Homework Due Thursday, Oct. 23. Please type your responses on a separate sheet.

Size: px
Start display at page:

Download "Homework Due Thursday, Oct. 23. Please type your responses on a separate sheet."

Transcription

1 STEM 698 Mathematical Modeling Homework Due Thursday, Oct. 23. Please type your responses on a separate sheet. Read the excerpt from Thomas Hickey History of Twentieth-Century Philosophy of Science, focusing on his summary of Kuhn s book. Also read the very brief excerpt from Thomas Kuhn s Structure of Scientific Revolutions. 1. What is phlogiston? Why is it important in the context of Kuhn s concept of scientific revolutions? 2. In the previous class (10/9) we discussed the discovery of dark matter, which is currently one of the most important research pursuits in physics. (Recall that a number of astronomers had noted serious discrepancies in the rotation curves for galaxies and galaxy clusters in the 1930 s; if you missed the class, the Wikipedia page on dark matter is quite adequate to get a sense of the history.) In what way does the story of the discovery of dark matter fit Kuhn s hypothesis for how science works? Is there any way in which it doesn t? 3. Discuss two ways in which Kuhn s view of the nature of science differs fundamentally from the points of view of some of other mathematicians and scientists whose writings we have considered.

2 From History of Twentieth-Century Philosophy of Science by Thomas J. Hickey at Excerpt from Book VI Thomas Kuhn on Revolution and Paul Feyerabend on Anarchy Kuhn on the Structure of Scientific Revolutions The Structure of Scientific Revolutions is a small monograph of less than one hundred seventy-five pages written in a fluent colloquial style, that makes it easily accessible to the average reader. It is the most renowned of Kuhn s works; indeed, it was a succes de scandale in the academic philosophy community. It is strategically without any of the mathematical equations that have enabled the modern natural sciences since the historic Scientific Revolution, and is mercifully without any of the pretentious symboliclogic chicken tracks that retarded the examination of the same modern sciences by the Logical Positivists and their like-minded pedantics. It was also a very timely presentation of the ascending Pragmatist philosophy of science illustrated with a plethora of apparently exemplifying cases from the history of science, which seemed conclusively to document the book's thesis. Although many tenants of his 1962 book were previously published by Kuhn in his "The Essential Tension" in 1959, later reprinted in a book of the same name in 1977, the 1962 book was probably the most popular book pertaining to philosophy and history of science published in the 1960's and for many years afterwards. It was reported in Kuhn s New York Times obituary to have sold about one million copies and to have been published in sixteen languages by the time of his death. It was widely read outside the relatively small circle of professional philosophers and historians of science. In "Reflections on My Critics" in Criticism and the Growth of Knowledge (ed. Lakatos and Musgrave, 1970) Kuhn offers some personal insights. He states that in his work as an historian of science, he discovered that much scientific behavior including that of the greatest scientists persistently violated accepted methodological canons, and that he wondered why these apparent failures to conform to the canons did not at all seem to inhibit the success of the scientific enterprise. The accepted methodological canons that Kuhn has in mind are not only those of the Positivists but also Popper's falsificationist thesis. He states that his altered view of the nature of science transforms what had previously seemed aberrant behavior into an essential part of an explanation for science's success, and that his criterion for emphasizing any particular aspect of scientific behavior is not simply 1

3 that it occurs, or merely that it occurs frequently, but rather that it fits a theory of scientific knowledge, a theory which he says may have normative as well as descriptive value. The seemingly aberrant behavior is what he had previously called the problem of scientific belief, the practice of ignoring anomalies. The thesis of the book offers a coherent description of the historical development in what he calls the mature natural sciences. Kuhn portrays the developmental procession as an alternation between two phases, which he calls "normal science" and "revolutionary science", with each phase containing the seeds for the emergence of the other. In the normal science phase the phenomenon that Conant called "prejudice" and that in 1957 Kuhn called the "problem of scientific belief", reappears as "paradigm consensus" in his 1962 book, where it assumes a positive function without the ambivalence that it formerly had in Kuhn's and Conant's minds. In an article remarkably titled "The Function of Dogma in Scientific Research" in Scientific Change (ed. Crombie, 1963) Kuhn maintains that advance from one exclusive paradigm to another rather than the continuing competition between recognized classics, is a functional as well as a factual characteristic of mature scientific development. In the revolutionary science phase the old paradigm around which a consensus had been formed is replaced by a new one, which is incommensurable with the old one. Thus Kuhn s work gives new and systematic meaning to the already conventional phrase "scientific revolutions". Kuhn's thesis is not just an eclectic combination of philosophical and historical ideas. His concepts of normal and revolutionary science are aspects of his distinctive sociological thesis, in which the concept of science as a social institution is fundamental. To sociologists and cultural anthropologists the concept of social institution means a set of beliefs and values shared among the members of a group or community, and internalized by each individual member of the community. The shared beliefs control the individual's understanding of the world in which he lives, and the shared value system regulates his voluntary behavior including his interaction with others. It is in these sociological terms that Kuhn advances his startling new concept of the aim of science. In the normal science phase the consensus paradigm by virtue of its consensus status assumes institutional status in its scientific specialty, and the aim of normal science is the further articulation of the paradigm by a "puzzle-solving" type of research uncritical of the paradigm. The paradigm is the scientist's view of the domain of his science, and the institutional valuation that consensus associates with the paradigm makes conformity with it the criterion for 2

4 scientific criticism. Thus what Kuhn previously called the "problem of scientific belief" is no longer problematic; the belief status of the paradigm is explained by its institutional status. This status effectively makes it what Conant called a "creed". Research producing scientific change in the normal science phase is controlled by belief in the consensus paradigm, and the resulting scientific change is always a change within the institutional framework defined by the paradigm. In striking contrast the revolutionary science phase is not a change within the institutional framework defined by the paradigm, but rather is a change to another paradigm. It is therefore an institutional change in the sense of a change of institutions. Kuhn maintains that the new and old paradigms involved in such an institutional change are semantically and ontologically incommensurable, such that there can be no shared higher framework to control the revolutionary transition. The term revolution in Kuhn s thesis is therefore not a metaphor. Scientific revolutions are no less revolutionary in the literal sense than are political revolutions, because in neither case are there laws to govern them. With his sociological thesis in mind, Kuhn's own dynamic view of science may be described as a sequence of five phases, which follows closely the sequence of several of the chapter headings in his book: (1) Consensus Phase. Mature sciences are distinguished by "normal science", a type of research that is firmly based in some past scientific achievement, and that the members of the scientific specialty view as supplying the foundations for research. Unlike early science there are normally no competing schools and perpetual quarrels over foundations in a mature science. The achievements that guide normal science research are called paradigms, which consist of accepted examples that provide models from which spring particular traditions of scientific research. A paradigm is an object for further articulation and specification under new and more stringent conditions, and it includes not only articulate rules and theory, but also the tacit knowledge and pre-articulate skills acquired by the scientist. No part of the aim of normal science is to call forth new sorts of phenomena or to invent new theories. This conformism proceeds both from a professional education, which is an indoctrination in the prevailing paradigm set forth in the student's current textbooks and laboratory exercises, and from a consensus belief shared by the members of the scientific specialty, which the paradigm seems sufficiently promising as a guide for future research, that acceptance of it is both an obligatory and a justified act of faith. Conformity to the paradigm assumes a recognizable function, which is to focus the group's attention upon a small range of relatively esoteric 3

5 problems, to investigate these problems in a depth and detail that would not be possible if quarrels over fundamentals were tolerated, and to restrict the research resources of the profession to solvable problems, where the solutions are "solvable" precisely because they agree with the paradigm and are interpretable in its terms. (2) Anomaly Phase. Normal science is a cumulative enterprise having as its aim the steady extension of the scope and accuracy of scientific knowledge represented by the prevailing paradigm. Successful normal science does not find any novelties. But anomalies occur as the extension of the paradigm proceeds over a period of time. In fact the paradigm is the source of the concepts needed for recognizing the new fact and for giving it its anomalous status. The normal reaction to an anomaly is a modification of the articulate rules and theories associated with the consensus paradigm, so that the anomalous fact can be assimilated. Success in such modification is a noteworthy achievement for a normal science researcher. Isolated anomalies that are not assimilated are normally set aside under the assumption that eventually they will be reconciled, and normal science research continues with the consensus paradigm. Scientists are not easily distracted by anomalies from continued exploration of the promise of a generally still satisfactory paradigm. Kuhn rejects Popper's falsificationist philosophy, stating that if every failure to fit were ground for theory rejection, all theories ought to be rejected at all times. (3) Crisis Phase. So long as the consensus paradigm is relatively successful, no alternatives to it are advanced. But eventually the anomalies become more numerous and more serious, and also the modifications necessary to assimilate those anomalies that can be assimilated, produce a certain amount of paradigm destruction. In due course some members of the profession lose faith and begin to propose alternatives. The construction of alternative theories is always possible, because there is an arbitrary aspect to language that permits many theories to be imposed on the same collection of data. When the consensus underlying the prevailing paradigm begins to erode enough that some members begin to exploit this arbitrary element and to create new theories, the profession has entered the phase of crisis. Crises are the crossing of the threshold into extraordinary or revolutionary science. (4) Revolutionary Phase. Kuhn postulates what he calls a "genetic parallel" between political and scientific revolutions. Just as political revolutions are inaugurated by a growing sense that existing institutions have ceased adequately to meet the problems posed by an environment that they have in part created, so too scientific revolutions are inaugurated by a growing sense that an existing paradigm has ceased to function adequately in 4

6 the exploration of the aspect of nature to which the paradigm itself had previously led the way. Political revolutions aim to change political institutions in ways that those institutions themselves prohibit. Their success therefore necessitates the partial relinquishment of one set of institutions in favor of another, and in the interim society is not fully governed by institutions at all. As alternatives are formulated, society is divided into competing camps, those who support the old institutions and those who support the new. Once this polarization has occurred, political recourse fails; there is no supra-institutional framework for adjudication of differences. Kuhn says that like the choice between competing political institutions, that between competing paradigms is a choice between incompatible modes of community life. In a scientific revolution the semantical and ontological incommensurability between rival paradigms excludes the possibility of any common framework for communication or reconciliation. Kuhn does not describe incommensurability in terms of Whorf's linguistic relativity thesis, as did Feyerabend thirteen years later. Instead Kuhn invokes Hanson's thesis of gestalt switch, and references Hanson's Patterns of Discovery published four years earlier. He compares the change of paradigm to the visual gestalt switch. A certain gestalt is needed for the physics student to see the world as seen by the scientist, when for example the latter sees the electron s condensed vapor track in the cloud chamber and the gestalt which is learned by the student is provided by the prevailing normal science paradigm. When at times of revolution the normal science tradition changes, then the scientist's perception of his environment must be re-educated; he must see with a new gestalt. This change of paradigm is not achieved by deliberation and interpretation, but rather by a sudden and unstructured gestalt switch. While the members are individually experiencing the gestalt switch, the profession is divided and confused, and there is a communication "breakdown" between members having different paradigm gestalts. (5) Resolution Phase. Kuhn does not believe that issues in scientific revolutions are resolved by crucial experiments or by any other kind of empirical testing. In normal science testing is never a test of the paradigm, but rather it is a test of a puzzle-solving attempt to extend the paradigm, and involves a comparison of a single paradigm with nature. Failure of the test is not a failure of the paradigm, but rather is a failure of the scientist. In revolutionary science tests occur as part of the competition between two rival paradigms for the allegiance of the scientific community. However, these tests do not have a compellingly deciding function. There can be no scientifically or empirically neutral system of language or concepts for these 5

7 tests, since the paradigms are incommensurable, and those who maintain the old paradigm must experience a "conversion" to the new gestalt. Tests serve only to persuade that the new paradigm is the more promising guide for future normal science research. The actual decision about the future performance of the new paradigm is based on faith and opportunism. As early supporters of the new paradigm show success, others follow until there is a new normal science consensus paradigm. The procession has come full circle to a new consensus paradigm. In the final chapter of Structure of Scientific Revolutions Kuhn discusses the concept of scientific progress that is consistent with his theory of the historical development of science. He maintains that the semantics of the term "progress" is determined by reference to the research work of normal science, and specifically by the puzzle-solving type of work in normal science in the absence of competing schools. Progress occurs in extraordinary science by the transition to a new consensus paradigm, because in the judgment of the specialized scientific community the new paradigm promises to resolve outstanding problems that had occasioned the crisis and transition, and to preserve the community's problem-solving ability to treat the assembled data with growing precision and detail, even though the ability to solve problems cannot be a basis for paradigm choice. 6

8 The Structure of Scientific Revolutions security. As one might expect, that insecurity is generated by the persistent failure of the puzzles of normal science to come out as they should. Failure of existing rules is the prelude to a search for new ones. Look first at a particularly famous case of paradigm change, the emergence of Copernican astronomy. When its predecessor, the Ptolemaic system, was first developed during the last two centuries before Christ and the first two after, it was admirably successfulin predicting the changing positions of both stars and planets. No other ancient system had performed so well; for the stars, Ptolemaic astronomy is still widely used today as ari engineering approximation; for the planets, Ptolemy's predictions were as good as Copernicus'. But to be admirably successful is never, for a scientific theory, to be completely successful With respect both to planetary position and to precession of the equinoxes, predictions made with Ptolemy's system never quite conformed with the best available observations. Further reduction of' those minor discrepancies constituted many of the principal problems of normal astronomical research for many of Ptolemy's successors,just as a similar attempt to bring celestial observation and Newtonian theory together provided normal research problems for Newton's eighteenth-century successors. For some time astronomers had every reason to suppose that these attempts would be as successfulas those that had led to Ptolemy's system. Given a particular, discrepancy, astronomers were invariably able to eliminate it by making some particular adjustment in Ptolemy's system of compounded circles. But as time went on, a man looking at the net result of the normal research effort of many astronomers could observe that astron- -omy'scomplexitywas increasing far more rapidly than its accuracy and that a discrepancy corrected in one place was likely to show up in another". Because the astronomical tradition was repeatedly interrupted from outside and because, in the absence of printing, communication between astronomers was restricted, these dif- Ii J. L. E. Dreyer,A mstof'yof Astronomyfrom Tholes to Kepler (2d ed.; New York, 1953), chaps. xi-xii. 68. Crisisand the Emergence of Scientific Theories _ flculties were "Qnlyslowly recognized. But awareness did come. By the thirteenth century AHonsoX could proclaim that if God had consulted him when creating the universe, he would have received good advice. In the sixteenth century, Copernicus' c0- worker, Domenico da Novara, held that no ststem so cumbersome and inaccurate as the Ptolemaic had become could possibly be true of nature. And Copernicus himself wrote in the Preface to the De Revolutionibus that the astronomical tradition he inherited had finally created only a monster. By the early sixteenth century an increasing number of Eprope's best astronomers were recognizing that the astronomical paradigm was failing in application to its own traditional problems. That recognition was prerequisite to Copernicus' rejection of the Ptolemaic paradigm and his search for a new one. His famous preface still provides one of the classic descriptions of a crisis state.6 Breakdown of the normal technical puzzle-solving activity is not, of course, the only ingredient of the astronomical crisis that faced Copernicus. An extended treatment would also discuss the social pressure for calendar reform, a pressure that.made the puzzle of precession particularly urgent. In addition, a fuller account would consider medieval criticism of Aristotle, the rise of Renaissance Neoplatonism, and other significant historical elements besides. But technical breakdown would still remain the core of the crisis. In a mature science-and astronomy had become that in antiquity-external factors like those cited above are principally significant in determining the timing of breakdown, the ease with which it can be recognized, and the area in which, because it is given particular attention, the breakdown first occurs. Though immensely important, issuesof that sort are out of bounds for this essay. If that much is clear in the case of the Copernican revolution, let us turn from it to a second and rather different example, the crisis that preceded the emergence of Lavoisier's oxygen theory of combustion. In the 1770'smany factors combined/to generate 6T. S. Kuhn,The CopernicanRevolution(Cambridge,Mass.,1957), pp

9 The Structure of Scientific Revolutions a crisis in chemistry, and historians are not altogether agreed about either their nature or their relative importance. But two of them are generally accepted as of first-rate significance: the rise of pneumatic chemistry and the question of weight rela- 1ions. The history of the first begins in the seventeenth century with development of the air pump and its deployment in chemical experimentation. During the following century, using that pump and a number of other pneumatic devices, chemists came increasingly to realize that air must be an active ingredient in chemjea1 reactions. But with a few exceptions-so equivocal that they may not be exceptions at all-chemists continued to believe that air was the only sort of gas. Until 1756,when Joseph Black showed that ~ed air (C02) was consistently distinguishable from normal air, two samplesof gas were thought to be distinct only in their impurities.7 Mter Black's work the investigation of gases proceeded rapidly, most notably in the hands of Cavendish, Priestley, and Scheele, who together developed a number of new techniques capable of distinguishing one sample of gas from another. All these men, from Black through Scheele, believed in the phlogiston theoryand oftenemployedit in their designand interpretationof experiments.scheeleactuallyfirstproducedoxygenby an elaboratechain of experimentsdesignedto dephlogisticate heat. Yetthe net resultof their experimentswasa varietyof gas samples and gas properties so elaborate that the phlogiston theory proved increasinglylittle able to cope with laboratory experience. Though none of these chemists suggested that the theory should be replaced, they were unable to apply it consistently. By the time Lavoisier began his experiments on airs in the early 1770's,there were almost as many versionsof the phlogiston theory as there were pneumatic chemists.8 That T J. R. Partington,A ShortHistoryof Chemistry(2d eel.;london,1951.),pp , 73-85, 9()" Though their main concern is with a slightly later period, much relevant material is scattered throughout J. R. Partingtonand DouglasMcKie's"Historical Studies on the Phlogiston Theory," Annals of Science, II (1937), ; m (1938), 1-58,387-71; and IV ~1939), Crisis and the Emergence of Scientific Theories proliferation ~fversions of a theory is a very usual symptom of crisis. In his preface, Copernicus complained of it as well. The increasing vagueness and decreasing uttlity of the phlogiston theory for pneumatic chemistry were not, however, the onlysourceof the crisisthat confrontedlavpisier.he was also much concerned to explain the gain in weight that most bodies experiencewhenburned or roasted,and that againis a problem with a long prehistory.at least a few Islamic chemistshad known that some metals gain weight when roasted. In the seventeenth century several investigators had coq-cludedfrom this same fact that a roasted metal takes up someingredient from the atmosphere. But in the seventeenth century that conclusion seemed unnecessary to most chemists. If chemical reactions could alter the volume, color, and texture of the ingredients, why should they not alter weight as well? Weight was not alwaystaken to be the measureof quantity of matter. Besides, weight-gain on roasting remained an isolated phenomenon. Most natural bodies (e.g., wood) lose weight on roasting as the phlogiston theory was later to say they should. During the eighteenth century, however, these initially adequate responses to the problem of weight-gain became increasingly difficult to maintain. Partly beca')se the balance was increasingly used as a standard chemical tool and partly because the development of pneumatic chemistry made it possible and desirable to retain the gaseous products of reactions, chemists discovered more and more cases in which weight-gain accompanied roasting. Simultaneously, the gradual assimtlation of Newton'sgravitational theory led chemists to insist that gain in weight must mean gain in quantity of matter. Those conclusions did not result in rejection of the phlogiston theory, for that theory could be adjusted in many ways. Perhaps phlogiston had negative weight, or perhaps fire particles or something else entered the roasted body as phlogiston left it. There were other explanations besides. But if the problem of weight-gain did not lead to rejection,it did lead to an increasingnumberof special studiesin which this problembulked large.one of them,"on 70 71

10 ~! j TheStructureof ScientificRevolutions phlogiston considered as a substance with weight and [analyzed] in tenns of the weight changes it produces in bodies with which it unites," was read to the French Academy early in 1772, the year which closed with Lavoisier's delivery of his famous sealed note to the Academy's Secretary. Before that note was written a problem that had been at the edge of the chemist's consciousness for many years had become an outstanding unsolved puzzle.9many different versions of the phlogiston theory were being elaborated to meet it. Like the problems of pneumatic chemistry, those of weight-gain were making it harder and harder to know what the phlogiston theory was. Though still believed and trusted as a working tool, a paradigm of eighteenth-century chemistry was gradually losing its unique status. Increasingly, the research it guided resembled that conducted under the competing schools of the pre-paradigm period, another typical effect of crisis. Consider now, as a third and final example, the late nineteenth century crisis in physics that prepared the way for the emergence of relativity theory. One root of that crisis can be traced to the late seventeenth century when a number of natural philpsophers, most notably Leibniz, criticized Newton's retention of an updated version of the classic conception of absolute space.10they were very nearly, though never quite, able to show that absolute positions and absolute motions were without any function at all in Newton's system; and they did succeed in hinting at the considerable aesthetic appeal a fully relativistic conception of space and motion would later come to display. But their critique was purely logical. Like the early Copernicans who criticized Aristotle's proofs of the earth's stability, they did not dream that transition to a relativistic system could have observational consequences. At no point did they relate their views to any problems that arose when applying Newtonian theory to nature. As a result, their views died with 9 H. Guerlac, Lavoisier-the Cf'tICialYear (Ithaca, N.Y., 1961). The entire book documents the evolution and first recognition of a crisis. For a clear statement of the situation with respect to Lavoisier, see p Max Jammer, Concepts of Space: The History of T1ieories of Space In Phy81c8 (Cambridge, Mass., 1954), pp.1l ~'.1 Crisisand theemergenceof ScientificTheories them during~the early decades of.the eighteenth century to be resurrected only in the last decades of the nineteenth when they had a very different relation to the practice of physics. The technical problems to which a relativistic philosophy of space was ultimately to be related began tp enter nonnal science with the acceptance of the wave theory'of light after about 1815, though they evoked no crisis until the 1890's. If light is wave motion propagated in a mechanical ether governed by Newton's Laws, then both celestial observation and terrestrial experiment become potentially capable of d~tecting drift through the ether. Of the celestial observations, only those of aberration promised sufficient accuracy to provide relevant infonnation, and the detection of ether-drift by aberration measurements therefore became a recognized problem for normal research. Much special equipment was built to resolve it. That equipment, however, detected no observable drift, and the problem was therefore transferre~ from the experimentalists and observers to the theoreticians. During the central decades of the century Fresnel, Stokes, and others devised numerous articulations of the ether theory designed to explain the failure to observe drift. Each of these articulations assuined that a moving body drags some fraction of the ether with it. And each was sufficiently successful to explain the negative results not only of celestial observation but also of terrestrial experimentation, including the famous experiment of Michelson and Morley.11There was still no conflict excepting that between the various articulations. In the absence of relevant experimental techniques, that conflict never became acute. The situation changed again only with the gradual acceptance of Maxwell's electromagnetic theory in the last two decades of the nineteenth century. Maxwell himself was a Newtonian who believed that light and electromagnetism in general were due to variable displacements of the particles of a mechanical ether. His earliest versions of a theory for ~lectricity and 11Joseph Larmor, Aether and Matter... Including a Discu88lon of the Influence of the Earth's Motion on Optical Phenomena (Cambridge, 1900). pp. 6-20,

Thomas Kuhn's "The Structure of Scientific Revolutions"

Thomas Kuhn's The Structure of Scientific Revolutions Thomas Kuhn's "The Structure of Scientific Revolutions" Big History Project, adapted by Newsela staff Thomas Kuhn (1922 1996) was an American historian and philosopher of science. He began his career in

More information

Kuhn. History and Philosophy of STEM. Lecture 6

Kuhn. History and Philosophy of STEM. Lecture 6 Kuhn History and Philosophy of STEM Lecture 6 Thomas Kuhn (1922 1996) Getting to a Paradigm Their achievement was sufficiently unprecedented to attract an enduring group of adherents away from competing

More information

Lecture 3 Kuhn s Methodology

Lecture 3 Kuhn s Methodology Lecture 3 Kuhn s Methodology We now briefly look at the views of Thomas S. Kuhn whose magnum opus, The Structure of Scientific Revolutions (1962), constitutes a turning point in the twentiethcentury philosophy

More information

The Shimer School Core Curriculum

The Shimer School Core Curriculum Basic Core Studies The Shimer School Core Curriculum Humanities 111 Fundamental Concepts of Art and Music Humanities 112 Literature in the Ancient World Humanities 113 Literature in the Modern World Social

More information

Kuhn s Notion of Scientific Progress. Christian Damböck Institute Vienna Circle University of Vienna

Kuhn s Notion of Scientific Progress. Christian Damböck Institute Vienna Circle University of Vienna Kuhn s Notion of Scientific Progress Christian Damböck Institute Vienna Circle University of Vienna christian.damboeck@univie.ac.at a community of scientific specialists will do all it can to ensure the

More information

Kuhn Formalized. Christian Damböck Institute Vienna Circle University of Vienna

Kuhn Formalized. Christian Damböck Institute Vienna Circle University of Vienna Kuhn Formalized Christian Damböck Institute Vienna Circle University of Vienna christian.damboeck@univie.ac.at In The Structure of Scientific Revolutions (1996 [1962]), Thomas Kuhn presented his famous

More information

8/28/2008. An instance of great change or alteration in affairs or in some particular thing. (1450)

8/28/2008. An instance of great change or alteration in affairs or in some particular thing. (1450) 1 The action or fact, on the part of celestial bodies, of moving round in an orbit (1390) An instance of great change or alteration in affairs or in some particular thing. (1450) The return or recurrence

More information

Scientific Revolutions as Events: A Kuhnian Critique of Badiou

Scientific Revolutions as Events: A Kuhnian Critique of Badiou University of Windsor Scholarship at UWindsor Critical Reflections Essays of Significance & Critical Reflections 2017 Apr 1st, 3:30 PM - 4:00 PM Scientific Revolutions as Events: A Kuhnian Critique of

More information

HPS 1653 / PHIL 1610 Introduction to the Philosophy of Science

HPS 1653 / PHIL 1610 Introduction to the Philosophy of Science HPS 1653 / PHIL 1610 Introduction to the Philosophy of Science Kuhn I: Normal Science Adam Caulton adam.caulton@gmail.com Monday 22 September 2014 Kuhn Thomas S. Kuhn (1922-1996) Kuhn, The Structure of

More information

IX. The Nature and Necessity of Scientific Revolutions

IX. The Nature and Necessity of Scientific Revolutions Thomas Kuhn (1962) The Structure of Scientific Revolutions Source: The Structure of Scientific Revolutions (1962) publ. University of Chicago Press, 1962. One chapter plus one postscript reproduced here;

More information

THE EVOLUTIONARY VIEW OF SCIENTIFIC PROGRESS Dragoş Bîgu dragos_bigu@yahoo.com Abstract: In this article I have examined how Kuhn uses the evolutionary analogy to analyze the problem of scientific progress.

More information

Relativism and the Social Construction of Science: Kuhn, Lakatos, Feyerabend

Relativism and the Social Construction of Science: Kuhn, Lakatos, Feyerabend Relativism and the Social Construction of Science: Kuhn, Lakatos, Feyerabend Theories as structures: Kuhn and Lakatos Science and Ideology: Feyerabend Science and Pseudoscience: Thagaard Theories as Structures:

More information

Four kinds of incommensurability. Reason, Relativism, and Reality Spring 2005

Four kinds of incommensurability. Reason, Relativism, and Reality Spring 2005 Four kinds of incommensurability Reason, Relativism, and Reality Spring 2005 Paradigm shift Kuhn is interested in debates between preand post-revolutionaries -- between the two sides of a paradigm shift.

More information

Kuhn s normal and revolutionary science

Kuhn s normal and revolutionary science Kuhn s normal and revolutionary science Philosophy of Science (106a/124), Topic 4, 24 October 2017 Adam Caulton (adam.caulton@philosophy.ox.ac.uk) 1 A role for history Previous philosophers of science

More information

Incommensurability and Partial Reference

Incommensurability and Partial Reference Incommensurability and Partial Reference Daniel P. Flavin Hope College ABSTRACT The idea within the causal theory of reference that names hold (largely) the same reference over time seems to be invalid

More information

The Structure of Scientific Revolutions

The Structure of Scientific Revolutions The Structure of Scientific Revolutions by Thomas S. Kuhn Outline and Study Guide prepared by Professor Frank Pajares Emory University Chapter I - Introduction: A Role for History. Kuhn begins by formulating

More information

In retrospect: The Structure of Scientific Revolutions

In retrospect: The Structure of Scientific Revolutions In retrospect: The Structure of Scientific Revolutions The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

Science: A Greatest Integer Function A Punctuated, Cumulative Approach to the Inquisitive Nature of Science

Science: A Greatest Integer Function A Punctuated, Cumulative Approach to the Inquisitive Nature of Science Stance Volume 5 2012 Science: A Greatest Integer Function A Punctuated, Cumulative Approach to the Inquisitive Nature of Science Kristianne C. Anor Abstract: Thomas Kuhn argues that scientific advancements

More information

ANALYSIS OF THE PREVAILING VIEWS REGARDING THE NATURE OF THEORY- CHANGE IN THE FIELD OF SCIENCE

ANALYSIS OF THE PREVAILING VIEWS REGARDING THE NATURE OF THEORY- CHANGE IN THE FIELD OF SCIENCE ANALYSIS OF THE PREVAILING VIEWS REGARDING THE NATURE OF THEORY- CHANGE IN THE FIELD OF SCIENCE Jonathan Martinez Abstract: One of the best responses to the controversial revolutionary paradigm-shift theory

More information

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters!

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! Provided by the author(s) and University College Dublin Library in accordance with publisher policies., Please cite the published version when available. Title Incommensurability, relativism, and scientific

More information

Kuhn and the Structure of Scientific Revolutions. How does one describe the process of science as a human endeavor? How does an

Kuhn and the Structure of Scientific Revolutions. How does one describe the process of science as a human endeavor? How does an Saket Vora HI 322 Dr. Kimler 11/28/2006 Kuhn and the Structure of Scientific Revolutions How does one describe the process of science as a human endeavor? How does an account of the natural world become

More information

The Structure of Scientific Revolutions

The Structure of Scientific Revolutions The Structure of Scientific Revolutions by Thomas S. Kuhn Outline and Study Guide prepared by Professor Frank Pajares Emory University Chapter I - Introduction: A Role for History. Kuhn begins by formulating

More information

INTRODUCTION TO NONREPRESENTATION, THOMAS KUHN, AND LARRY LAUDAN

INTRODUCTION TO NONREPRESENTATION, THOMAS KUHN, AND LARRY LAUDAN INTRODUCTION TO NONREPRESENTATION, THOMAS KUHN, AND LARRY LAUDAN Jeff B. Murray Walton College University of Arkansas 2012 Jeff B. Murray OBJECTIVE Develop Anderson s foundation for critical relativism.

More information

Incommensurability and the Bonfire of the Meta-Theories: Response to Mizrahi Lydia Patton, Virginia Tech

Incommensurability and the Bonfire of the Meta-Theories: Response to Mizrahi Lydia Patton, Virginia Tech Incommensurability and the Bonfire of the Meta-Theories: Response to Mizrahi Lydia Patton, Virginia Tech What is Taxonomic Incommensurability? Moti Mizrahi states Kuhn s thesis of taxonomic incommensurability

More information

Philip Kitcher and Gillian Barker, Philosophy of Science: A New Introduction, Oxford: Oxford University Press, 2014, pp. 192

Philip Kitcher and Gillian Barker, Philosophy of Science: A New Introduction, Oxford: Oxford University Press, 2014, pp. 192 Croatian Journal of Philosophy Vol. XV, No. 44, 2015 Book Review Philip Kitcher and Gillian Barker, Philosophy of Science: A New Introduction, Oxford: Oxford University Press, 2014, pp. 192 Philip Kitcher

More information

THE STRUCTURE OF SCIENTIFIC REVOLUTIONS

THE STRUCTURE OF SCIENTIFIC REVOLUTIONS T THE STRUCTURE OF SCIENTIFIC REVOLUTIONS HIS important book' is a sustained attack on the prevailing image of scientific change as a linear process of ever-increasing knowledge, and an attempt to make

More information

Philosophical Background to 19 th Century Modernism

Philosophical Background to 19 th Century Modernism Philosophical Background to 19 th Century Modernism Early Modern Philosophy In the sixteenth century, European artists and philosophers, influenced by the rise of empirical science, faced a formidable

More information

Thomas Kuhn. 1. Life and Career

Thomas Kuhn. 1. Life and Career Thomas Kuhn Reference: Bird, Alexander, 2005: Thomas Kuhn. In The Stanford Encyclopedia of Philosophy, Edward Zalta, Ed. (online at plato.stanford.edu/archives/spr2005/entries/thomas-kuhn ) Thomas Samuel

More information

Bas C. van Fraassen, Scientific Representation: Paradoxes of Perspective, Oxford University Press, 2008.

Bas C. van Fraassen, Scientific Representation: Paradoxes of Perspective, Oxford University Press, 2008. Bas C. van Fraassen, Scientific Representation: Paradoxes of Perspective, Oxford University Press, 2008. Reviewed by Christopher Pincock, Purdue University (pincock@purdue.edu) June 11, 2010 2556 words

More information

The topic of this Majors Seminar is Relativism how to formulate it, and how to evaluate arguments for and against it.

The topic of this Majors Seminar is Relativism how to formulate it, and how to evaluate arguments for and against it. Majors Seminar Rovane Spring 2010 The topic of this Majors Seminar is Relativism how to formulate it, and how to evaluate arguments for and against it. The central text for the course will be a book manuscript

More information

HPS 1653 / PHIL 1610 Introduction to the Philosophy of Science

HPS 1653 / PHIL 1610 Introduction to the Philosophy of Science HPS 1653 / PHIL 1610 Introduction to the Philosophy of Science Lakatos: Research Programmes Adam Caulton adam.caulton@gmail.com Monday 6 October 2014 Lakatos Imre Lakatos (1922-1974) Chalmers, WITTCS?,

More information

Lisa Randall, a professor of physics at Harvard, is the author of "Warped Passages: Unraveling the Mysteries of the Universe's Hidden Dimensions.

Lisa Randall, a professor of physics at Harvard, is the author of Warped Passages: Unraveling the Mysteries of the Universe's Hidden Dimensions. Op-Ed Contributor New York Times Sept 18, 2005 Dangling Particles By LISA RANDALL Published: September 18, 2005 Lisa Randall, a professor of physics at Harvard, is the author of "Warped Passages: Unraveling

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Samantha A. Smee for the degree of Honors Baccalaureate of Science in Mathematics presented on May 26, 2010. Title: Applying Kuhn s Theory to the Development of Mathematics.

More information

TROUBLING QUALITATIVE INQUIRY: ACCOUNTS AS DATA, AND AS PRODUCTS

TROUBLING QUALITATIVE INQUIRY: ACCOUNTS AS DATA, AND AS PRODUCTS TROUBLING QUALITATIVE INQUIRY: ACCOUNTS AS DATA, AND AS PRODUCTS Martyn Hammersley The Open University, UK Webinar, International Institute for Qualitative Methodology, University of Alberta, March 2014

More information

Reality According to Language and Concepts Ben G. Yacobi *

Reality According to Language and Concepts Ben G. Yacobi * Journal of Philosophy of Life Vol.6, No.2 (June 2016):51-58 [Essay] Reality According to Language and Concepts Ben G. Yacobi * Abstract Science uses not only mathematics, but also inaccurate natural language

More information

GV958: Theory and Explanation in Political Science, Part I: Philosophy of Science (Han Dorussen)

GV958: Theory and Explanation in Political Science, Part I: Philosophy of Science (Han Dorussen) GV958: Theory and Explanation in Political Science, Part I: Philosophy of Science (Han Dorussen) Week 3: The Science of Politics 1. Introduction 2. Philosophy of Science 3. (Political) Science 4. Theory

More information

Review Articles KUHN*S SECOND THOUGHTS. Brit. J. Phil. Set. aa (1971), Printed in Great Britain 287

Review Articles KUHN*S SECOND THOUGHTS. Brit. J. Phil. Set. aa (1971), Printed in Great Britain 287 Brit. J. Phil. Set. aa (1971), 287-306 Printed in Great Britain 287 Review Articles KUHN*S SECOND THOUGHTS THOMAS KUHN'S Structure of Scientific Revolutions is a justly famous book, and one which has caused

More information

Modeling Scientific Revolutions: Gärdenfors and Levi on the Nature of Paradigm Shifts

Modeling Scientific Revolutions: Gärdenfors and Levi on the Nature of Paradigm Shifts Lunds Universitet Filosofiska institutionen kurs: FTE704:2 Handledare: Erik Olsson Modeling Scientific Revolutions: Gärdenfors and Levi on the Nature of Paradigm Shifts David Westlund 801231-2453 Contents

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Michigan State University Press Chapter Title: Teaching Public Speaking as Composition Book Title: Rethinking Rhetorical Theory, Criticism, and Pedagogy Book Subtitle: The Living Art of Michael C. Leff

More information

Kant on wheels. Available online: 24 Jun 2010

Kant on wheels. Available online: 24 Jun 2010 This article was downloaded by: [University of Chicago] On: 30 December 2011, At: 13:50 Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

More information

1 Kuhn on Specialization. dr. Vincenzo Politi

1 Kuhn on Specialization. dr. Vincenzo Politi Scientific Revolutions, Specialization and the Discovery of the Structure of DNA: toward a new picture of the development of the sciences Forthcoming in Synthese dr. Vincenzo Politi In his late years,

More information

The Concept of Nature

The Concept of Nature The Concept of Nature The Concept of Nature The Tarner Lectures Delivered in Trinity College B alfred north whitehead University Printing House, Cambridge CB2 8BS, United Kingdom Cambridge University

More information

Words or Worlds: The Metaphysics within Kuhn s Picture of. Science. Justin Price

Words or Worlds: The Metaphysics within Kuhn s Picture of. Science. Justin Price Words or Worlds: The Metaphysics within Kuhn s Picture of Science By Justin Price A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Arts in

More information

KINDS (NATURAL KINDS VS. HUMAN KINDS)

KINDS (NATURAL KINDS VS. HUMAN KINDS) KINDS (NATURAL KINDS VS. HUMAN KINDS) Both the natural and the social sciences posit taxonomies or classification schemes that divide their objects of study into various categories. Many philosophers hold

More information

The Polish Peasant in Europe and America. W. I. Thomas and Florian Znaniecki

The Polish Peasant in Europe and America. W. I. Thomas and Florian Znaniecki 1 The Polish Peasant in Europe and America W. I. Thomas and Florian Znaniecki Now there are two fundamental practical problems which have constituted the center of attention of reflective social practice

More information

University of Bristol - Explore Bristol Research

University of Bristol - Explore Bristol Research Politi, V. (2017). Scientific revolutions, specialization and the discovery of the structure of DNA: toward a new picture of the development of the sciences. Synthese. DOI: 10.1007/s11229-017-1339-6 Publisher's

More information

Can Kuhn s Taxonomic Incommensurability Be an Image of Science?

Can Kuhn s Taxonomic Incommensurability Be an Image of Science? Can Kuhn s Taxonomic Incommensurability Be an Image of Science? Abstract I criticize Kuhn s (1962/1970) taxonomic incommensurability thesis as follows. (i) His argument for it is neither deductively sound

More information

Introduction to The Handbook of Economic Methodology

Introduction to The Handbook of Economic Methodology Marquette University e-publications@marquette Economics Faculty Research and Publications Economics, Department of 1-1-1998 Introduction to The Handbook of Economic Methodology John B. Davis Marquette

More information

In basic science the percentage of authoritative references decreases as bibliographies become shorter

In basic science the percentage of authoritative references decreases as bibliographies become shorter Jointly published by Akademiai Kiado, Budapest and Kluwer Academic Publishers, Dordrecht Scientometrics, Vol. 60, No. 3 (2004) 295-303 In basic science the percentage of authoritative references decreases

More information

Kuhn and coherentist epistemology

Kuhn and coherentist epistemology Discussion Kuhn and coherentist epistemology Dunja Šešelja and Christian Straßer Centre for Logic and Philosophy of Science, Ghent University (UGent), Blandijnberg 2, Gent, Belgium E-mail address: dunja.seselja@ugent.be

More information

Thomas Kuhn s Concept of Incommensurability and the Stegmüller/Sneed Program as a Formal Approach to that Concept

Thomas Kuhn s Concept of Incommensurability and the Stegmüller/Sneed Program as a Formal Approach to that Concept Thomas Kuhn s Concept of Incommensurability and the Stegmüller/Sneed Program as a Formal Approach to that Concept Christian Damböck Institute Vienna Circle 2010-06-26 (HOPOS 2010, Budapest) Overview The

More information

Reply to Stalnaker. Timothy Williamson. In Models and Reality, Robert Stalnaker responds to the tensions discerned in Modal Logic

Reply to Stalnaker. Timothy Williamson. In Models and Reality, Robert Stalnaker responds to the tensions discerned in Modal Logic 1 Reply to Stalnaker Timothy Williamson In Models and Reality, Robert Stalnaker responds to the tensions discerned in Modal Logic as Metaphysics between contingentism in modal metaphysics and the use of

More information

PHILOSOPHY OF SOCIAL SCIENCE INTS 4522 Spring Jack Donnelly and Martin Rhodes -

PHILOSOPHY OF SOCIAL SCIENCE INTS 4522 Spring Jack Donnelly and Martin Rhodes - PHILOSOPHY OF SOCIAL SCIENCE INTS 4522 Spring 2010 - Jack Donnelly and Martin Rhodes - What is the nature of social science and the knowledge that it produces? This course, which is intended to complement

More information

Sidestepping the holes of holism

Sidestepping the holes of holism Sidestepping the holes of holism Tadeusz Ciecierski taci@uw.edu.pl University of Warsaw Institute of Philosophy Piotr Wilkin pwl@mimuw.edu.pl University of Warsaw Institute of Philosophy / Institute of

More information

Sociology. Open Session on Answer Writing. (Session 2; Date: 7 July 2018) Topics. Paper I. 4. Sociological Thinkers (Karl Marx and Emile Durkheim)

Sociology. Open Session on Answer Writing. (Session 2; Date: 7 July 2018) Topics. Paper I. 4. Sociological Thinkers (Karl Marx and Emile Durkheim) Sociology Open Session on Answer Writing (Session 2; Date: 7 July 2018) Topics Paper I 4. Sociological Thinkers (Karl Marx and Emile Durkheim) Aditya Mongra @ Chrome IAS Academy Giving Wings To Your Dreams

More information

The Function of Dogma in Scientific Research 1

The Function of Dogma in Scientific Research 1 THOMAS S. KUHN The Function of Dogma in Scientific Research 1 At some point in his or her career every member of this Symposium has, I feel sure, been exposed to the image of the scientist as the uncommitted

More information

The Debate on Research in the Arts

The Debate on Research in the Arts Excerpts from The Debate on Research in the Arts 1 The Debate on Research in the Arts HENK BORGDORFF 2007 Research definitions The Research Assessment Exercise and the Arts and Humanities Research Council

More information

Intersubjectivity and physical laws in post-kantian theory of knowledge: Natorp and Cassirer Scott Edgar October 2014.

Intersubjectivity and physical laws in post-kantian theory of knowledge: Natorp and Cassirer Scott Edgar October 2014. Intersubjectivity and physical laws in post-kantian theory of knowledge: Natorp and Cassirer Scott Edgar October 2014. 1. Intersubjectivity and physical laws in post-kantian theory of knowledge. Consider

More information

Aristotle. Aristotle. Aristotle and Plato. Background. Aristotle and Plato. Aristotle and Plato

Aristotle. Aristotle. Aristotle and Plato. Background. Aristotle and Plato. Aristotle and Plato Aristotle Aristotle Lived 384-323 BC. He was a student of Plato. Was the tutor of Alexander the Great. Founded his own school: The Lyceum. He wrote treatises on physics, cosmology, biology, psychology,

More information

SCIENTIFIC KNOWLEDGE AND RELIGIOUS RELATION TO REALITY

SCIENTIFIC KNOWLEDGE AND RELIGIOUS RELATION TO REALITY European Journal of Science and Theology, December 2007, Vol.3, No.4, 39-48 SCIENTIFIC KNOWLEDGE AND RELIGIOUS RELATION TO REALITY Javier Leach Facultad de Informática, Universidad Complutense, C/Profesor

More information

Conceptual Change, Relativism, and Rationality

Conceptual Change, Relativism, and Rationality Conceptual Change, Relativism, and Rationality University of Chicago Department of Philosophy PHIL 23709 Fall Quarter, 2011 Syllabus Instructor: Silver Bronzo Email: bronzo@uchicago Class meets: T/TH 4:30-5:50,

More information

A Guide to Paradigm Shifting

A Guide to Paradigm Shifting A Guide to The True Purpose Process Change agents are in the business of paradigm shifting (and paradigm creation). There are a number of difficulties with paradigm change. An excellent treatise on this

More information

Thomas S. Kuhn ( )

Thomas S. Kuhn ( ) 30 Thomas S. Kuhn (1922 1996) RICHARD GRANDY Thomas S. Kuhn s second monograph, The Structure of Scientific Revolutions (1962) is the most widely read and most influential book on the philosophy of science

More information

Caught in the Middle. Philosophy of Science Between the Historical Turn and Formal Philosophy as Illustrated by the Program of Kuhn Sneedified

Caught in the Middle. Philosophy of Science Between the Historical Turn and Formal Philosophy as Illustrated by the Program of Kuhn Sneedified Caught in the Middle. Philosophy of Science Between the Historical Turn and Formal Philosophy as Illustrated by the Program of Kuhn Sneedified Christian Damböck Institute Vienna Circle University of Vienna

More information

Carlo Martini 2009_07_23. Summary of: Robert Sugden - Credible Worlds: the Status of Theoretical Models in Economics 1.

Carlo Martini 2009_07_23. Summary of: Robert Sugden - Credible Worlds: the Status of Theoretical Models in Economics 1. CarloMartini 2009_07_23 1 Summary of: Robert Sugden - Credible Worlds: the Status of Theoretical Models in Economics 1. Robert Sugden s Credible Worlds: the Status of Theoretical Models in Economics is

More information

SUMMARY BOETHIUS AND THE PROBLEM OF UNIVERSALS

SUMMARY BOETHIUS AND THE PROBLEM OF UNIVERSALS SUMMARY BOETHIUS AND THE PROBLEM OF UNIVERSALS The problem of universals may be safely called one of the perennial problems of Western philosophy. As it is widely known, it was also a major theme in medieval

More information

Domains of Inquiry (An Instrumental Model) and the Theory of Evolution. American Scientific Affiliation, 21 July, 2012

Domains of Inquiry (An Instrumental Model) and the Theory of Evolution. American Scientific Affiliation, 21 July, 2012 Domains of Inquiry (An Instrumental Model) and the Theory of Evolution 1 American Scientific Affiliation, 21 July, 2012 1 What is science? Why? How certain can we be of scientific theories? Why do so many

More information

An Alternative to Kitcher s Theory of Conceptual Progress and His Account of the Change of the Gene Concept

An Alternative to Kitcher s Theory of Conceptual Progress and His Account of the Change of the Gene Concept An Alternative to Kitcher s Theory of Conceptual Progress and His Account of the Change of the Gene Concept Ingo Brigandt Department of History and Philosophy of Science University of Pittsburgh 1017 Cathedral

More information

Review of Krzysztof Brzechczyn, Idealization XIII: Modeling in History

Review of Krzysztof Brzechczyn, Idealization XIII: Modeling in History Review Essay Review of Krzysztof Brzechczyn, Idealization XIII: Modeling in History Giacomo Borbone University of Catania In the 1970s there appeared the Idealizational Conception of Science (ICS) an alternative

More information

The Epistemological Status of Theoretical Simplicity YINETH SANCHEZ

The Epistemological Status of Theoretical Simplicity YINETH SANCHEZ Running head: THEORETICAL SIMPLICITY The Epistemological Status of Theoretical Simplicity YINETH SANCHEZ David McNaron, Ph.D., Faculty Adviser Farquhar College of Arts and Sciences Division of Humanities

More information

Scientific Philosophy

Scientific Philosophy Scientific Philosophy Gustavo E. Romero IAR-CONICET/UNLP, Argentina FCAGLP, UNLP, 2018 Philosophy of mathematics The philosophy of mathematics is the branch of philosophy that studies the philosophical

More information

THE RELATIONS BETWEEN ETHICS AND ECONOMICS: A COMPARATIVE ANALYSIS BETWEEN AYRES AND WEBER S PERSPECTIVES. By Nuria Toledano and Crispen Karanda

THE RELATIONS BETWEEN ETHICS AND ECONOMICS: A COMPARATIVE ANALYSIS BETWEEN AYRES AND WEBER S PERSPECTIVES. By Nuria Toledano and Crispen Karanda PhilosophyforBusiness Issue80 11thFebruary2017 http://www.isfp.co.uk/businesspathways/ THE RELATIONS BETWEEN ETHICS AND ECONOMICS: A COMPARATIVE ANALYSIS BETWEEN AYRES AND WEBER S PERSPECTIVES By Nuria

More information

foucault s archaeology science and transformation David Webb

foucault s archaeology science and transformation David Webb foucault s archaeology science and transformation David Webb CLOSING REMARKS The Archaeology of Knowledge begins with a review of methodologies adopted by contemporary historical writing, but it quickly

More information

BOOK REVIEWS. University of Southern California. The Philosophical Review, XCI, No. 2 (April 1982)

BOOK REVIEWS. University of Southern California. The Philosophical Review, XCI, No. 2 (April 1982) obscurity of purpose makes his continual references to science seem irrelevant to our views about the nature of minds. This can only reinforce what Wilson would call the OA prejudices that he deplores.

More information

T.M. Porter, The Rise of Statistical Thinking, Princeton: Princeton University Press, xii pp

T.M. Porter, The Rise of Statistical Thinking, Princeton: Princeton University Press, xii pp T.M. Porter, The Rise of Statistical Thinking, 1820-1900. Princeton: Princeton University Press, 1986. xii + 333 pp. 23.40. In this book, Theodore Porter tells a broadly-conceived story of the evolution

More information

PHD THESIS SUMMARY: Phenomenology and economics PETR ŠPECIÁN

PHD THESIS SUMMARY: Phenomenology and economics PETR ŠPECIÁN Erasmus Journal for Philosophy and Economics, Volume 7, Issue 1, Spring 2014, pp. 161-165. http://ejpe.org/pdf/7-1-ts-2.pdf PHD THESIS SUMMARY: Phenomenology and economics PETR ŠPECIÁN PhD in economic

More information

What counts as a convincing scientific argument? Are the standards for such evaluation

What counts as a convincing scientific argument? Are the standards for such evaluation Cogent Science in Context: The Science Wars, Argumentation Theory, and Habermas. By William Rehg. Cambridge, MA: MIT Press, 2009. Pp. 355. Cloth, $40. Paper, $20. Jeffrey Flynn Fordham University Published

More information

The Function of Dogma in Scientific Research 1

The Function of Dogma in Scientific Research 1 II The Function of Dogma in Scientific Research 1 THOMAS S. KUHN At some point in his or her career every member of this Symposium has, I feel sure, been exposed to the image of the scientist as the uncommitted

More information

Paradigm paradoxes and the processes of educational research: Using the theory of logical types to aid clarity.

Paradigm paradoxes and the processes of educational research: Using the theory of logical types to aid clarity. Paradigm paradoxes and the processes of educational research: Using the theory of logical types to aid clarity. John Gardiner & Stephen Thorpe (edith cowan university) Abstract This paper examines possible

More information

PHL 317K 1 Fall 2017 Overview of Weeks 1 5

PHL 317K 1 Fall 2017 Overview of Weeks 1 5 PHL 317K 1 Fall 2017 Overview of Weeks 1 5 We officially started the class by discussing the fact/opinion distinction and reviewing some important philosophical tools. A critical look at the fact/opinion

More information

Ed. Carroll Moulton. Vol. 1. New York: Charles Scribner's Sons, p COPYRIGHT 1998 Charles Scribner's Sons, COPYRIGHT 2007 Gale

Ed. Carroll Moulton. Vol. 1. New York: Charles Scribner's Sons, p COPYRIGHT 1998 Charles Scribner's Sons, COPYRIGHT 2007 Gale Biography Aristotle Ancient Greece and Rome: An Encyclopedia for Students Ed. Carroll Moulton. Vol. 1. New York: Charles Scribner's Sons, 1998. p59-61. COPYRIGHT 1998 Charles Scribner's Sons, COPYRIGHT

More information

THE LANGUAGE OF SCIENCE: MEANING VARIANCE AND THEORY COMPARISON HOWARD SANKEY *

THE LANGUAGE OF SCIENCE: MEANING VARIANCE AND THEORY COMPARISON HOWARD SANKEY * FORTHCOMING IN LANGUAGE SCIENCES THE LANGUAGE OF SCIENCE: MEANING VARIANCE AND THEORY COMPARISON HOWARD SANKEY * ABSTRACT: The paper gives an overview of key themes of twentieth century philosophical treatment

More information

Necessity in Kant; Subjective and Objective

Necessity in Kant; Subjective and Objective Necessity in Kant; Subjective and Objective DAVID T. LARSON University of Kansas Kant suggests that his contribution to philosophy is analogous to the contribution of Copernicus to astronomy each involves

More information

The Power of Ideas: Milton Friedman s Empirical Methodology

The Power of Ideas: Milton Friedman s Empirical Methodology The Power of Ideas: Milton Friedman s Empirical Methodology University of Chicago Milton Friedman and the Power of Ideas: Celebrating the Friedman Centennial Becker Friedman Institute November 9, 2012

More information

Environmental Ethics: From Theory to Practice

Environmental Ethics: From Theory to Practice Environmental Ethics: From Theory to Practice Marion Hourdequin Companion Website Material Chapter 1 Companion website by Julia Liao and Marion Hourdequin ENVIRONMENTAL ETHICS: FROM THEORY TO PRACTICE

More information

AN ALTERNATIVE TO KITCHER S THEORY OF CONCEPTUAL PROGRESS AND HIS ACCOUNT OF THE CHANGE OF THE GENE CONCEPT. Ingo Brigandt

AN ALTERNATIVE TO KITCHER S THEORY OF CONCEPTUAL PROGRESS AND HIS ACCOUNT OF THE CHANGE OF THE GENE CONCEPT. Ingo Brigandt AN ALTERNATIVE TO KITCHER S THEORY OF CONCEPTUAL PROGRESS AND HIS ACCOUNT OF THE CHANGE OF THE GENE CONCEPT Ingo Brigandt Department of History and Philosophy of Science University of Pittsburgh 1017 Cathedral

More information

Challenging Times. Introduction. Evolution of Galilean Newtonian Scientific Thinking

Challenging Times. Introduction. Evolution of Galilean Newtonian Scientific Thinking Introduction Challenging Times Evolution of Galilean Newtonian Scientific Thinking Some people are sufficiently fortunate to have their most creative years coincide with great mysteries in human knowledge.

More information

EPISTEMOLOGY, METHODOLOGY, AND THE SOCIAL SCIENCES

EPISTEMOLOGY, METHODOLOGY, AND THE SOCIAL SCIENCES EPISTEMOLOGY, METHODOLOGY, AND THE SOCIAL SCIENCES BOSTON STUDIES IN THE PHILOSOPHY OF SCIENCE EDITED BY ROBERT S. COHEN AND MARX W. WARTOFSKY VOLUME 71 EPISTEMOLOGY, METHODOLOGY, AND THE SOCIAL SCIENCES

More information

Between the Philosophy of Science and Machine Learning

Between the Philosophy of Science and Machine Learning Between the Philosophy of Science and Machine Learning David Corfield University of Kent Kevin Korb: Machine learning should be regarded as "experimental philosophy of science". Kevin Korb: Machine learning

More information

History of Science from Newton to the present Spring Semester 2008

History of Science from Newton to the present Spring Semester 2008 HSCI 3023 Honors History of Science from Newton to the present Spring Semester 2008 Instructor: Peter Barker e-mail: (BarkerP@ou.edu) tel.: 325-2242 Office: PHSC 617 Office hours: TuTh 10:30-11:15, or

More information

Preptests 63 Answers and Explanations (By Ivy Global) Section 4 Reading Comprehension

Preptests 63 Answers and Explanations (By Ivy Global) Section 4 Reading Comprehension Section 4 Reading Comprehension Questions 1 7 Analyzing the Passage Issues related to defining the word tradition under Alaskan law are illustrated by two cases. Structure: In paragraph 1, we re introduced

More information

Working BO1 BUSINESS ONTOLOGY: OVERVIEW BUSINESS ONTOLOGY - SOME CORE CONCEPTS. B usiness Object R eference Ontology. Program. s i m p l i f y i n g

Working BO1 BUSINESS ONTOLOGY: OVERVIEW BUSINESS ONTOLOGY - SOME CORE CONCEPTS. B usiness Object R eference Ontology. Program. s i m p l i f y i n g B usiness Object R eference Ontology s i m p l i f y i n g s e m a n t i c s Program Working Paper BO1 BUSINESS ONTOLOGY: OVERVIEW BUSINESS ONTOLOGY - SOME CORE CONCEPTS Issue: Version - 4.01-01-July-2001

More information

Published in: International Studies in the Philosophy of Science 29(2) (2015):

Published in: International Studies in the Philosophy of Science 29(2) (2015): Published in: International Studies in the Philosophy of Science 29(2) (2015): 224 228. Philosophy of Microbiology MAUREEN A. O MALLEY Cambridge, Cambridge University Press, 2014 x + 269 pp., ISBN 9781107024250,

More information

Texas Southern University. From the SelectedWorks of Anthony M Rodriguez Ph.D. Michael A Rodriguez, Ph.D., Texas Southern University

Texas Southern University. From the SelectedWorks of Anthony M Rodriguez Ph.D. Michael A Rodriguez, Ph.D., Texas Southern University Texas Southern University From the SelectedWorks of Anthony M Rodriguez Ph.D. 2015 Fiction, Science, or Faith The structure of scientific revolution: A planners perspective. Another visit to Thomas S.

More information

(as methodology) are not always distinguished by Steward: he says,

(as methodology) are not always distinguished by Steward: he says, SOME MISCONCEPTIONS OF MULTILINEAR EVOLUTION1 William C. Smith It is the object of this paper to consider certain conceptual difficulties in Julian Steward's theory of multillnear evolution. The particular

More information

Philosophy of Science: The Pragmatic Alternative April 2017 Center for Philosophy of Science University of Pittsburgh ABSTRACTS

Philosophy of Science: The Pragmatic Alternative April 2017 Center for Philosophy of Science University of Pittsburgh ABSTRACTS Philosophy of Science: The Pragmatic Alternative 21-22 April 2017 Center for Philosophy of Science University of Pittsburgh Matthew Brown University of Texas at Dallas Title: A Pragmatist Logic of Scientific

More information

Are There Two Theories of Goodness in the Republic? A Response to Santas. Rachel Singpurwalla

Are There Two Theories of Goodness in the Republic? A Response to Santas. Rachel Singpurwalla Are There Two Theories of Goodness in the Republic? A Response to Santas Rachel Singpurwalla It is well known that Plato sketches, through his similes of the sun, line and cave, an account of the good

More information

Triune Continuum Paradigm and Problems of UML Semantics

Triune Continuum Paradigm and Problems of UML Semantics Triune Continuum Paradigm and Problems of UML Semantics Andrey Naumenko, Alain Wegmann Laboratory of Systemic Modeling, Swiss Federal Institute of Technology Lausanne. EPFL-IC-LAMS, CH-1015 Lausanne, Switzerland

More information

Mixed Methods: In Search of a Paradigm

Mixed Methods: In Search of a Paradigm Mixed Methods: In Search of a Paradigm Ralph Hall The University of New South Wales ABSTRACT The growth of mixed methods research has been accompanied by a debate over the rationale for combining what

More information

PERIODIZATION OF THE EAST ASIAN HISTORY OF SCIENCE

PERIODIZATION OF THE EAST ASIAN HISTORY OF SCIENCE PERIODIZATION OF THE EAST ASIAN HISTORY OF SCIENCE George Sarton in his Introduction to the History of Science called the early half of the 5th century the age of Faxian, and early 7th of Xuangzhuang,

More information