Rate control mismatch % 2.49% 6.10% % 3.47% 5.30% % 5.17% 3.25% % 5.67% 1.83% % 1.% 4.68% % 1.82% 3.79% % 2.78% 2.10% % 3.26% 1.52% % 0.90% 1.79% % 0.95% 1.72% % 0.93% 1.48% % 1.01% 1.30% % 1.80% 3.17% % 1.73% 3.23% % 1.31% 3.08% % 1.14% 2.86% % 1.60% 0.16% % 1.40% 0.72% % 0.79% 1.28% % 0.74% 1.70% Average 4.71% 2.02% 2.55% To illustrate the rate control performance more intuitive, frame bit frame bit Actual bits of P frame frame number (a) Actual bits of B frame frame number (b) Fig. 3. Frame actual bit ( (a) P frame bits (b) B frame bits ) Fig 3 shows the frame actual bits of three kinds of rate control method. The sequence used is the connected sequence of all test sequences mentioned above, which makes the sequence more closing to a real video with scene cut. Fig 3(a) shows the P frame s bit and Fig 3(b) shows the B frame s bit. We can find that method has more smoothly frame bit variation than the original algorithm. To sum up, algorithm can obtain a enough accurate rate control accuracy close to mode. Meanwhile, a significant RD performance improvement has been achieved. B. Performance of the joint rate control module One important aspect we need to validate is the performance of joint rate control module. The test condition is designed as follows. Two kinds of image division strategies is used in our experiment. One is dividing each image to 2 equal parts and the other is dividing each image to 4 equal parts. For each division strategies, two kinds of bit allocation scheme is used for these slices. First one is averagely allocating frame bits to each slice, which is marked by parts equal in the following pages. The second one uses the slice target bit allocation scheme described in Section II, which is marked by parts satd in the following pages. Table IV shows the slice bit allocation scheme s RD-performance improvement comparing to the equal slice bit allocation. The two columns of psnr and ssim list the BDrate on quality metric with PSNR and, respectively. We can find that RD has about 1% gain on PSNR for both kinds of division strategies, while on, about 2% gain is achieved.

6 TABLE IV BD-RATE TO EQUAL BIT ALLOCATION Rate-PSNR curve of BasketballDrive of 2 parts BD-Rate 2parts 4parts psnr ssim psnr ssim Kimono1-1.52% -2.53% -1.71% -4.49% ParkScene 0.63% 1.24% 0.47% 1.% Cactus -0.09% 1.21% 0.16% 1.06% BasketballDrive -2.77% -1.85% -4.58% -4.58% BQTerrace -1.64% -6.21% 0.64% -5.12% Average -1.08% -1.63% -1.00% -2.% Notice that three sequences, Kimono1, BasketballDrive and BQT errace, have a higher RD performance improvement than others. Observing these sequences content, these sequences have a bigger difference between divided slices than others, which verifies that slice bit allocation scheme has a better content adaption. Fig 4 shows the Rate-PSNR curve and Rate- curve of sequence BasketballDrive, when sequences are divided into 2 parts and 4 parts, respectively. Comparing to the equal slice bit allocation, method achieves a significant performance improvement. Kimono1 ParkScene Cactus BasketballDrive BQTerrace TABLE V MISMATCH COMPARING target bitrate /kbps 2parts equal Rate control mismatch 2parts 4parts satd equal 4parts satd % 6.25% 6.58% 6.10% % 5.63% 5.88% 5.57% % 3.43% 3.51% 3.55% % 2.07% 2.33% 2.39% % 5.05% 4.91% 4.96% % 3.88% 3.83% 3.80% % 1.24% 1.29% 0.90% % 0.10% 0.68% 0.14% % 2.29% 2.22% 2.21% % 2.09% 2.03% 1.97% % 1.45% 1.32% 1.28% % 0.98% 0.90% 0.68% % 2.93% 2.85% 2.79% % 2.83% 2.67% 2.68% % 2.70% 2.43% 2.57% % 2.47% 2.32% 2.40% % 0.14% 0.09% 0.29% % 0.66% 0.43% 0.79% % 1.15% 0.97% 1.34% % 1.28% 1.22% 1.57% Average 2.45% 2.43% 2.42% 2.40% Table V states the bit rate mismatch of the two kinds of slice bit allocation scheme. we can find that scheme has a slight refinement, which also verifies that slice bit allocation scheme has a better content adaption parts equal 2parts stad (a) Rate- curve of BasketballDrive of 2 parts 2parts equal 2parts stad (b) Rate-PSNR curve of BasketballDrive of 4 parts 4parts equal 4parts stad (c) Rate- curve of BasketballDrive of 4 parts 4parts equal 4parts stad (d) Fig. 4. R-D curve ( (a) Rate-PSNR curve of 2 parts (b) Rate- curve of 2 parts (c) Rate-PSNR curve of 4 parts (d) Rate- curve of 4 parts) ) IV. CONCLUSION In this paper, we propose a novel parallel-friendly rate control scheme, which supports parallel coding both at the frame and slice level. Experimental results show that the

7 algorithm can obtain a rate accuracy close to that of the original x265 plus VBV mode but with a significant improvement of RD performance. Besides, SATD based slice bit allocation provides a better content adaptation, which makes the algorithm more applicable to content variation than other schemes. ACKNOWLEDGMENT This work was supported by Shanghai Zhangjiang national independent innovation demonstration zone development fund( pd-sb-b ) and NSFC ( , , ). REFERENCES [1] Chi C C, Alvarez-Mesa M, Juurlink B, et al. Parallel scalability and efficiency of HEVC parallelization approaches[j]. Circuits and Systems for Video Technology, IEEE Transactions on, 2012, 22(12): [2] Nakamura K, Ikeda M, Yoshitome T, et al. Global rate control scheme for MPEG-2 HDTV parallel encoding system[c]//information Technology: Coding and Computing, Proceedings. International Conference on. IEEE, 2000: [3] Nog S. A study on rate control method for MP@ HL encoder with parallel encoder architecture using picture partitioning[c]//image Processing, ICIP 99. Proceedings International Conference on. IEEE, 1999, 4: [4] Sanz-Rodriguez S, Mayer T, Alvarez-Mesa M, et al. A low-complexity parallel-friendly rate control algorithm for ultra-low delay high definition video coding[c]//multimedia and Expo Workshops (ICMEW), 2013 IEEE International Conference on. IEEE, 2013: 1-4. [5] Wang J, Gao Z, Zhang X. Efficient parallel-friendly rate control for realtime UHD video encoder on many-core platform[c]//multimedia and Expo Workshops (ICMEW), 2014 IEEE International Conference on. IEEE, 2014: 1-6. [6] Bin Li; Houqiang Li; Li Li; Jinlei Zhang, Domain Rate Control Algorithm for High Efficiency Video Coding, Image Processing, IEEE Transactions on, vol.23, no.9, pp.3841,3854, Sept [7] ITU-T Q6/16, lso/lec JTC1/SCZQ/WG11, VCEG-AM91 (2010) Joint Call for Proposals on Video Compression Technology, 22 January 2010, Kyoto, Japan.

WITH the rapid development of high-fidelity video services

WITH the rapid development of high-fidelity video services 896 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 7, JULY 2015 An Efficient Frame-Content Based Intra Frame Rate Control for High Efficiency Video Coding Miaohui Wang, Student Member, IEEE, KingNgiNgan,

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICASSP.2016.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICASSP.2016. Hosking, B., Agrafiotis, D., Bull, D., & Easton, N. (2016). An adaptive resolution rate control method for intra coding in HEVC. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing

More information

Conference object, Postprint version This version is available at

Conference object, Postprint version This version is available at Benjamin Bross, Valeri George, Mauricio Alvarez-Mesay, Tobias Mayer, Chi Ching Chi, Jens Brandenburg, Thomas Schierl, Detlev Marpe, Ben Juurlink HEVC performance and complexity for K video Conference object,

More information

Bit Rate Control for Video Transmission Over Wireless Networks

Bit Rate Control for Video Transmission Over Wireless Networks Indian Journal of Science and Technology, Vol 9(S), DOI: 0.75/ijst/06/v9iS/05, December 06 ISSN (Print) : 097-686 ISSN (Online) : 097-5 Bit Rate Control for Video Transmission Over Wireless Networks K.

More information

Feasibility Study of Stochastic Streaming with 4K UHD Video Traces

Feasibility Study of Stochastic Streaming with 4K UHD Video Traces Feasibility Study of Stochastic Streaming with 4K UHD Video Traces Joongheon Kim and Eun-Seok Ryu Platform Engineering Group, Intel Corporation, Santa Clara, California, USA Department of Computer Engineering,

More information

Skip Length and Inter-Starvation Distance as a Combined Metric to Assess the Quality of Transmitted Video

Skip Length and Inter-Starvation Distance as a Combined Metric to Assess the Quality of Transmitted Video Skip Length and Inter-Starvation Distance as a Combined Metric to Assess the Quality of Transmitted Video Mohamed Hassan, Taha Landolsi, Husameldin Mukhtar, and Tamer Shanableh College of Engineering American

More information

Constant Bit Rate for Video Streaming Over Packet Switching Networks

Constant Bit Rate for Video Streaming Over Packet Switching Networks International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Constant Bit Rate for Video Streaming Over Packet Switching Networks Mr. S. P.V Subba rao 1, Y. Renuka Devi 2 Associate professor

More information

Mauricio Álvarez-Mesa ; Chi Ching Chi ; Ben Juurlink ; Valeri George ; Thomas Schierl Parallel video decoding in the emerging HEVC standard

Mauricio Álvarez-Mesa ; Chi Ching Chi ; Ben Juurlink ; Valeri George ; Thomas Schierl Parallel video decoding in the emerging HEVC standard Mauricio Álvarez-Mesa ; Chi Ching Chi ; Ben Juurlink ; Valeri George ; Thomas Schierl Parallel video decoding in the emerging HEVC standard Conference object, Postprint version This version is available

More information

ERROR CONCEALMENT TECHNIQUES IN H.264 VIDEO TRANSMISSION OVER WIRELESS NETWORKS

ERROR CONCEALMENT TECHNIQUES IN H.264 VIDEO TRANSMISSION OVER WIRELESS NETWORKS Multimedia Processing Term project on ERROR CONCEALMENT TECHNIQUES IN H.264 VIDEO TRANSMISSION OVER WIRELESS NETWORKS Interim Report Spring 2016 Under Dr. K. R. Rao by Moiz Mustafa Zaveri (1001115920)

More information

Fast MBAFF/PAFF Motion Estimation and Mode Decision Scheme for H.264

Fast MBAFF/PAFF Motion Estimation and Mode Decision Scheme for H.264 Fast MBAFF/PAFF Motion Estimation and Mode Decision Scheme for H.264 Ju-Heon Seo, Sang-Mi Kim, Jong-Ki Han, Nonmember Abstract-- In the H.264, MBAFF (Macroblock adaptive frame/field) and PAFF (Picture

More information

Free Viewpoint Switching in Multi-view Video Streaming Using. Wyner-Ziv Video Coding

Free Viewpoint Switching in Multi-view Video Streaming Using. Wyner-Ziv Video Coding Free Viewpoint Switching in Multi-view Video Streaming Using Wyner-Ziv Video Coding Xun Guo 1,, Yan Lu 2, Feng Wu 2, Wen Gao 1, 3, Shipeng Li 2 1 School of Computer Sciences, Harbin Institute of Technology,

More information

Color Quantization of Compressed Video Sequences. Wan-Fung Cheung, and Yuk-Hee Chan, Member, IEEE 1 CSVT

Color Quantization of Compressed Video Sequences. Wan-Fung Cheung, and Yuk-Hee Chan, Member, IEEE 1 CSVT CSVT -02-05-09 1 Color Quantization of Compressed Video Sequences Wan-Fung Cheung, and Yuk-Hee Chan, Member, IEEE 1 Abstract This paper presents a novel color quantization algorithm for compressed video

More information

A Novel Macroblock-Level Filtering Upsampling Architecture for H.264/AVC Scalable Extension

A Novel Macroblock-Level Filtering Upsampling Architecture for H.264/AVC Scalable Extension 05-Silva-AF:05-Silva-AF 8/19/11 6:18 AM Page 43 A Novel Macroblock-Level Filtering Upsampling Architecture for H.264/AVC Scalable Extension T. L. da Silva 1, L. A. S. Cruz 2, and L. V. Agostini 3 1 Telecommunications

More information

A parallel HEVC encoder scheme based on Multi-core platform Shu Jun1,2,3,a, Hu Dong1,2,3,b

A parallel HEVC encoder scheme based on Multi-core platform Shu Jun1,2,3,a, Hu Dong1,2,3,b 4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) A parallel HEVC encoder scheme based on Multi-core platform Shu Jun1,2,3,a, Hu Dong1,2,3,b 1 Education Ministry

More information

Adaptive Key Frame Selection for Efficient Video Coding

Adaptive Key Frame Selection for Efficient Video Coding Adaptive Key Frame Selection for Efficient Video Coding Jaebum Jun, Sunyoung Lee, Zanming He, Myungjung Lee, and Euee S. Jang Digital Media Lab., Hanyang University 17 Haengdang-dong, Seongdong-gu, Seoul,

More information

RATE-DISTORTION OPTIMISED QUANTISATION FOR HEVC USING SPATIAL JUST NOTICEABLE DISTORTION

RATE-DISTORTION OPTIMISED QUANTISATION FOR HEVC USING SPATIAL JUST NOTICEABLE DISTORTION RATE-DISTORTION OPTIMISED QUANTISATION FOR HEVC USING SPATIAL JUST NOTICEABLE DISTORTION André S. Dias 1, Mischa Siekmann 2, Sebastian Bosse 2, Heiko Schwarz 2, Detlev Marpe 2, Marta Mrak 1 1 British Broadcasting

More information

HEVC Real-time Decoding

HEVC Real-time Decoding HEVC Real-time Decoding Benjamin Bross a, Mauricio Alvarez-Mesa a,b, Valeri George a, Chi-Ching Chi a,b, Tobias Mayer a, Ben Juurlink b, and Thomas Schierl a a Image Processing Department, Fraunhofer Institute

More information

MULTI-CORE SOFTWARE ARCHITECTURE FOR THE SCALABLE HEVC DECODER. Wassim Hamidouche, Mickael Raulet and Olivier Déforges

MULTI-CORE SOFTWARE ARCHITECTURE FOR THE SCALABLE HEVC DECODER. Wassim Hamidouche, Mickael Raulet and Olivier Déforges 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) MULTI-CORE SOFTWARE ARCHITECTURE FOR THE SCALABLE HEVC DECODER Wassim Hamidouche, Mickael Raulet and Olivier Déforges

More information

Rate-distortion optimized mode selection method for multiple description video coding

Rate-distortion optimized mode selection method for multiple description video coding Multimed Tools Appl (2014) 72:1411 14 DOI 10.1007/s11042-013-14-8 Rate-distortion optimized mode selection method for multiple description video coding Yu-Chen Sun & Wen-Jiin Tsai Published online: 19

More information

Convolutional Neural Network-Based Block Up-sampling for Intra Frame Coding

Convolutional Neural Network-Based Block Up-sampling for Intra Frame Coding IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 1 Convolutional Neural Network-Based Block Up-sampling for Intra Frame Coding Yue Li, Dong Liu, Member, IEEE, Houqiang Li, Senior Member,

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ISCAS.2005.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ISCAS.2005. Wang, D., Canagarajah, CN., & Bull, DR. (2005). S frame design for multiple description video coding. In IEEE International Symposium on Circuits and Systems (ISCAS) Kobe, Japan (Vol. 3, pp. 19 - ). Institute

More information

Selective Intra Prediction Mode Decision for H.264/AVC Encoders

Selective Intra Prediction Mode Decision for H.264/AVC Encoders Selective Intra Prediction Mode Decision for H.264/AVC Encoders Jun Sung Park, and Hyo Jung Song Abstract H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression

More information

ROBUST REGION-OF-INTEREST SCALABLE CODING WITH LEAKY PREDICTION IN H.264/AVC. Qian Chen, Li Song, Xiaokang Yang, Wenjun Zhang

ROBUST REGION-OF-INTEREST SCALABLE CODING WITH LEAKY PREDICTION IN H.264/AVC. Qian Chen, Li Song, Xiaokang Yang, Wenjun Zhang ROBUST REGION-OF-INTEREST SCALABLE CODING WITH LEAKY PREDICTION IN H.264/AVC Qian Chen, Li Song, Xiaokang Yang, Wenjun Zhang Institute of Image Communication & Information Processing Shanghai Jiao Tong

More information

Key Techniques of Bit Rate Reduction for H.264 Streams

Key Techniques of Bit Rate Reduction for H.264 Streams Key Techniques of Bit Rate Reduction for H.264 Streams Peng Zhang, Qing-Ming Huang, and Wen Gao Institute of Computing Technology, Chinese Academy of Science, Beijing, 100080, China {peng.zhang, qmhuang,

More information

SCALABLE video coding (SVC) is currently being developed

SCALABLE video coding (SVC) is currently being developed IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006 889 Fast Mode Decision Algorithm for Inter-Frame Coding in Fully Scalable Video Coding He Li, Z. G. Li, Senior

More information

HEVC Subjective Video Quality Test Results

HEVC Subjective Video Quality Test Results HEVC Subjective Video Quality Test Results T. K. Tan M. Mrak R. Weerakkody N. Ramzan V. Baroncini G. J. Sullivan J.-R. Ohm K. D. McCann NTT DOCOMO, Japan BBC, UK BBC, UK University of West of Scotland,

More information

Robust 3-D Video System Based on Modified Prediction Coding and Adaptive Selection Mode Error Concealment Algorithm

Robust 3-D Video System Based on Modified Prediction Coding and Adaptive Selection Mode Error Concealment Algorithm International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014 Robust 3-D Video System Based on Modified Prediction Coding and Adaptive Selection Mode Error Concealment Algorithm Walid

More information

Reduced complexity MPEG2 video post-processing for HD display

Reduced complexity MPEG2 video post-processing for HD display Downloaded from orbit.dtu.dk on: Dec 17, 2017 Reduced complexity MPEG2 video post-processing for HD display Virk, Kamran; Li, Huiying; Forchhammer, Søren Published in: IEEE International Conference on

More information

An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions

An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions 1128 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 10, OCTOBER 2001 An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions Kwok-Wai Wong, Kin-Man Lam,

More information

Modeling and Optimization of a Systematic Lossy Error Protection System based on H.264/AVC Redundant Slices

Modeling and Optimization of a Systematic Lossy Error Protection System based on H.264/AVC Redundant Slices Modeling and Optimization of a Systematic Lossy Error Protection System based on H.264/AVC Redundant Slices Shantanu Rane, Pierpaolo Baccichet and Bernd Girod Information Systems Laboratory, Department

More information

CODING EFFICIENCY IMPROVEMENT FOR SVC BROADCAST IN THE CONTEXT OF THE EMERGING DVB STANDARDIZATION

CODING EFFICIENCY IMPROVEMENT FOR SVC BROADCAST IN THE CONTEXT OF THE EMERGING DVB STANDARDIZATION 17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009 CODING EFFICIENCY IMPROVEMENT FOR SVC BROADCAST IN THE CONTEXT OF THE EMERGING DVB STANDARDIZATION Heiko

More information

1022 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010

1022 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010 1022 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010 Delay Constrained Multiplexing of Video Streams Using Dual-Frame Video Coding Mayank Tiwari, Student Member, IEEE, Theodore Groves,

More information

Visual Communication at Limited Colour Display Capability

Visual Communication at Limited Colour Display Capability Visual Communication at Limited Colour Display Capability Yan Lu, Wen Gao and Feng Wu Abstract: A novel scheme for visual communication by means of mobile devices with limited colour display capability

More information

Rate-Distortion Analysis for H.264/AVC Video Coding and its Application to Rate Control

Rate-Distortion Analysis for H.264/AVC Video Coding and its Application to Rate Control IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 12, DECEMBER 2005 1533 Rate-Distortion Analysis for H.264/AVC Video Coding and its Application to Rate Control Siwei Ma, Student

More information

Hierarchical SNR Scalable Video Coding with Adaptive Quantization for Reduced Drift Error

Hierarchical SNR Scalable Video Coding with Adaptive Quantization for Reduced Drift Error Hierarchical SNR Scalable Video Coding with Adaptive Quantization for Reduced Drift Error Roya Choupani 12, Stephan Wong 1 and Mehmet Tolun 3 1 Computer Engineering Department, Delft University of Technology,

More information

Research Topic. Error Concealment Techniques in H.264/AVC for Wireless Video Transmission in Mobile Networks

Research Topic. Error Concealment Techniques in H.264/AVC for Wireless Video Transmission in Mobile Networks Research Topic Error Concealment Techniques in H.264/AVC for Wireless Video Transmission in Mobile Networks July 22 nd 2008 Vineeth Shetty Kolkeri EE Graduate,UTA 1 Outline 2. Introduction 3. Error control

More information

FAST SPATIAL AND TEMPORAL CORRELATION-BASED REFERENCE PICTURE SELECTION

FAST SPATIAL AND TEMPORAL CORRELATION-BASED REFERENCE PICTURE SELECTION FAST SPATIAL AND TEMPORAL CORRELATION-BASED REFERENCE PICTURE SELECTION 1 YONGTAE KIM, 2 JAE-GON KIM, and 3 HAECHUL CHOI 1, 3 Hanbat National University, Department of Multimedia Engineering 2 Korea Aerospace

More information

CONSTRAINING delay is critical for real-time communication

CONSTRAINING delay is critical for real-time communication 1726 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 7, JULY 2007 Compression Efficiency and Delay Tradeoffs for Hierarchical B-Pictures and Pulsed-Quality Frames Athanasios Leontaris, Member, IEEE,

More information

Bridging the Gap Between CBR and VBR for H264 Standard

Bridging the Gap Between CBR and VBR for H264 Standard Bridging the Gap Between CBR and VBR for H264 Standard Othon Kamariotis Abstract This paper provides a flexible way of controlling Variable-Bit-Rate (VBR) of compressed digital video, applicable to the

More information

Performance Evaluation of Error Resilience Techniques in H.264/AVC Standard

Performance Evaluation of Error Resilience Techniques in H.264/AVC Standard Performance Evaluation of Error Resilience Techniques in H.264/AVC Standard Ram Narayan Dubey Masters in Communication Systems Dept of ECE, IIT-R, India Varun Gunnala Masters in Communication Systems Dept

More information

Popularity-Aware Rate Allocation in Multi-View Video

Popularity-Aware Rate Allocation in Multi-View Video Popularity-Aware Rate Allocation in Multi-View Video Attilio Fiandrotti a, Jacob Chakareski b, Pascal Frossard b a Computer and Control Engineering Department, Politecnico di Torino, Turin, Italy b Signal

More information

IN OBJECT-BASED video coding, such as MPEG-4 [1], an. A Robust and Adaptive Rate Control Algorithm for Object-Based Video Coding

IN OBJECT-BASED video coding, such as MPEG-4 [1], an. A Robust and Adaptive Rate Control Algorithm for Object-Based Video Coding IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 10, OCTOBER 2004 1167 A Robust and Adaptive Rate Control Algorithm for Object-Based Video Coding Yu Sun, Student Member, IEEE,

More information

Overview: Video Coding Standards

Overview: Video Coding Standards Overview: Video Coding Standards Video coding standards: applications and common structure ITU-T Rec. H.261 ISO/IEC MPEG-1 ISO/IEC MPEG-2 State-of-the-art: H.264/AVC Video Coding Standards no. 1 Applications

More information

Lecture 2 Video Formation and Representation

Lecture 2 Video Formation and Representation 2013 Spring Term 1 Lecture 2 Video Formation and Representation Wen-Hsiao Peng ( 彭文孝 ) Multimedia Architecture and Processing Lab (MAPL) Department of Computer Science National Chiao Tung University 1

More information

THE CAPABILITY of real-time transmission of video over

THE CAPABILITY of real-time transmission of video over 1124 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 2005 Efficient Bandwidth Resource Allocation for Low-Delay Multiuser Video Streaming Guan-Ming Su, Student

More information

Chapter 10 Basic Video Compression Techniques

Chapter 10 Basic Video Compression Techniques Chapter 10 Basic Video Compression Techniques 10.1 Introduction to Video compression 10.2 Video Compression with Motion Compensation 10.3 Video compression standard H.261 10.4 Video compression standard

More information

AUDIOVISUAL COMMUNICATION

AUDIOVISUAL COMMUNICATION AUDIOVISUAL COMMUNICATION Laboratory Session: Recommendation ITU-T H.261 Fernando Pereira The objective of this lab session about Recommendation ITU-T H.261 is to get the students familiar with many aspects

More information

Compressed Domain Video Compositing with HEVC

Compressed Domain Video Compositing with HEVC Compressed Domain Video Compositing with HEVC Robert Skupin, Yago Sanchez, Thomas Schierl Multimedia Communications Group Fraunhofer Heinrich-Hertz-Institute Einsteinufer 37, 10587 Berlin {robert.skupin;yago.sanchez;thomas.schierl@hhi.fraunhofer.de}

More information

Video coding standards

Video coding standards Video coding standards Video signals represent sequences of images or frames which can be transmitted with a rate from 5 to 60 frames per second (fps), that provides the illusion of motion in the displayed

More information

Error concealment techniques in H.264 video transmission over wireless networks

Error concealment techniques in H.264 video transmission over wireless networks Error concealment techniques in H.264 video transmission over wireless networks M U L T I M E D I A P R O C E S S I N G ( E E 5 3 5 9 ) S P R I N G 2 0 1 1 D R. K. R. R A O F I N A L R E P O R T Murtaza

More information

PAPER Wireless Multi-view Video Streaming with Subcarrier Allocation

PAPER Wireless Multi-view Video Streaming with Subcarrier Allocation IEICE TRANS. COMMUN., VOL.Exx??, NO.xx XXXX 200x 1 AER Wireless Multi-view Video Streaming with Subcarrier Allocation Takuya FUJIHASHI a), Shiho KODERA b), Nonmembers, Shunsuke SARUWATARI c), and Takashi

More information

Low Power Design of the Next-Generation High Efficiency Video Coding

Low Power Design of the Next-Generation High Efficiency Video Coding Low Power Design of the Next-Generation High Efficiency Video Coding Authors: Muhammad Shafique, Jörg Henkel CES Chair for Embedded Systems Outline Introduction to the High Efficiency Video Coding (HEVC)

More information

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy Vladimir Afonso 1-2, Henrique Maich 1, Luan Audibert 1, Bruno Zatt 1, Marcelo Porto 1, Luciano Agostini

More information

Chapter 2 Introduction to

Chapter 2 Introduction to Chapter 2 Introduction to H.264/AVC H.264/AVC [1] is the newest video coding standard of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). The main improvements

More information

Performance and Energy Consumption Analysis of the X265 Video Encoder

Performance and Energy Consumption Analysis of the X265 Video Encoder Performance and Energy Consumption Analysis of the X265 Video Encoder Dieison Silveira 1,3, Marcelo Porto 2 and Sergio Bampi 1 1 Federal University of Rio Grande do Sul - INF-UFRGS - Graduate Program in

More information

COMP 249 Advanced Distributed Systems Multimedia Networking. Video Compression Standards

COMP 249 Advanced Distributed Systems Multimedia Networking. Video Compression Standards COMP 9 Advanced Distributed Systems Multimedia Networking Video Compression Standards Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs.unc.edu September,

More information

1. INTRODUCTION. Index Terms Video Transcoding, Video Streaming, Frame skipping, Interpolation frame, Decoder, Encoder.

1. INTRODUCTION. Index Terms Video Transcoding, Video Streaming, Frame skipping, Interpolation frame, Decoder, Encoder. Video Streaming Based on Frame Skipping and Interpolation Techniques Fadlallah Ali Fadlallah Department of Computer Science Sudan University of Science and Technology Khartoum-SUDAN fadali@sustech.edu

More information

A HIGH THROUGHPUT CABAC ALGORITHM USING SYNTAX ELEMENT PARTITIONING. Vivienne Sze Anantha P. Chandrakasan 2009 ICIP Cairo, Egypt

A HIGH THROUGHPUT CABAC ALGORITHM USING SYNTAX ELEMENT PARTITIONING. Vivienne Sze Anantha P. Chandrakasan 2009 ICIP Cairo, Egypt A HIGH THROUGHPUT CABAC ALGORITHM USING SYNTAX ELEMENT PARTITIONING Vivienne Sze Anantha P. Chandrakasan 2009 ICIP Cairo, Egypt Motivation High demand for video on mobile devices Compressionto reduce storage

More information

Dual Frame Video Encoding with Feedback

Dual Frame Video Encoding with Feedback Video Encoding with Feedback Athanasios Leontaris and Pamela C. Cosman Department of Electrical and Computer Engineering University of California, San Diego, La Jolla, CA 92093-0407 Email: pcosman,aleontar

More information

HIGH Efficiency Video Coding (HEVC) version 1 was

HIGH Efficiency Video Coding (HEVC) version 1 was 1 An HEVC-based Screen Content Coding Scheme Bin Li and Jizheng Xu Abstract This document presents an efficient screen content coding scheme based on HEVC framework. The major techniques in the scheme

More information

Temporal Error Concealment Algorithm Using Adaptive Multi- Side Boundary Matching Principle

Temporal Error Concealment Algorithm Using Adaptive Multi- Side Boundary Matching Principle 184 IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 Temporal Error Concealment Algorithm Using Adaptive Multi- Side Boundary Matching Principle Seung-Soo

More information

Analysis of the Intra Predictions in H.265/HEVC

Analysis of the Intra Predictions in H.265/HEVC Applied Mathematical Sciences, vol. 8, 2014, no. 148, 7389-7408 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49750 Analysis of the Intra Predictions in H.265/HEVC Roman I. Chernyak

More information

The H.26L Video Coding Project

The H.26L Video Coding Project The H.26L Video Coding Project New ITU-T Q.6/SG16 (VCEG - Video Coding Experts Group) standardization activity for video compression August 1999: 1 st test model (TML-1) December 2001: 10 th test model

More information

Signal Processing: Image Communication

Signal Processing: Image Communication Signal Processing: Image Communication 29 (2014) 935 944 Contents lists available at ScienceDirect Signal Processing: Image Communication journal homepage: www.elsevier.com/locate/image Fast intra-encoding

More information

Authors: Glenn Van Wallendael, Sebastiaan Van Leuven, Jan De Cock, Peter Lambert, Joeri Barbarien, Adrian Munteanu, and Rik Van de Walle

Authors: Glenn Van Wallendael, Sebastiaan Van Leuven, Jan De Cock, Peter Lambert, Joeri Barbarien, Adrian Munteanu, and Rik Van de Walle biblio.ugent.be The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that

More information

A Color Gamut Mapping Scheme for Backward Compatible UHD Video Distribution

A Color Gamut Mapping Scheme for Backward Compatible UHD Video Distribution A Color Gamut Mapping Scheme for Backward Compatible UHD Video Distribution Maryam Azimi, Timothée-Florian Bronner, and Panos Nasiopoulos Electrical and Computer Engineering Department University of British

More information

RATE-REDUCTION TRANSCODING DESIGN FOR WIRELESS VIDEO STREAMING

RATE-REDUCTION TRANSCODING DESIGN FOR WIRELESS VIDEO STREAMING RATE-REDUCTION TRANSCODING DESIGN FOR WIRELESS VIDEO STREAMING Anthony Vetro y Jianfei Cai z and Chang Wen Chen Λ y MERL - Mitsubishi Electric Research Laboratories, 558 Central Ave., Murray Hill, NJ 07974

More information

Study of AVS China Part 7 for Mobile Applications. By Jay Mehta EE 5359 Multimedia Processing Spring 2010

Study of AVS China Part 7 for Mobile Applications. By Jay Mehta EE 5359 Multimedia Processing Spring 2010 Study of AVS China Part 7 for Mobile Applications By Jay Mehta EE 5359 Multimedia Processing Spring 2010 1 Contents Parts and profiles of AVS Standard Introduction to Audio Video Standard for Mobile Applications

More information

Error Resilient Video Coding Using Unequally Protected Key Pictures

Error Resilient Video Coding Using Unequally Protected Key Pictures Error Resilient Video Coding Using Unequally Protected Key Pictures Ye-Kui Wang 1, Miska M. Hannuksela 2, and Moncef Gabbouj 3 1 Nokia Mobile Software, Tampere, Finland 2 Nokia Research Center, Tampere,

More information

Wireless Multi-view Video Streaming with Subcarrier Allocation by Frame Significance

Wireless Multi-view Video Streaming with Subcarrier Allocation by Frame Significance Wireless Multi-view Video Streaming with Subcarrier Allocation by Frame Significance Takuya Fujihashi, Shiho Kodera, Shunsuke Saruwatari, Takashi Watanabe Graduate School of Information Science and Technology,

More information

Robust Transmission of H.264/AVC Video using 64-QAM and unequal error protection

Robust Transmission of H.264/AVC Video using 64-QAM and unequal error protection Robust Transmission of H.264/AVC Video using 64-QAM and unequal error protection Ahmed B. Abdurrhman 1, Michael E. Woodward 1 and Vasileios Theodorakopoulos 2 1 School of Informatics, Department of Computing,

More information

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur Module 8 VIDEO CODING STANDARDS Lesson 27 H.264 standard Lesson Objectives At the end of this lesson, the students should be able to: 1. State the broad objectives of the H.264 standard. 2. List the improved

More information

PACKET-SWITCHED networks have become ubiquitous

PACKET-SWITCHED networks have become ubiquitous IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 7, JULY 2004 885 Video Compression for Lossy Packet Networks With Mode Switching and a Dual-Frame Buffer Athanasios Leontaris, Student Member, IEEE,

More information

Fast Simultaneous Video Encoder for Adaptive Streaming

Fast Simultaneous Video Encoder for Adaptive Streaming Fast Simultaneous Video Encoder for Adaptive Streaming Johan De Praeter #1, Antonio Jesús Díaz-Honrubia 2, Niels Van Kets 1 Glenn Van Wallendael 1, Jan De Cock 1, Peter Lambert 1, Rik Van de Walle 1 1

More information

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 6, JUNE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 6, JUNE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO., JUNE 9 8 Error Resilient Coding and Error Concealment in Scalable Video Coding Yi Guo, Ying Chen, Member, IEEE, Ye-KuiWang,

More information

PERCEPTUAL QUALITY OF H.264/AVC DEBLOCKING FILTER

PERCEPTUAL QUALITY OF H.264/AVC DEBLOCKING FILTER PERCEPTUAL QUALITY OF H./AVC DEBLOCKING FILTER Y. Zhong, I. Richardson, A. Miller and Y. Zhao School of Enginnering, The Robert Gordon University, Schoolhill, Aberdeen, AB1 1FR, UK Phone: + 1, Fax: + 1,

More information

Robust Transmission of H.264/AVC Video Using 64-QAM and Unequal Error Protection

Robust Transmission of H.264/AVC Video Using 64-QAM and Unequal Error Protection Robust Transmission of H.264/AVC Video Using 64-QAM and Unequal Error Protection Ahmed B. Abdurrhman, Michael E. Woodward, and Vasileios Theodorakopoulos School of Informatics, Department of Computing,

More information

Motion Video Compression

Motion Video Compression 7 Motion Video Compression 7.1 Motion video Motion video contains massive amounts of redundant information. This is because each image has redundant information and also because there are very few changes

More information

II. SYSTEM MODEL In a single cell, an access point and multiple wireless terminals are located. We only consider the downlink

II. SYSTEM MODEL In a single cell, an access point and multiple wireless terminals are located. We only consider the downlink Subcarrier allocation for variable bit rate video streams in wireless OFDM systems James Gross, Jirka Klaue, Holger Karl, Adam Wolisz TU Berlin, Einsteinufer 25, 1587 Berlin, Germany {gross,jklaue,karl,wolisz}@ee.tu-berlin.de

More information

Fast Mode Decision Algorithm for Intra prediction in H.264/AVC Video Coding

Fast Mode Decision Algorithm for Intra prediction in H.264/AVC Video Coding 356 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 27 Fast Mode Decision Algorithm for Intra prediction in H.264/AVC Video Coding Abderrahmane Elyousfi 12, Ahmed

More information

COMPLEXITY REDUCTION FOR HEVC INTRAFRAME LUMA MODE DECISION USING IMAGE STATISTICS AND NEURAL NETWORKS.

COMPLEXITY REDUCTION FOR HEVC INTRAFRAME LUMA MODE DECISION USING IMAGE STATISTICS AND NEURAL NETWORKS. COMPLEXITY REDUCTION FOR HEVC INTRAFRAME LUMA MODE DECISION USING IMAGE STATISTICS AND NEURAL NETWORKS. DILIP PRASANNA KUMAR 1000786997 UNDER GUIDANCE OF DR. RAO UNIVERSITY OF TEXAS AT ARLINGTON. DEPT.

More information

FMO-based H.264 frame layer rate control for low bit rate video transmission

FMO-based H.264 frame layer rate control for low bit rate video transmission RESEARCH Open Access FMO-based H.264 frame layer rate control for low bit rate video transmission Rhandley D Cajote 1, Supavadee Aramvith 1* and Yoshikazu Miyanaga 2 Abstract The use of flexible macroblock

More information

Error Concealment for SNR Scalable Video Coding

Error Concealment for SNR Scalable Video Coding Error Concealment for SNR Scalable Video Coding M. M. Ghandi and M. Ghanbari University of Essex, Wivenhoe Park, Colchester, UK, CO4 3SQ. Emails: (mahdi,ghan)@essex.ac.uk Abstract This paper proposes an

More information

MULTI-STATE VIDEO CODING WITH SIDE INFORMATION. Sila Ekmekci Flierl, Thomas Sikora

MULTI-STATE VIDEO CODING WITH SIDE INFORMATION. Sila Ekmekci Flierl, Thomas Sikora MULTI-STATE VIDEO CODING WITH SIDE INFORMATION Sila Ekmekci Flierl, Thomas Sikora Technical University Berlin Institute for Telecommunications D-10587 Berlin / Germany ABSTRACT Multi-State Video Coding

More information

Dynamic bandwidth allocation scheme for multiple real-time VBR videos over ATM networks

Dynamic bandwidth allocation scheme for multiple real-time VBR videos over ATM networks Telecommunication Systems 15 (2000) 359 380 359 Dynamic bandwidth allocation scheme for multiple real-time VBR videos over ATM networks Chae Y. Lee a,heem.eun a and Seok J. Koh b a Department of Industrial

More information

Analysis of Packet Loss for Compressed Video: Does Burst-Length Matter?

Analysis of Packet Loss for Compressed Video: Does Burst-Length Matter? Analysis of Packet Loss for Compressed Video: Does Burst-Length Matter? Yi J. Liang 1, John G. Apostolopoulos, Bernd Girod 1 Mobile and Media Systems Laboratory HP Laboratories Palo Alto HPL-22-331 November

More information

Highly Efficient Video Codec for Entertainment-Quality

Highly Efficient Video Codec for Entertainment-Quality Highly Efficient Video Codec for Entertainment-Quality Seyoon Jeong, Sung-Chang Lim, Hahyun Lee, Jongho Kim, Jin Soo Choi, and Haechul Choi We present a novel video codec for supporting entertainment-quality

More information

SCENE CHANGE ADAPTATION FOR SCALABLE VIDEO CODING

SCENE CHANGE ADAPTATION FOR SCALABLE VIDEO CODING 17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009 SCENE CHANGE ADAPTATION FOR SCALABLE VIDEO CODING Tea Anselmo, Daniele Alfonso Advanced System Technology

More information

A High Performance VLSI Architecture with Half Pel and Quarter Pel Interpolation for A Single Frame

A High Performance VLSI Architecture with Half Pel and Quarter Pel Interpolation for A Single Frame I J C T A, 9(34) 2016, pp. 673-680 International Science Press A High Performance VLSI Architecture with Half Pel and Quarter Pel Interpolation for A Single Frame K. Priyadarshini 1 and D. Jackuline Moni

More information

UHD 4K Transmissions on the EBU Network

UHD 4K Transmissions on the EBU Network EUROVISION MEDIA SERVICES UHD 4K Transmissions on the EBU Network Technical and Operational Notice EBU/Eurovision Eurovision Media Services MBK, CFI Geneva, Switzerland March 2018 CONTENTS INTRODUCTION

More information

Multiview Video Coding

Multiview Video Coding Multiview Video Coding Jens-Rainer Ohm RWTH Aachen University Chair and Institute of Communications Engineering ohm@ient.rwth-aachen.de http://www.ient.rwth-aachen.de RWTH Aachen University Jens-Rainer

More information

Comparative Study of JPEG2000 and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences

Comparative Study of JPEG2000 and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences Comparative Study of and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences Pankaj Topiwala 1 FastVDO, LLC, Columbia, MD 210 ABSTRACT This paper reports the rate-distortion performance comparison

More information

Efficient Bandwidth Resource Allocation for Low-Delay Multiuser MPEG-4 Video Transmission

Efficient Bandwidth Resource Allocation for Low-Delay Multiuser MPEG-4 Video Transmission Efficient Bandwidth Resource Allocation for Low-Delay Multiuser MPEG-4 Video Transmission Guan-Ming Su and Min Wu Department of Electrical and Computer Engineering, University of Maryland, College Park,

More information

CHROMA CODING IN DISTRIBUTED VIDEO CODING

CHROMA CODING IN DISTRIBUTED VIDEO CODING International Journal of Computer Science and Communication Vol. 3, No. 1, January-June 2012, pp. 67-72 CHROMA CODING IN DISTRIBUTED VIDEO CODING Vijay Kumar Kodavalla 1 and P. G. Krishna Mohan 2 1 Semiconductor

More information

ROBUST ADAPTIVE INTRA REFRESH FOR MULTIVIEW VIDEO

ROBUST ADAPTIVE INTRA REFRESH FOR MULTIVIEW VIDEO ROBUST ADAPTIVE INTRA REFRESH FOR MULTIVIEW VIDEO Sagir Lawan1 and Abdul H. Sadka2 1and 2 Department of Electronic and Computer Engineering, Brunel University, London, UK ABSTRACT Transmission error propagation

More information

Embedding Multilevel Image Encryption in the LAR Codec

Embedding Multilevel Image Encryption in the LAR Codec Embedding Multilevel Image Encryption in the LAR Codec Jean Motsch, Olivier Déforges, Marie Babel To cite this version: Jean Motsch, Olivier Déforges, Marie Babel. Embedding Multilevel Image Encryption

More information

Memory interface design for AVS HD video encoder with Level C+ coding order

Memory interface design for AVS HD video encoder with Level C+ coding order LETTER IEICE Electronics Express, Vol.14, No.12, 1 11 Memory interface design for AVS HD video encoder with Level C+ coding order Xiaofeng Huang 1a), Kaijin Wei 2, Guoqing Xiang 2, Huizhu Jia 2, and Don

More information

Systematic Lossy Forward Error Protection for Error-Resilient Digital Video Broadcasting

Systematic Lossy Forward Error Protection for Error-Resilient Digital Video Broadcasting Systematic Lossy Forward Error Protection for Error-Resilient Digital Broadcasting Shantanu Rane, Anne Aaron and Bernd Girod Information Systems Laboratory, Stanford University, Stanford, CA 94305 {srane,amaaron,bgirod}@stanford.edu

More information

UC San Diego UC San Diego Previously Published Works

UC San Diego UC San Diego Previously Published Works UC San Diego UC San Diego Previously Published Works Title Classification of MPEG-2 Transport Stream Packet Loss Visibility Permalink https://escholarship.org/uc/item/9wk791h Authors Shin, J Cosman, P

More information

A robust video encoding scheme to enhance error concealment of intra frames

A robust video encoding scheme to enhance error concealment of intra frames Loughborough University Institutional Repository A robust video encoding scheme to enhance error concealment of intra frames This item was submitted to Loughborough University's Institutional Repository

More information