FOGGY DOCSIS AN ENABLENCE ARTICLE WRITTEN BY JIM FARMER, CTO APRIL,

Size: px
Start display at page:

Download "FOGGY DOCSIS AN ENABLENCE ARTICLE WRITTEN BY JIM FARMER, CTO APRIL,"

Transcription

1 FOGGY DOCSIS AN ENABLENCE ARTICLE WRITTEN BY JIM FARMER, CTO APRIL,

2 The whole cable industry is in a fog. It used to be just me in the fog, but since I saw the light and went over to FTTH, now all of cable TV is in a fog. And not just any fog: an R- fog! RFoG stands for Radio Frequency over Glass. A couple of friends of mine have claimed they originated the term, and to preserve decades-old friendships, I ll not name them. There have been moves to change the name, but so far no one has proposed anything that has caught on. Besides, you just about can t find an acronym that you can have more fun with than that one. What RFoG is, is a different form of FTTH that looks more like cable TV. It uses RF transmission in both directions, and doesn t use any baseband digital transmission, as do both EPON and GPON. Data goes by cable modem (the infamous DOCSIS standards). Video is normal broadcast, which works really well, you know. Voice, as usual in cable TV, travels over the DOCSIS infrastructure. Upstream transmissions back to the headend (CO to you Bellheads) travel on an analog RF-modulated laser just like that on which the downstream RF is transmitted. Since it is RF (modulated onto light) upstream, you can send any signal upstream, including RF return from set tops. The catch is that you have to detect RF coming out of the home, and you have to turn on the laser when you detect RF, then turn it off when the RF stops. You have to do this in order to avoid interference that would be generated if you left all the upstream lasers on. You also have work to do in order to keep RF and optical levels within their operating ranges, going in both directions on the same fiber. The RFoG standard is being worked on within the SCTE, the Society of Cable Telecommunications Engineers. While there are companies out there claiming conformance with RFoG, in fact there is no standard yet with which to be compliant. And the folks claiming compliance are not interchangeable, so the claims of compliancy really don t ring too true. There are also folks building GPON or EPON systems with bolt-on RF upstream transmitters at a fourth wavelength, who claim they are RFoG compliant. But of course, they really are not compliant, since the spec doesn t exist yet. So why RFoG rather than GPON or EPON? Well, that depends on who you ask. The basic idea is to preserve cable TV s investment in DOCSIS infrastructure, and to do something that looks just like cable TV. There are those who feel it is easier to manage RFoG, since you do it just like you manage DOCSIS, but there are others of us who feel it is so easy to simultaneously manage DOCSIS and GPON or EPON, that why bother with the extra foggy hassle or the lower data speeds? The cable industry sees RFoG as an easier way to meet the demands of developers who demand fiber-to-the-home. What we don t really know yet though, is whether or not the advantages of RFoG will be enough to carry the day in these developments. True, with RFoG you get some of the benefits of FTTH you get lower maintenance, no radiation or ingress, and probably a lot cleaner (read, higher-speed) upstream transmission. But you are still DOCSIS-bound, and that means that you don t really get all the advantages of FTTH. This gets us to cycling back to the subject of the last issue, DOCSIS 3.0 vs. FTTH. Again we d like to thank Dave Russell and Matt Schmitt for their very professional comparison of the technologies. 2 P age

3 With DOCSIS, either over normal cable TV HFC architecture or over RFoG, you share RF frequencies between data and video. The laws of physics say that you can only get so much information into so much RF bandwidth. Now admittedly, when I watch certain TV shows or when I visit certain web sites, I question that there is any information (i.e., intelligence) transfer at all taking place. But in technical terms, bits are being transferred even if I think they contain no intelligence. But I digress. It works out that with current standards and technology, you can get into one traditional 6 MHz-wide TV channel, either about 10 standard definition (or two high definition) video programs, or 38 Mb/s of data. You can t put both in the same 6 MHz TV channel, even if neither contains any real intelligence (but I m digressing again). An operator has only a certain number of such TV channels available (158 RF channels for up-to-date FTTH and RFoG, 116 for most HFC networks due to when they were built). Doesn t really matter at this point in the conversation whether we re talking about workhorse DOCSIS 2.0 or channel-bonded DOCSIS 3.0. We ll get to that issue shortly. So for every 38 Mb/s of data an HFC or RFoG operator wants to send to a group of subscribers, he loses the ability to program two high definition or 10 standard definition programs. He has to figure out the optimum revenue and/or competitive split between data (including voice) and TV. In the upstream direction, things are grimmer for the DOCSIS guy, though helped with RFoG. The frequency spectrum available for DOCSIS upstream transmission is limited by what frequencies are available as a practical matter, and by interference. The frequencies used for upstream transmission are partially inhabited by high powered shortwave transmitters, atmospheric noise, and man-made noise from fluorescent lights, light dimmers, electric motors, and who knows what else. As you go toward the higher end of the upstream spectrum things get better, but you see that the operator is getting squeezed. What it means is that he has to be careful with how he uses the upstream spectrum. DOCSIS specifies a number of modulation formats in the upstream direction, with the tradeoff being more bang for the buck (that is, more bits per second per Hertz of upstream RF bandwidth) vs. more chance for the data to be corrupted by interference. The HFC guys have gotten really good at figuring out just what they can and can t do in the upstream direction, and they have gotten really good at optimizing plant to increase bang for the buck. But the laws of physics still limit what can be done in the upstream. RFoG is an advantage in the upstream direction, in that for technical reasons we can t go into here (Dave would kill me for making the article too long), the interference in the upstream spectrum is much less than it is for HFC. So someone deploying RFoG may actually get within about an order of magnitude of the upstream bandwidth available with EPON or GPON. Here s a good place to get into DOCSIS 3.0, which some misinformed folks think may be an FTTH killer (pardon, my prejudice is showing). Let s go back to talking downstream for a minute. DOCSIS 2.0 and 3.0 all specify exactly the same modulation formats, that is, the same bang for the buck, er MHz. So if you took several TV channels worth of DOCSIS 2.0, you would have the same total bandwidth you have with DOCSIS 3.0. What you would not have with 2.0 but would have with 3.0, is the ability to deliver that bandwidth to one subscriber. 3 P age

4 With 2.0 you would not be able to deliver more than about 38 Mb/s to one subscriber, because that s all the bandwidth you get in an RF channel. With 3.0, you can bond several channels (four seems to be the sweet spot folks are talking about), to get more bandwidth. Bonding simply means I can split one data stream over several RF channels and put it back together again at the cable modem. This is the same thing as pair bonding in DSL, but in the frequency domain rather than in the pair domain. Upstream transmission in DOCSIS can do the same thing by the spec, and will do the same in practice when the industry gets to producing bonded upstream gear. The claimed downstream speed from bonding four channels is 160 MHz, and the claimed upstream speed is 120 Mb/s. Both numbers are playing a bit loose with rounding, but 3.0 is faster than 2.0 in both directions, at the expense of using more spectrum. Four downstream channels bonded will cost a total of 40 standard or 8 high definition programs, compared with 10 standard or two high definition programs for a single DOCSIS channel. But you get almost four times the data bandwidth. And RFoG will give you more downstream RF bandwidth than most HFC networks have, and a better shot at using the available upstream bandwidth. In both directions, 3.0 would allow DOCSIS to get within an order of magnitude or so of GPON or EPON. Of course, with either GPON or EPON, you don t loose any TV broadcast channels for your data, since data is on different wavelengths. So how many subscribers share data in DOCSIS? It really does depend. With RFoG, you have the same exact physical architecture you do with other FTTH (or so we presume, since the spec is not finished yet, and thus is subject to change). So one idea would be to share the data among 32 subscribers, just as we usually do in GPON or EPON. But that requires a rather expensive port on a CMTS, the equivalent of an OLT in GPON and EPON. It is technically possible to combine several PONs to one CMTS port (Also called a DOCSIS channel). In fact, it is not unusual to put a few hundred customers on one DOCSIS port. This drives the average downstream speed down to tens of kilobits per second. But it works because not every subscriber uses the bandwidth all the time. Maybe at a peak hour one third of subscribers are on line. Then many of them are downloading , which doesn t take a lot of bandwidth (unless my wife has sent pictures of the grandkids again), and besides, if a packet gets delayed a few milliseconds for something else, who cares? Other folks are downloading web pages, which takes a bit of bandwidth for a few seconds then takes nothing for a long time. OK, some clown is watching a video, and that takes some continuous bandwidth, but today the video is optimized for small windows on a computer screen, not a big-screen TV (and indeed, if you put the video on a big screen you would not like the result). Those little pictures don t take all that much bandwidth. In FTTH (differentiating from RFoG for a moment), we have much more bandwidth, but tend to not get quite as much efficiency out of our bandwidth as does a DOCSIS channel with several hundred subscribers. This is because 32 subscribers may not be a big enough group to make the statistics we described above work as well as they might. Let me illustrate what I m talking about with a disgustingly oversimplified model. Don t take figure 1 as being representative of real data usage. 4 P age

5 Figure 1. Percent channel utilization vs. time for different numbers of subscribers Rather take it simply as an illustration of how statistics work in bandwidth sharing. What this figure shows is two data channels, one having 5 subscribers sharing the bandwidth, the other having 25 subscribers sharing the bandwidth. In each case, if all subscribers are using bandwidth at the same instant, 100% of the available bandwidth will be used, but no more. For the 5-subscriber study, the percent of bandwidth utilized in any interval goes from 0 t 100 percent. There was a time when all of the bandwidth was being used, and there was a time when none of it was being used. Of course, there were also all of the in-between situations. For 25 users, the utilization also had the ability to go between 0 and 100%, but it really stayed between about 35 and 65% usage. Why? Because statistics were working better: the probability that no one wanted data, and the probability that everyone wanted data at the same time was a lot lower than in the 5-user case. Sure, it could have happened, but it didn t. If you were to expand this to compare the peakiness of a 32-user PON vs. the peakiness of, say, a 200-user DOCSIS channel, you would see that the 200-user DOCSIS channel was less peaky because of the larger number of people using the channel. Of course, real models are much, much more complex than this oversimplified example, but it serves to illustrate the advantage of large numbers of subscribers. Here s another tidbit that is non-intuitive at first, but makes sense when you think about it: as you give people more speed, the utilization of your network does not go up proportionally. That is, if you suddenly give each subscriber on a PON twice the bandwidth, your data load on the network will not go up. That s because each subscriber transfers the same number of bits he would have had he had the lower speed. Over time, of course, applications will be written to take advantage of higher speed, but until they get deployed, more bandwidth per subscriber results in the same utilization of the network. 5 P age

6 In FTTH we have developed the bad habit of not taking statistics into account in thinking about PON data capacity. On the other hand, there are unknowns in how data will be used in the future, as we put on more IPTV and as we deal with more over-the-top video plus new applications I m not smart enough to think of. We can get a pretty good idea of what IPTV will do to bandwidth it is and will be the data hog, though not quite to the extent some people say but what else is going to happen? The lesson is to monitor capacity utilization, and make sure you have enough, without spending money on unneeded capacity. So now hopefully you are not in too much of a fog about RFoG, and maybe you have a bit more perspective on the difference between DOCSIS and EPON/GPON. And maybe I kind of justified the time I spent developing the over-simplified model to illustrate the advantage of statistics in data loading. For more information visit Enablence Technologies Inc. The information presented is subject to change without notice. Enablence Technologies Inc. assumes no responsibility for changes or inaccuracies contained herein. Copyright 2010 Enablence Technologies Inc. All rights reserved. 6 P age

RF RETURN OPTIONS AN ENABLENCE ARTICLE WRITTEN BY JIM FARMER, CTO. September,

RF RETURN OPTIONS AN ENABLENCE ARTICLE WRITTEN BY JIM FARMER, CTO. September, RF RETURN OPTIONS AN ENABLENCE ARTICLE WRITTEN BY JIM FARMER, CTO September, 2010 www.enablence.com INTRODUCTION When Fiber-to-the-Home (FTTH) networks are used with an RF overlay, as is very common, an

More information

Broadband Solutions for Chinese Taipei CATV Operator

Broadband Solutions for Chinese Taipei CATV Operator 2010/TEL41/LSG/IR/006 Agenda Item: 7 Broadband Solutions for Chinese Taipei CATV Operator Purpose: Information Submitted by: Chinese Taipei Industry Roundtable: National Broadband Networks and Fibre to

More information

PROMAX NEWSLETTER Nº 25. Ready to unveil it?

PROMAX NEWSLETTER Nº 25. Ready to unveil it? PROMAX NEWSLETTER Nº 25 Ready to unveil it? HD RANGER Evolution? No. Revolution! PROMAX-37: DOCSIS / EuroDOCSIS 3.0 Analyser DVB-C2 now available for TV EXPLORER HD+ C-band spectrum analyser option for

More information

Challenges of Launching DOCSIS 3.0 services. (Choice s experience) Installation and configuration

Challenges of Launching DOCSIS 3.0 services. (Choice s experience) Installation and configuration (Choice s experience) Installation and configuration (cont.) (Choice s experience) DOCSIS 3.0 Components M-CMTS deployment DTI Server Edge QAM Modular CMTS I-CMTS Integrated CMTS Integrated DOCSIS 3.0

More information

DOCSIS 3.1 Development and its Influence on Business

DOCSIS 3.1 Development and its Influence on Business DOCSIS 3.1 Development and its Influence on Business 12 th Broadband Technology Conference Sopot, May 2013 Volker Leisse Telecommunications Consultant Who is Cable Europe Labs? Cable Europe Labs by the

More information

Hands-On Real Time HD and 3D IPTV Encoding and Distribution over RF and Optical Fiber

Hands-On Real Time HD and 3D IPTV Encoding and Distribution over RF and Optical Fiber Hands-On Encoding and Distribution over RF and Optical Fiber Course Description This course provides systems engineers and integrators with a technical understanding of current state of the art technology

More information

Symmetrical Services Over HFC Networks. White Paper

Symmetrical Services Over HFC Networks. White Paper Symmetrical Services Over HFC Networks White Paper January 2003 Introduction In today s tough business climate, MSOs are seeking highly cost-effective solutions that allow them to squeeze every possible

More information

Differential Detection Method of Upstream Burst Signal in Optic based Cable TV Network

Differential Detection Method of Upstream Burst Signal in Optic based Cable TV Network , pp.38-42 http://dx.doi.org/10.14257/astl.2017.146.08 Differential Detection Method of Upstream Burst Signal in Optic based Cable TV Network Jin Hyuk Song, Dong-Joon Choi and Joon-Young Jung Electronics

More information

Impacts on Cable HFC Networks

Impacts on Cable HFC Networks Copyright 2014, Technology Futures, Inc. 1 Impacts on Cable HFC Networks Robert W Harris Senior Consultant, Technology Futures, Inc. rharris@tfi.com TFI Communications Technology Asset Valuation Conference

More information

Proposed NG-EPON wavelength planning decision flow. Ed Harstead, member Fixed Networks Division CTO, Alcatel-Lucent January 2014

Proposed NG-EPON wavelength planning decision flow. Ed Harstead, member Fixed Networks Division CTO, Alcatel-Lucent January 2014 Proposed NG-EPON wavelength planning decision flow Ed Harstead, member Fixed Networks Division CTO, Alcatel-Lucent January 2014 1 Purpose This presentation does not advocate any particular wavelength plan

More information

Opti Max Nodes Digital Return System

Opti Max Nodes Digital Return System arris.com Opti Max Nodes Digital Return System 2x85 MHz Legacy ARRIS Protocol Node Transmitter and CHP Receiver FEATURES Digital Return technology for ease of set up and simplified plug and play operation

More information

FCC Required Technical Standards for Analog & Digital Signals

FCC Required Technical Standards for Analog & Digital Signals FCC Required Technical Standards for Analog & Digital Signals Robert Schaeffer, President Technology Planners, LLC robert.schaeffer@techplanners.com SCTE IEEE Senior Consultant to NCTC Cable TV Pioneers

More information

Prisma D-PON System 1550 nm Downstream Transmitter and EDFA

Prisma D-PON System 1550 nm Downstream Transmitter and EDFA Prisma D-PON System 1550 nm Downstream Transmitter and EDFA The Prisma D-PON System is a fiber-to-the-home (FTTH) solution specifically designed for RF and DOCSIS-based service providers. This system provides

More information

SERIES J: CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA SIGNALS Digital transmission of television signals

SERIES J: CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA SIGNALS Digital transmission of television signals International Telecommunication Union ITU-T J.381 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (09/2012) SERIES J: CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA

More information

Broadband System - K

Broadband System - K Broadband System - K Satellites are spaced every 2nd degrees above earth "C" Band Toward satellite 6.0 GHz Toward earth 4.0 GHz "L" Band Toward satellite 14.0 GHz Toward earth 12.0 GHz TV TRANSMITTER Headend

More information

WDM Video Overlays on EFM Access Networks

WDM Video Overlays on EFM Access Networks WDM Video Overlays on EFM Access Networks David Piehler Harmonic, Inc. Broadband Access Networks IEEE 802.3ah January 2002 meeting Raleigh, North Carolina david.piehler@harmonicinc.com 1 Main points of

More information

New DSP Family Traffic Control Plus Feature

New DSP Family Traffic Control Plus Feature Introduction Application Note The purpose of this document is to provide instruction on the initial configuration and proper use of the Traffic Control Plus feature, included on the 1G DSP, and optional

More information

Crossing the. Diplex Chasm. to 85 MHz. Author: Todd Gingrass Cable & Media Solutions

Crossing the. Diplex Chasm. to 85 MHz. Author: Todd Gingrass Cable & Media Solutions Crossing the Diplex Chasm to 85 MHz Author: Todd Gingrass Cable & Media Solutions The DOCSIS 3.1 specifications have re-ignited the conversation about moving to 85 MHz and many operators are now starting

More information

TROUBLESHOOTING DIGITALLY MODULATED SIGNALS, PART 2 By RON HRANAC

TROUBLESHOOTING DIGITALLY MODULATED SIGNALS, PART 2 By RON HRANAC Originally appeared in the July 2006 issue of Communications Technology. TROUBLESHOOTING DIGITALLY MODULATED SIGNALS, PART 2 By RON HRANAC Digitally modulated signals are a fact of life in the modern cable

More information

newsletter 29 INTRODUCING THE WORLD S FIRST HEVC H.265 METER & TV ANALYSER

newsletter 29 INTRODUCING THE WORLD S FIRST HEVC H.265 METER & TV ANALYSER newsletter 29 INTRODUCING THE WORLD S FIRST HEVC H.265 METER & TV ANALYSER Table of contents HD RANGER 3: The world s first HEVC H.265 meter & TV analyser........... 1 HEVC decoding.................. 2

More information

IG Discovery for FDX DOCSIS

IG Discovery for FDX DOCSIS IG Discovery for FDX DOCSIS A Technical paper prepared for SCTE/ISBE by Tong Liu Principal Engineer, Office of the CTO Cisco Systems Inc. 300 Beaver Brook Road, Boxborough, Massachusetts 01719, United

More information

MODULO - HFC YOUR SMART HFC HEADEND TOOLKIT UNIVERSAL, SMART AND EASY - DON T MISS IT THE ART OF ENGINEERING

MODULO - HFC YOUR SMART HFC HEADEND TOOLKIT UNIVERSAL, SMART AND EASY - DON T MISS IT THE ART OF ENGINEERING YOUR SMART HFC HEADEND TOOLKIT UNIVERSAL, SMART AND EASY - DON T MISS IT UNIVERSAL, SMART, AND EASY Cable Operators are faced with the critical challenge of significantly increasing the efficiency and capacity

More information

THE FUTURE OF NARROWCAST INSERTION. White Paper

THE FUTURE OF NARROWCAST INSERTION. White Paper THE FUTURE OF NARROWCAST INSERTION White Paper May/2013 The future of narrowcast insertion Next generation, CCAP compliant RF combining This paper looks at the advantages of using the converged cable access

More information

SYSTEM DESIGN - NEXT GENERATION HFC

SYSTEM DESIGN - NEXT GENERATION HFC SYSTEM DESIGN - NEXT GENERATION HFC July 26, 2016 Steve Harris, Senior Director Advanced Technologies & Instruction, L&D sharris@scte.org 2016 Society of Cable Telecommunications Engineers, Inc. All rights

More information

Headend Optics Platform (CH3000)

Headend Optics Platform (CH3000) arris.com Headend Optics Platform (CH3000) High Density RFPON Headend Solution FEATURES High density RFPON tailored solution 1550 nm broadcast support 1610 nm RFoG return Supports GEPON, GPON, 10GEPON,

More information

TCF: Hybrid fibre coax systems Online course specification

TCF: Hybrid fibre coax systems Online course specification TCF: Hybrid fibre coax systems Online course specification Course aim: By the end of this course trainees will be able to describe the operation, components and capabilities of hybrid fibre coax cable

More information

PROMAX NEWSLETTER Nº 22

PROMAX NEWSLETTER Nº 22 PROMAX NEWSLETTER Nº 22 TV EXPLORER HD series: H.264 / MPEG-4 AVC picture CV-100: Optical LNB adapter for TV EXPLORER MO-370: ISDB-T/T B modulator DIGITAL To TV: for Broadcast and TV Distribution PROMAX-27:

More information

High Density Optical Platform for FTTx and HFC

High Density Optical Platform for FTTx and HFC High Density Optical Platform for FTTx and HFC Optical Platform for FTTx and HFC The WISI optical platform Optopus is a highly flexible and high density platform for all kinds of analog optical networks.

More information

DOCSIS 3.1 roll Out First Lessons Learned DOCSIS 3.1 roll Out First Lessons Learned

DOCSIS 3.1 roll Out First Lessons Learned DOCSIS 3.1 roll Out First Lessons Learned DOCSIS 3.1 roll Out First Lessons Learned DOCSIS 3.1 roll Out First Lessons Learned Pay utmost attention to noise, and how to eliminate it Avoid cold-flow phenomena Terminate DOCSIS service in the first

More information

WHITE PAPER. Comprehensive Node Analysis Assures Big Upstream Gains For DOCSIS 3.0 Channel Bonding

WHITE PAPER. Comprehensive Node Analysis Assures Big Upstream Gains For DOCSIS 3.0 Channel Bonding WHITE PAPER Comprehensive Node Analysis Assures Big Upstream Gains For DOCSIS 3.0 Channel Bonding Comprehensive Node Analysis Assures Big Upstream Gains For DOCSIS 3.0 Channel Bonding Overview As MSOs

More information

Prisma D-PON System ONT and Upstream Receiver

Prisma D-PON System ONT and Upstream Receiver Prisma D-PON System ONT and Upstream Receiver The Cisco Prisma D-PON System is a fiber-to-the-home (FTTH) solution specifically designed for RF and DOCSIS based service providers. This system provides

More information

Cost Effective High Split Ratios for EPON. Hal Roberts, Mike Rude, Jeff Solum July, 2001

Cost Effective High Split Ratios for EPON. Hal Roberts, Mike Rude, Jeff Solum July, 2001 Cost Effective High Split Ratios for EPON Hal Roberts, Mike Rude, Jeff Solum July, 2001 Proposal for EPON 1. Define two EPON optical budgets: 16 way split over 10km (current baseline) 128 way split over

More information

ENGINEERING COMMITTEE

ENGINEERING COMMITTEE ENGINEERING COMMITTEE Energy Management Subcommittee SCTE STANDARD SCTE 211 2015 Energy Metrics for Cable Operator Access Networks Title Table of Contents Page Number NOTICE 3 1. Scope 4 2. Normative References

More information

SWITCHED INFINITY: SUPPORTING AN INFINITE HD LINEUP WITH SDV

SWITCHED INFINITY: SUPPORTING AN INFINITE HD LINEUP WITH SDV SWITCHED INFINITY: SUPPORTING AN INFINITE HD LINEUP WITH SDV First Presented at the SCTE Cable-Tec Expo 2010 John Civiletto, Executive Director of Platform Architecture. Cox Communications Ludovic Milin,

More information

1/31/2009. Technical highlights session PRODUCTS & SERVICES Summary. Sam Tagliavore PBN-FTTX

1/31/2009. Technical highlights session PRODUCTS & SERVICES Summary. Sam Tagliavore PBN-FTTX Technical highlights session PRODUCTS & SERVICES Summary Sam Tagliavore www.pbnamericas.com 1-877-PBN-FTTX 1 Fiber to the: Home Apartment Business Neighborhood No Broadband Bottlenecks One Platform One

More information

MX/HD-SDI-3G. Transmit HD-SDI-3G signals over Fiber

MX/HD-SDI-3G. Transmit HD-SDI-3G signals over Fiber MX/HD-SDI-3G Transmit HD-SDI-3G signals over Fiber Key Features Transmit ASI or SDI signal over one single-mode Fiber Support data rate from 19.4Mb/s to 3Gb/s SMPTE 424M, SMPTE 292M, SMPTE 344M and SMPTE

More information

The Next Wave Building Tomorrow s Network Today. Roger Vaughn Solutions Engineer OFS

The Next Wave Building Tomorrow s Network Today. Roger Vaughn Solutions Engineer OFS The Next Wave Building Tomorrow s Network Today Roger Vaughn Solutions Engineer OFS rvaughn@ofsoptics.com Remember when 2 In the Beginning Long Haul Routes Established 3 Metro Buildout 4 FTTx Access Networks

More information

CATV Leakage Detection Flyovers with Pinpointing Capability

CATV Leakage Detection Flyovers with Pinpointing Capability CATV Leakage Detection Flyovers with Pinpointing Capability Cumulative Leakage Index (CLI) FCC and IC Compliancy Leakage Detection from Broadcast Analog and Digital Channels without Head End Injection

More information

Deploying IP video over DOCSIS

Deploying IP video over DOCSIS Deploying IP video over DOCSIS John Horrobin, Marketing Manager Cable Access Business Unit Agenda Use Cases Delivering over DOCSIS 3.0 Networks Admission Control and QoS Optimizing for Adaptive Bit Rate

More information

Review of the Comcast. Fort Collins Cable System. Technical Characteristics

Review of the Comcast. Fort Collins Cable System. Technical Characteristics Review of the Comcast Fort Collins Cable System Technical Characteristics Prepared by: January 30, 2004 Dick Nielsen Senior Engineer CBG Communications, Inc. Introduction and Background CBG Communications,

More information

REGIONAL NETWORKS FOR BROADBAND CABLE TELEVISION OPERATIONS

REGIONAL NETWORKS FOR BROADBAND CABLE TELEVISION OPERATIONS REGIONAL NETWORKS FOR BROADBAND CABLE TELEVISION OPERATIONS by Donald Raskin and Curtiss Smith ABSTRACT There is a clear trend toward regional aggregation of local cable television operations. Simultaneously,

More information

Deploying IP video over DOCSIS

Deploying IP video over DOCSIS Deploying IP video over DOCSIS Juan Carlos Sugajara Consulting Systems Engineer Sergio Sicard Consulting Systems Engineer Agenda Use Cases Delivering over DOCSIS 3.0 Networks Admission Control and QoS

More information

High Density Optical Platform

High Density Optical Platform with OBI-FREE RFoG Solution High Density Optical Platform FROM HYBRID FIBER COAX TO FTTx AND DIGITAL FIBER COAX NETWORKS OPTOPUS Engineered to Perform Solutions with OPTOPUS HFC From the Headend to the

More information

NETWORK MIGRATION STRATEGIES FOR THE ERA OF DAA, DOCSIS 3.1, AND NEW KID ON THE BLOCK FULL DUPLEX DOCSIS AYHAM AL-BANNA TOM CLOONAN JEFF HOWE

NETWORK MIGRATION STRATEGIES FOR THE ERA OF DAA, DOCSIS 3.1, AND NEW KID ON THE BLOCK FULL DUPLEX DOCSIS AYHAM AL-BANNA TOM CLOONAN JEFF HOWE NETWORK MIGRATION STRATEGIES FOR THE ERA OF DAA, DOCSIS 3.1, AND NEW KID ON THE BLOCK FULL DUPLEX DOCSIS AYHAM AL-BANNA TOM CLOONAN JEFF HOWE TABLE OF CONTENTS INTRODUCTION... 3 DRIVERS BEHIND GIGABIT

More information

DOCSIS SET-TOP GATEWAY (DSG): NEXT GENERATION DIGITAL VIDEO OUT-OF-BAND TRANSPORT

DOCSIS SET-TOP GATEWAY (DSG): NEXT GENERATION DIGITAL VIDEO OUT-OF-BAND TRANSPORT DOCSIS SET-TOP GATEWAY (DSG): NEXT GENERATION DIGITAL VIDEO OUT-OF-BAND TRANSPORT Sanjay Dhar Cisco Systems, Inc Abstract The cable industry has found a perfect weapon to create a sustainable competitive

More information

DOCSIS 3.1 Full channel loading Maximizing data throughput

DOCSIS 3.1 Full channel loading Maximizing data throughput DOCSIS 3.1 Full channel loading Maximizing data throughput Test and measurement High-end solutions Turn your signals into success. Introduction With over 80 years of experience in the field of RF test

More information

ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE

ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 132 2012 Test Method For Reverse Path (Upstream) Bit Error Rate NOTICE The Society of Cable Telecommunications

More information

The Untapped Potential of Hybrid Fibre Coaxial Networks

The Untapped Potential of Hybrid Fibre Coaxial Networks Australian Journal of Telecommunications and the Digital Economy The Untapped Potential of Hybrid Fibre Coaxial Networks John Goddard Managing Director, C-COR Broadband Summary: Australia has a number

More information

PROMAX NEWSLETTER Nº 18

PROMAX NEWSLETTER Nº 18 PROMAX NEWSLETTER Nº 18 TV EXPLORER HD: H.264 / MPEG-4 AVC picture PROMAX-27: Cable TV analyser with IPTV & VoIP QoS TV HUNTER: Aligning antennas, quickly and easily PROLITE-75: FTTx Analyser for deployment

More information

International Trends in Broadband Service. ICTC International Forum Hangzhou, China October 20, 2016

International Trends in Broadband Service. ICTC International Forum Hangzhou, China October 20, 2016 International Trends in Broadband Service ICTC International Forum Hangzhou, China October 20, 2016 Cable Television Laboratories, Inc. 2016. All Rights Reserved. 1 Topics Broadband Profile in the U.S.

More information

OmniStar GX2 Headend Optics Platform

OmniStar GX2 Headend Optics Platform arris.com OmniStar GX2 Headend Optics Platform GX2 RX200BX4 Quad Return Path Receiver FEATURES Very high module density allowing up to 16 quad receiver modules in a housing to provide 64 independent optical

More information

White Paper. Video-over-IP: Network Performance Analysis

White Paper. Video-over-IP: Network Performance Analysis White Paper Video-over-IP: Network Performance Analysis Video-over-IP Overview Video-over-IP delivers television content, over a managed IP network, to end user customers for personal, education, and business

More information

PREDICTIONS ON THE EVOLUTION OF ACCESS NETWORKS TO THE YEAR 2030 & BEYOND

PREDICTIONS ON THE EVOLUTION OF ACCESS NETWORKS TO THE YEAR 2030 & BEYOND PREDICTIONS ON THE EVOLUTION OF ACCESS NETWORKS TO THE YEAR 2030 & BEYOND Tom Cloonan (CTO-Network Solutions), Mike Emmendorfer (Sr. Director), John Ulm (Engineering Fellow), Ayham Al-Banna (Distinguished

More information

Illinois Telephone Users Group. Peoria, IL June 6, 2007

Illinois Telephone Users Group. Peoria, IL June 6, 2007 Illinois Telephone Users Group Peoria, IL June 6, 2007 IPTV Illinois Public Television Presented by: Dean Mischke, P.E. What is IPTV?? Illinois Public Television Digital Video delivered over Internet Protocol

More information

Cisco Prisma II 1310 nm, High-Density Transmitter and Host Module for 1.2 GHz Operation

Cisco Prisma II 1310 nm, High-Density Transmitter and Host Module for 1.2 GHz Operation Data Sheet Cisco Prisma II 1310 nm, High-Density Transmitter and Host Module for 1.2 GHz Operation Description The Cisco Prisma II line of optical network transmission products is an advanced system designed

More information

Cisco 1.25 GHz Surge-Gap Passives

Cisco 1.25 GHz Surge-Gap Passives Data Sheet Cisco 1.25 GHz Surge-Gap Passives The Cisco 1.2 GHz Surge-Gap Passives product line is the latest evolution of the HFC network providing full support of the DOCSIS 3.1 standard. DOSCIS 3.1 support

More information

TEPZZ 889A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2017/35

TEPZZ 889A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2017/35 (19) TEPZZ 889A_T (11) EP 3 211 889 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication:.08.17 Bulletin 17/3 (21) Application number: 163970. (22) Date of filing: 26.02.16 (1) Int Cl.: H04N 7/

More information

Critical Benefits of Cooled DFB Lasers for RF over Fiber Optics Transmission Provided by OPTICAL ZONU CORPORATION

Critical Benefits of Cooled DFB Lasers for RF over Fiber Optics Transmission Provided by OPTICAL ZONU CORPORATION Critical Benefits of Cooled DFB Lasers for RF over Fiber Optics Transmission Provided by OPTICAL ZONU CORPORATION Cooled DFB Lasers in RF over Fiber Optics Applications BENEFITS SUMMARY Practical 10 db

More information

CPON-HFC. Customer Premises Optical Node for FTTH networks. About the Product

CPON-HFC. Customer Premises Optical Node for FTTH networks. About the Product About the Product The Light Link Direct CPON-HFC customer premises optical node for FTTH networks offers full-bandwidth cable television delivery, plus broadband access via DOCSIS cable modems. Fibre-to-the-home

More information

Fiber to the Home. the New Empowerment. Paul E. Green, Jr May 19, Ref.: Book of same title, John Wiley and Sons, 2005

Fiber to the Home. the New Empowerment. Paul E. Green, Jr May 19, Ref.: Book of same title, John Wiley and Sons, 2005 Fiber to the Home the New Empowerment Paul E. Green, Jr May 19, 2006 Ref.: Book of same title, John Wiley and Sons, 2005 1 What does it look like? Passive optical network (PON) PSTN Class 5 Central office

More information

CHP Max Headend Optics Platform CHP CORWave II

CHP Max Headend Optics Platform CHP CORWave II CHP Max Headend Optics Platform CHP CORWave II 1 GHz C Band DWDM Forward Transmitters FEATURES Consolidation or elimination of OTNs and node splitting by harvesting plant assets with up to 16 full spectrum

More information

Product Flyer. Opti Max 41xx Series Fully Segmentable Node. Opti Max GHz 4 x 4 Segmentable Node. Generate New Revenue

Product Flyer. Opti Max 41xx Series Fully Segmentable Node. Opti Max GHz 4 x 4 Segmentable Node. Generate New Revenue Opti Max 41xx Series Fully Segmentable Node Opti Max 4100 1GHz 4 x 4 Segmentable Node Generate New Revenue!! Up to full 4 x 4 downstream and upstream segmentation capability!! Support for 42/54 MHz, 55/70

More information

NETWORK MIGRATION DEMYSTIFIED IN THE DOCSIS 3.1 ERA AND BEYOND

NETWORK MIGRATION DEMYSTIFIED IN THE DOCSIS 3.1 ERA AND BEYOND NETWORK MIGRATION DEMYSTIFIED IN THE DOCSIS 3.1 ERA AND BEYOND Ayham Al-Banna (ARRIS), Tom Cloonan (ARRIS), Frank O Keeffe (ARRIS), Dennis Steiger (nbn) Abstract The spectral efficiency of DOCSIS 3.1 networks

More information

Analyzing Impulse Noise with OneExpert CATV Ingress Expert

Analyzing Impulse Noise with OneExpert CATV Ingress Expert Application Note Analyzing Impulse Noise with OneExpert CATV Ingress Expert VIAVI Solutions Based on powerful OneExpert CATV HyperSpectrum technology, Ingress Expert s innovative overlapping FFT analysis

More information

Radio Frequency over Glass. Passive Optical Network (PON) for EuroDOCSIS infrastructures

Radio Frequency over Glass. Passive Optical Network (PON) for EuroDOCSIS infrastructures Radio Frequency over Glass Passive Optical Network (PON) for EuroDOCSIS infrastructures Radio Frequency over Glass (RFoG) Because RFoG extends the range of glass-fibre networks to buildings (FttB) and

More information

The 1.2 GHz NCI solution from Technetix:

The 1.2 GHz NCI solution from Technetix: The 1.2 GHz NCI solution from Technetix: The future of headend RF signal management The demand for high speed Internet and digital television means that headends are frequently modified, extended and upgraded

More information

OmniStar GX2 Headend Optics Platform

OmniStar GX2 Headend Optics Platform arris.com OmniStar GX2 Headend Optics Platform GX2 EM1000 Series 1550 nm Broadcast Transmitter FEATURES Provides full performance 50 1002 MHz forward bandwidth for mixed analog and digital loading Versions

More information

PRODUCT OVERVIEW OPTICAL NODES

PRODUCT OVERVIEW OPTICAL NODES PRODUCT OVERVIEW OPTICAL NODES For an easear selection of our node portfolio please refer to the table below RF Outputlevell [µv] 115 ONS 9238 ONC 11xx ONB 11xx B ONH 1xxx B1 ONH 1xxx B 111 106 99 92 ~

More information

CATV / OPTICAL / DOCSIS ANALYZERS CATV, OPTICAL & DOCSIS ANALYZERS www.promaxelectronics.com CABLE RANGER 3.1 CABLE RANGER 3.0 RANGER MINI RANGER MICRO Built-in DOCSIS 3.1 cable modem From 5 to 1800 MHz

More information

OmniStar GX2 Headend Optics Platform

OmniStar GX2 Headend Optics Platform arris.com OmniStar GX2 Headend Optics Platform GX2 DM2000C Series 1550 nm Broadcast/Narrowcast Transmitter FEATURES 1 GHz full spectrum bandwidth solution Maximize fiber assets with up to 40 wavelengths

More information

Innovations in PON Cost Reduction

Innovations in PON Cost Reduction Innovations in PON Cost Reduction Abstract Passive Optical Network (PON) deployments become a reality only when the promised price of a Fiber To The Premise (FTTP) network met the carrier s objectives

More information

This presentation will give you a general idea of the subjects on the 18 CATV-HFC seminars that are available from:

This presentation will give you a general idea of the subjects on the 18 CATV-HFC seminars that are available from: This presentation will give you a general idea of the subjects on the 18 CATV-HFC seminars that are available from: 1 Broadband System - A Satellites are spaced every 2nd degrees above earth "C" Band Toward

More information

Managing Cable TV Migration to IP Part 1 Advanced Digital Cable Leadership Series. Part 2: Preparing to Implement IP Cable TV Services

Managing Cable TV Migration to IP Part 1 Advanced Digital Cable Leadership Series. Part 2: Preparing to Implement IP Cable TV Services Managing Cable TV Migration to IP Part 1 Advanced Digital Cable Leadership Series Series Introduction: Analyzing Cable Market IP Distribution Drivers and Network Tech Challenges Migration Strategies Part

More information

Section 167. Depreciation

Section 167. Depreciation Section 167. Depreciation 26 CFR 1.167(a) 11: Depreciation based on class lives and asset depreciation ranges for property placed in service after December 31, 1970. Section 168. Accelerated Cost Recovery

More information

FORWARD PATH TRANSMITTERS

FORWARD PATH TRANSMITTERS CHP Max FORWARD PATH TRANSMITTERS CHP Max5000 Converged Headend Platform Unlock narrowcast bandwidth for provision of advanced services Economical and full-featured versions Low profile footprint allows

More information

Advanced Television Broadcasting In A Digital Broadband Distribution Environment

Advanced Television Broadcasting In A Digital Broadband Distribution Environment Advanced Television Broadcasting In A Digital Broadband Distribution Environment October 19, 2000 Brian Holmes Ian Oliver 142nd Technical Conference Technical Challenges maintenance of programming integrity

More information

Digital Video Engineering Professional Certification Competencies

Digital Video Engineering Professional Certification Competencies Digital Video Engineering Professional Certification Competencies I. Engineering Management and Professionalism A. Demonstrate effective problem solving techniques B. Describe processes for ensuring realistic

More information

CABLE S FIBER OUTLOOK SURVEY REPORT

CABLE S FIBER OUTLOOK SURVEY REPORT Produced by In partnership with CABLE S FIBER OUTLOOK SURVEY REPORT FIBER LINK/ DAA PLANS For the past few years, cable operators have increasingly been exploring the concept of Distributed Access Architecture

More information

THE SPECTRAL EFFICIENCY OF DOCSIS 3.1 SYSTEMS AYHAM AL- BANNA, DISTINGUISHED SYSTEM ENGINEER TOM CLOONAN, CTO, NETWORK SOLUTIONS

THE SPECTRAL EFFICIENCY OF DOCSIS 3.1 SYSTEMS AYHAM AL- BANNA, DISTINGUISHED SYSTEM ENGINEER TOM CLOONAN, CTO, NETWORK SOLUTIONS THE SPECTRAL EFFICIENCY OF DOCSIS 3.1 SYSTEMS AYHAM AL- BANNA, DISTINGUISHED SYSTEM ENGINEER TOM CLOONAN, CTO, NETWORK SOLUTIONS TABLE OF CONTENTS OVERVIEW... 3 INTRODUCTION... 3 BASELINE DOCSIS 3.0 SPECTRAL

More information

FUTURE DIRECTIONS FOR FIBER DEEP HFC DEPLOYMENTS

FUTURE DIRECTIONS FOR FIBER DEEP HFC DEPLOYMENTS FUTURE DIRECTIONS FOR FIBER DEEP HFC DEPLOYMENTS A CASE STUDY ON HFC TO FTTX MIGRATION STRATEGIES JOHN ULM ZORAN MARICEVIC TABLE OF CONTENTS INTRODUCTION... 3 NETWORK CAPACITY PLANNING FOR THE NEXT DECADE...

More information

US SCHEDULING IN THE DOCSIS 3.1 ERA: POTENTIAL & CHALLENGES

US SCHEDULING IN THE DOCSIS 3.1 ERA: POTENTIAL & CHALLENGES US SCHEDULING IN THE DOCSIS 3.1 ERA: POTENTIAL & CHALLENGES A TECHNICAL PAPER PREPARED FOR THE SOCIETY OF CABLE TELECOMMUNICATIONS ENGINEERS AYHAM AL- BANNA GREG GOHMAN TOM CLOONAN LARRY SPAETE TABLE OF

More information

HRF-xRx RETURN PATH HEADEND SIGNAL ORGANIZATION

HRF-xRx RETURN PATH HEADEND SIGNAL ORGANIZATION RETURN PATH HEADEND SIGNAL ORGANIZATION BACKGROUND In order to improve the service quality, e.g. the upload data speed, CATV service providers have to decrease the subscriber number of each optical segments.

More information

DROP HARDENING. January 21, 2015

DROP HARDENING. January 21, 2015 DROP HARDENING January 21, 2015 SCTE LIVE LEARNING Monthly Professional Development service Generally Hot Topics or Topics of high interest to the industry Vendor Agnostic No product promotion Free to

More information

Determining the feasibility of a method for improving bandwidth utilization of cable networks

Determining the feasibility of a method for improving bandwidth utilization of cable networks Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2010 Determining the feasibility of a method for improving bandwidth utilization of cable networks David Pisano

More information

DOCSIS 3.1 Operational Integration and Proactive Network Maintenance Tools

DOCSIS 3.1 Operational Integration and Proactive Network Maintenance Tools DOCSIS 3.1 Operational Integration and Proactive Network Maintenance Tools Enhancing Network Performance Through Intelligent Data Mining and Software Algorithm Execution (aka More with Less!) A Technical

More information

SAMSUNG HOSPITALITY DISPLAYS

SAMSUNG HOSPITALITY DISPLAYS HE694 HE694 Hospitality Solution Offers Easy IP Migration to Elevate Guest Entertainment Experience HIGHLIGHTS Simplified solution for IP-migration by building IP services into existing coax infrastructure

More information

TranScend Opto-Stacker & Destacker. Operation Manual

TranScend Opto-Stacker & Destacker. Operation Manual TranScend Opto-Stacker & Destacker Operation Manual Although every effort has been taken to ensure the accuracy of this document it may be necessary, without notice, to make amendments or correct omissions.

More information

Understanding IPTV "The Players - The Technology - The Industry - The Trends - The Future"

Understanding IPTV The Players - The Technology - The Industry - The Trends - The Future Understanding "The Players - The Technology - The Industry - The Trends - The Future" Course Description The course introduces you to the building blocks of. You will learn what is and what it isnt and

More information

Viavi ONX Ingress Mitigation and Troubleshooting Field Use Case using Ingress Expert

Viavi ONX Ingress Mitigation and Troubleshooting Field Use Case using Ingress Expert Viavi ONX Ingress Mitigation and Troubleshooting Field Use Case using Ingress Expert February 2018 Contents Purpose:... 2 Procedure:... 2 Real World Application and Use Case Findings:... 2 Consistent Noise

More information

touch Field Strength Meter HD RANGER 2 see to believe! THE smart field strength meter YOU must have

touch Field Strength Meter HD RANGER 2 see to believe! THE smart field strength meter YOU must have 99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431 Visit us at www.testequipmentdepot.com Field Strength Meter THE smart field strength meter YOU must have see to believe!

More information

Delivering on demand Video services in cable environment over the DVB-C path

Delivering on demand Video services in cable environment over the DVB-C path TECHNICAL WHITE PAPER Delivering on demand Video services in cable environment over the DVB-C path By Simeon Bajec, Product Manager, BeeSmart d.o.o., simeon.bajec at beesmart.tv Abstract Cable networks

More information

Development of optical transmission module for access networks

Development of optical transmission module for access networks Development of optical transmission module for access networks Hiroshi Ishizaki Takayuki Tanaka Hiroshi Okada Yoshinori Arai Alongside the spread of the Internet in recent years, high-speed data transmission

More information

Dual Link DVI Receiver Implementation

Dual Link DVI Receiver Implementation Dual Link DVI Receiver Implementation This application note describes some features of single link receivers that must be considered when using 2 devices for a dual link application. Specific characteristics

More information

OPTICAL DISTRIBUTION STATION -

OPTICAL DISTRIBUTION STATION - optical distribution station is a high performance, four individual outputs node. With high output levels and performance to 862MHz, it provides an ideal platform for support of the evolving technologies

More information

Verizon New England Inc. Application for a Compliance Order Certificate for Rhode Island Service Areas 1 and 4. Exhibit 3

Verizon New England Inc. Application for a Compliance Order Certificate for Rhode Island Service Areas 1 and 4. Exhibit 3 PROPOSED SERVICE OVERVIEW, PRODUCT OFFERS AND ARCHITECTURE Overview of Fiber to the Premises (FTTP) Deployment Service Overview Product Offer Service Delivery/Connection Method FTTP System Architecture

More information

Juniper Networks G10 CMTS

Juniper Networks G10 CMTS Juniper Networks G10 CMTS Pre-Installation Guide Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA 408-745-2000 www.juniper.net Part Number: 530-008003-01, Revision 1 Copyright

More information

Alcatel-Lucent 5910 Video Services Appliance. Assured and Optimized IPTV Delivery

Alcatel-Lucent 5910 Video Services Appliance. Assured and Optimized IPTV Delivery Alcatel-Lucent 5910 Video Services Appliance Assured and Optimized IPTV Delivery The Alcatel-Lucent 5910 Video Services Appliance (VSA) delivers superior Quality of Experience (QoE) to IPTV users. It prevents

More information

DOCSIS 3.1: PLANS AND STRATEGIES. December 18, 2013

DOCSIS 3.1: PLANS AND STRATEGIES. December 18, 2013 DOCSIS 3.1: PLANS AND STRATEGIES December 18, 2013 SCTE LIVE LEARNING Monthly Professional Development service Generally Hot Topics or Topics of high interest to the industry Vendor Agnostic No product

More information

OMNISTAR GX2. GX2-LM1000E Series 1310 nm Broadcast Transmitter DATA SHEET BENEFITS. 1 GHz bandwidth

OMNISTAR GX2. GX2-LM1000E Series 1310 nm Broadcast Transmitter DATA SHEET BENEFITS. 1 GHz bandwidth DATA SHEET BENEFITS OMNISTAR GX2 GX2-LM1000E Series 1310 nm Broadcast Transmitter 1 GHz bandwidth High module density up to 16 transmitter modules in a 4 RU housing High performance: Advanced predistortion

More information

APPENDIX D TECHNOLOGY. This Appendix describes the technologies included in the assessment

APPENDIX D TECHNOLOGY. This Appendix describes the technologies included in the assessment APPENDIX D TECHNOLOGY This Appendix describes the technologies included in the assessment and comments upon some of the economic factors governing their use. The technologies described are: coaxial cable

More information