Analog to Digital Conversion

Size: px
Start display at page:

Download "Analog to Digital Conversion"

Transcription

1 Analog to Digital Conversion What the heck is analog to digital conversion? Why do we care?

2 Analog to Digital Conversion What the heck is analog to digital conversion? Why do we care? A means to convert an analog signal (i.e., sound, voltage, current, etc.) to a discrete representation Embedded systems work with discrete signals They have no idea the world is continuous!

3 Analog to Digital Conversion What's available on our device??

4 Analog to Digital Conversion What's available on our device?? A single ADC with 10-bit resolution

5 Analog to Digital Conversion What's available on our device?? A single ADC with 10-bit resolution 8 multiplexed channels We can't convert all 8 channels at once!

6 Analog to Digital Conversion What's available on our device?? A single ADC with 10-bit resolution 8 multiplexed channels We can't convert all 8 channels at once! Optional left adjustment results

7 Analog to Digital Conversion What's available on our device?? A single ADC with 10-bit resolution 8 multiplexed channels We can't convert all 8 channels at once! Optional left adjustment results Reference voltage: 0 Vcc (single input) Selectable 1.1V

8 Analog to Digital Conversion What modes and functional units are available??

9 Analog to Digital Conversion What modes and functional units are available?? Free running mode

10 Analog to Digital Conversion What modes and functional units are available?? Free running mode Single conversion mode

11 Analog to Digital Conversion What modes and functional units are available?? Free running mode Single conversion mode Interrupt on conversion complete

12 Analog to Digital Conversion What modes and functional units are available?? Free running mode Single conversion mode Interrupt on conversion complete Sleep mode noise cancellation

13 So what is all this ADC stuff about? Recall from your signals, DSP, or digital controls course! The world is analog (so are some of your sensors) Our computers are digital We need to convert the analog value to a digital representation How??? Lets look at an example using Matlab!

14 ADC Basic Principles! Ideal versus actuality In an ideal world, we would have infinite precision and could EXACTLY represent our analog input Ideally we have a straight line with slope 1

15 We don't live in a perfect world! We have a finite number of representations for each analog value Referred to as bins Assume we have 8 possibilities 3-bit resolution We see that the actual value intercepts the steps in the middle! Ideally we get +1/2 LSB res.

16 We don't live in a perfect world! LSB: Input voltage difference corresponding to a change in the Least Significant Bit of the output value This type of error is referred to as quantization error Present in ALL ADCs We can't fix it like we can other sources of error!

17 What other sources of error are there??? We will discuss several briefly! Offset error Gain error Differential nonlinearities Integral nonlinearities

18 Offset error Deviation of the actual ADC readings from the ideal input voltage (straight line approximation) An ADC value transition from 0 to 1 does NOT occur at the standard input value of ½ LSB Can compensate by subtracting out the offset!

19 Gain error Deviation of the last ADC output step's midpoint form the ideal straight line (AFTER compensating for offset error) Can compensate by scaling input values!

20 Nonlinearities Both differential and integral nonlinearities may exist MUCH more difficult to compensate for Usually polynomial fit or LUT

21 A note about errors! We can calibrate our ADC if we think it needs it Bottom line: When using single input mode (more later) Usually no calibration is needed as errors are typically around 1-2 LSB

22 What is this digital representation numerically? How exactly do we compute the digital value we need? This is a function of the reference voltage and resolution of the ADC Single ended conversions: ADC_val = Vin/Vref * 2^n 1 n = resolution (in bits) of the ADC

23 Lets look at these Issues in a numerical setting What issues persist when doing these conversions? Finite resolution! We can only differentiate between a predetermined change in voltage V_resolution = Vref/(2^n 1) For 5V and 10-bits: V_resolution = 5V/1023 = 4.88mV

24 Lets look at these Issues in a numerical setting What issues persist when doing these conversions? Finite resolution! We can only differentiate between a predetermined change in voltage V_resolution = Vref/(2^n 1) For 5V and 10-bits: V_resolution = 5V/1023 = 4.88mV You can NEVER make a more accurate measurement than 4.88mV

25 Lets look at these Issues in a numerical setting What issues persist when doing these conversions? Quantization: Recall: ADC_val = Vin/Vref * 2^n 1 Suppose: Vin = 2V, Vref = 5V, and n = 10-bits ADC_val = 2/5 * 1023 = 409.2

26 Lets look at these Issues in a numerical setting What issues persist when doing these conversions? Quantization: Recall: ADC_val = Vin/Vref * 2^n 1 Suppose: Vin = 2V, Vref = 5V, and n = 10-bits ADC_val = 2/5 * 1023 = How do we represent with a 10-bit number?

27 Lets look at these Issues in a numerical setting What issues persist when doing these conversions? Quantization: Recall: ADC_val = Vin/Vref * 2^n 1 Suppose: Vin = 2V, Vref = 5V, and n = 10-bits ADC_val = 2/5 * 1023 = How do we represent with a 10-bit number? We DON'T! The value gets rounded to the next LSB (recall the BEST we can do is +1/2 LSB accuracy)

28 So how exactly does the ADC work??? There is always some sort of sample and hold circuitry Can be a zero order, first order (or higher order) hold The circuitry involved can be as simple as a switch (transistor) and capacitor holding the input voltage (relatively) stable Although it is typically MUCH more complicated than this Regardless: The hold circuitry holds the input stable until a valid sample can be acquired!

29 How does the conversion happen? Once the input has been sampled: The AVR uses successive approximation This is equivalent to a binary search (draw diagram):

30 How does the conversion happen? Once the input has been sampled: The AVR uses successive approximation This is equivalent to a binary search (draw diagram): Sample and hold acquires the input sample An internal successive approximation register (SAR) is loaded such that its MSB is a digital 1 An internal DAC is then used to convert the SAR value to its analog equivalent This analog value is fed into a comparator along with the input voltage If the SAR voltage exceeds vin, the comparator resets the MSB in the SAR otherwise it remains set The next bit in the SAR is then set and the process is repeated!

31 Enough background! How do we use the ADC on the AVR? Recall: The ADC is (by default) 10-bits Zero represents GND Max represents the voltage on AREF 1LSB We can connect (Note: AREF is not connected by default - sch.): AVCC to AREF An internal 1.1V reference to AREF We MUST set which channel we want to convert We have 6-channels (single input)

32 Starting a conversion We have several choices to make about how we want the ADC to run! Single conversion mode A single conversion can be started by setting the ADSC bit (ADC Start Conversion) ADCSRA This bit remains high while the conversion is in progress and cleared by hardware when the conversion is complete Note: If a conversion is in progress while a channel change is selected, the conversion will complete and then change to the selected channel

33 Starting a conversion We can also trigger a conversion! Can start conversions at fixed intervals Note: The interrupt flag is set even when interrupts are NOT enabled! The INT flag MUST be cleared before starting a new conversion

34 Starting a conversion What about free running mode? We can use the ADC interrupt flag as the external trigger This will start a new conversion EVERY time a conversion is complete Hence free running mode Note: We MUST start the first conversion Conversions will persist even if the ADC interrupt flag is not cleared! We can also trigger a conversion by setting the start conversion bit (ADSC) even in auto trigger mode We can also use this bit to check the conversion status (always 1 during a conversion)

35 The ADC prescaler The SA circuitry requires a clock frequency between 50 khz and 200 khz This is for 10-bit resolution If we can deal with lower resolution we can sample up to 1MHz Lower resolution implies???

36 The ADC prescaler The SA circuitry requires a clock frequency between 50 khz and 200 khz This is for 10-bit resolution If we can deal with lower resolution we can sample up to 1MHz Lower resolution implies??? Less accuracy! How do we set the ADC clock frequency??? Similar to the timers! Use a prescaler to divide the input clock! (more later)

37 ADC Timing Normal conversion time is 13 ADC clock cycles When the ADC is switched in (enabled) The first conversion takes 25 ADC clock cycles The sample and hold: 1.5 ADC cycles after the start of a normal conversion 13.5 ADC cycles after the start of the first conversion The timing rules change a bit when using differential mode! Check the data sheet if needed!

38 Conversion channel and Reference selection Changed in the ADMUX register (MUXn and REFS 1:0) Use a temporary (single buffered) register CPU has access to this register This ensures that the values are ONLY changed during safe states Not during a conversion

39 Conversion channel and Reference selection What about free running mode??? How do we tell what channel is being converted during free running mode if I change the channels selection bits? Is the current data valid for this channel or the previous channel??? Safe times to update ADMUX When ADATE or ADEN is cleared During a conversion (one cycle after the trigger event) After a conversion (before the interrupt flag is cleared)

40 Noisy signals! How do we deal with noise on the line??? Will this cause any issues??

41 Noisy signals! How do we deal with noise on the line??? Will this cause any issues?? Absolutely! Our digital value will be bouncing all over the place! What can be done about it? Filter the input signal (low-pass: recall we are very band limited) We should also use a filter if we suspect there might be frequency content above 100kHz in our signal!!! Why???

42 Noisy signals! How do we deal with noise on the line??? Will this cause any issues?? Absolutely! Our digital value will be bouncing all over the place! What can be done about it? Filter the input signal (low-pass: recall we are very band limited) We should also use a filter if we suspect there might be frequency content above 100kHz in our signal!!! Why??? Nyquist!!!

43 Noise canceling! Some precautions to keep noise low on the ADCs Keep analog input paths short Wires are really just antennas in an embedded app. If using AVCC, connect it to Vcc via an LC network The ADC has built in noise canceling if required Severe drawbacks if trying to do other things during conversion! Do NOT switch digital output pins during conversions!!!

44 Registers! REFS 1:0: Reference selection bits We typically use AVCC with external cap

45 Registers! ALDAR: left vs. right adjust result MUX 3:0: Analog channel and gain selection

46 Registers! ADEN: ADC enable bit ADSC: Start conversion bit Set to start conversion Reads HIGH during conversion and LOW when complete ADATE: ADC auto trigger enable ADIF: ADC interrupt flag

47 Registers! ADIE: ADC Interrupt enable ADPS 2:0: Prescale selection

48 Registers! Where our data is stored (can use ADCW to get the entire result Left vs. right adjusted results

49 Registers! ACME: Analog comparator multiplexer enable MUX5: 5 th bit of the mux pins ADTS 2:0: Auto trigger source

50 Registers! Digital input disable register When set the digital input buffer is disabled Should be set to save power if not in use

51 Example!

52 Example!

53 Example!

Fig. 1 Analog pins of Arduino Mega

Fig. 1 Analog pins of Arduino Mega Laboratory 7 Analog signals processing An analog signals is variable voltage over time and is usually the output of a sensor that monitors the environment. Such a signal can be processed and interpreted

More information

CPE 310L EMBEDDED SYSTEM DESIGN (CPE)

CPE 310L EMBEDDED SYSTEM DESIGN (CPE) CPE 310L EMBEDDED SYSTEM DESIGN (CPE) LABORATORY 8 ANALOG DIGITAL CONVERTER DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL The goal of this lab is to understand

More information

Converters: Analogue to Digital

Converters: Analogue to Digital Converters: Analogue to Digital Presented by: Dr. Walid Ghoneim References: Process Control Instrumentation Technology, Curtis Johnson Op Amps Design, Operation and Troubleshooting. David Terrell 1 - ADC

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems A day of Misc. Topics Mark Brehob University of Michigan Lecture 12: Finish up Analog and Digital converters Finish design rules Quick discussion of MMIO

More information

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Analog to Digital Converter

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Analog to Digital Converter ME6405 Introduction to Mechatronics Fall 2006 Instructor: Professor Charles Ume Analog to Digital Converter Analog and Digital Signals Analog signals have infinite states available mercury thermometer

More information

Analog Input & Output

Analog Input & Output EEL 4744C: Microprocessor Applications Lecture 10 Part 1 Analog Input & Output Dr. Tao Li 1 Read Assignment M&M: Chapter 11 Dr. Tao Li 2 To process continuous signals as functions of time Advantages free

More information

Analog to Digital Converter. Last updated 7/27/18

Analog to Digital Converter. Last updated 7/27/18 Analog to Digital Converter Last updated 7/27/18 Analog to Digital Conversion Most of the real world is analog temperature, pressure, voltage, current, To work with these values in a computer we must convert

More information

Part 2 -- A digital thermometer or talk I2C to your atmel microcontroller

Part 2 -- A digital thermometer or talk I2C to your atmel microcontroller Home Electronics Graphics, Film & Animation E-cards Other Linux stuff Photos Online-Shop Content: The new things The LCD display A little GUI How it works: Analog to digital conversion How it works: I2C

More information

Data Converter Overview: DACs and ADCs. Dr. Paul Hasler and Dr. Philip Allen

Data Converter Overview: DACs and ADCs. Dr. Paul Hasler and Dr. Philip Allen Data Converter Overview: DACs and ADCs Dr. Paul Hasler and Dr. Philip Allen The need for Data Converters ANALOG SIGNAL (Speech, Images, Sensors, Radar, etc.) PRE-PROCESSING (Filtering and analog to digital

More information

Decade Counters Mod-5 counter: Decade Counter:

Decade Counters Mod-5 counter: Decade Counter: Decade Counters We can design a decade counter using cascade of mod-5 and mod-2 counters. Mod-2 counter is just a single flip-flop with the two stable states as 0 and 1. Mod-5 counter: A typical mod-5

More information

Data Conversion and Lab (17.368) Fall Lecture Outline

Data Conversion and Lab (17.368) Fall Lecture Outline Data Conversion and Lab (17.368) Fall 2013 Lecture Outline Class # 11 November 14, 2013 Dohn Bowden 1 Today s Lecture Outline Administrative Detailed Technical Discussions Lab Microcontroller and Sensors

More information

Section bit Analog-to-Digital Converter (ADC)

Section bit Analog-to-Digital Converter (ADC) Section 17. 10-bit Analog-to-Digital Converter (ADC) HIGHLIGHTS This section of the manual contains the following major topics: 17 17.1 Introduction...17-2 17.2 Control Registers...17-4 17.3 ADC Operation,

More information

Hello and welcome to this presentation of the STM32L4 Analog-to-Digital Converter block. It will cover the main features of this block, which is used

Hello and welcome to this presentation of the STM32L4 Analog-to-Digital Converter block. It will cover the main features of this block, which is used Hello and welcome to this presentation of the STM32L4 Analog-to-Digital Converter block. It will cover the main features of this block, which is used to convert the external analog voltage-like sensor

More information

Experiment # 4 Counters and Logic Analyzer

Experiment # 4 Counters and Logic Analyzer EE20L - Introduction to Digital Circuits Experiment # 4. Synopsis: Experiment # 4 Counters and Logic Analyzer In this lab we will build an up-counter and a down-counter using 74LS76A - Flip Flops. The

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 2018 EXAMINATION MODEL ANSWER

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 2018 EXAMINATION MODEL ANSWER Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme. 2) The model answer and the answer written by candidate may

More information

Converting between Analog and Digital Domains

Converting between Analog and Digital Domains Converting between Analog and Digital Domains Chapter 6 Renesas Electronics America Inc. Advanced Embedded Systems using the RX63N Rev. 0.1 00000-A Topics Need Reference voltage Resolution Sample and Hold

More information

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1

Interfacing Analog to Digital Data Converters. A/D D/A Converter 1 Interfacing Analog to Digital Data Converters A/D D/A Converter 1 In most of the cases, the PPI 8255 is used for interfacing the analog to digital converters with microprocessor. The analog to digital

More information

Tutorial on Technical and Performance Benefits of AD719x Family

Tutorial on Technical and Performance Benefits of AD719x Family The World Leader in High Performance Signal Processing Solutions Tutorial on Technical and Performance Benefits of AD719x Family AD7190, AD7191, AD7192, AD7193, AD7194, AD7195 This slide set focuses on

More information

Analog-to-Digital Conversion (Part 2) Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

Analog-to-Digital Conversion (Part 2) Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff Analog-to-Digital Conversion (Part 2) Charge redistribution network Instead of a resistor ladder for the D/A converter, the microcontroller uses an-all capacitor system to generate the known voltages It

More information

SUBSYSTEMS FOR DATA ACQUISITION #39. Analog-to-Digital Converter (ADC) Function Card

SUBSYSTEMS FOR DATA ACQUISITION #39. Analog-to-Digital Converter (ADC) Function Card SUBSYSTEMS FOR DATA ACQUISITION #39 Analog-to-Digital Converter (ADC) Function Card Project Scope Design an ADC function card for an IEEE 488 interface box built by Dr. Robert Kolbas. ADC card will add

More information

PHYS 3322 Modern Laboratory Methods I Digital Devices

PHYS 3322 Modern Laboratory Methods I Digital Devices PHYS 3322 Modern Laboratory Methods I Digital Devices Purpose This experiment will introduce you to the basic operating principles of digital electronic devices. Background These circuits are called digital

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus SOLUTIONS TO INTERNAL ASSESSMENT TEST 3 Date : 8/11/2016 Max Marks: 40 Subject & Code : Analog and Digital Electronics (15CS32) Section: III A and B Name of faculty: Deepti.C Time : 11:30 am-1:00 pm Note:

More information

Complete 10-Bit, 25 MHz CCD Signal Processor AD9943

Complete 10-Bit, 25 MHz CCD Signal Processor AD9943 a FEATURES 25 MSPS Correlated Double Sampler (CDS) 6 db to 40 db 10-Bit Variable Gain Amplifier (VGA) Low Noise Optical Black Clamp Circuit Preblanking Function 10-Bit, 25 MSPS A/D Converter No Missing

More information

NI-DAQmx Device Considerations

NI-DAQmx Device Considerations NI-DAQmx Device Considerations January 2008, 370738M-01 This help file contains information specific to analog output (AO) Series devices, C Series, B Series, E Series devices, digital I/O (DIO) devices,

More information

Complete 12-Bit 40 MHz CCD Signal Processor AD9945

Complete 12-Bit 40 MHz CCD Signal Processor AD9945 Complete 12-Bit 40 MHz CCD Signal Processor AD9945 FEATURES 40 MSPS Correlated Double Sampler (CDS) 6 db to 40 db 10-Bit Variable Gain Amplifier (VGA) Low Noise Optical Black Clamp Circuit Preblanking

More information

Complete 10-Bit/12-Bit, 25 MHz CCD Signal Processor AD9943/AD9944

Complete 10-Bit/12-Bit, 25 MHz CCD Signal Processor AD9943/AD9944 a FEATURES 25 MSPS Correlated Double Sampler (CDS) 6 db to 40 db 10-Bit Variable Gain Amplifier (VGA) Low Noise Optical Black Clamp Circuit Preblanking Function 10-Bit (AD9943), 12-Bit (AD9944), 25 MSPS

More information

Synthesized Clock Generator

Synthesized Clock Generator Synthesized Clock Generator CG635 DC to 2.05 GHz low-jitter clock generator Clocks from DC to 2.05 GHz Random jitter

More information

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil

ADC Peripheral in Microcontrollers. Petr Cesak, Jan Fischer, Jaroslav Roztocil ADC Peripheral in s Petr Cesak, Jan Fischer, Jaroslav Roztocil Czech Technical University in Prague, Faculty of Electrical Engineering Technicka 2, CZ-16627 Prague 6, Czech Republic Phone: +420-224 352

More information

Complete 14-Bit, 56 MSPS Imaging Signal Processor AD9941

Complete 14-Bit, 56 MSPS Imaging Signal Processor AD9941 Complete 14-Bit, 56 MSPS Imaging Signal Processor AD9941 FEATURES Differential sensor input with 1 V p-p input range 0 db/6 db variable gain amplifier (VGA) Low noise optical black clamp circuit 14-bit,

More information

Tutorial Introduction

Tutorial Introduction Tutorial Introduction PURPOSE - To explain how to configure and use the in common applications OBJECTIVES: - Identify the steps to set up and configure the. - Identify techniques for maximizing the accuracy

More information

Specifications for Thermopilearrays HTPA8x8, HTPA16x16 and HTPA32x31 Rev.6: Fg

Specifications for Thermopilearrays HTPA8x8, HTPA16x16 and HTPA32x31 Rev.6: Fg Principal Schematic for HTPA16x16: - 1 - Pin Assignment in TO8 for 8x8: Connect all reference voltages via 100 nf capacitors to VSS. Pin Assignment 8x8 Pin Name Description Type 1 VSS Negative power supply

More information

Complete 14-Bit 30 MSPS CCD Signal Processor AD9824

Complete 14-Bit 30 MSPS CCD Signal Processor AD9824 a FEATURES 14-Bit 30 MSPS A/D Converter 30 MSPS Correlated Double Sampler (CDS) 4 db 6 db 6-Bit Pixel Gain Amplifier (PxGA ) 2 db to 36 db 10-Bit Variable Gain Amplifier (VGA) Low Noise Clamp Circuits

More information

Analog-to-Digital Converter

Analog-to-Digital Converter 5 5.1 Objectives: The TM4C is equipped with an analog-to-digital (ATD) conversion system that samples an analog (continuous) signal at regular intervals and then converts each of these analog samples into

More information

VIRTUAL INSTRUMENTATION

VIRTUAL INSTRUMENTATION VIRTUAL INSTRUMENTATION Virtual instrument an equimplent that allows accomplishment of measurements using the computer. It looks like a real instrument, but its operation and functionality is essentially

More information

WINTER 14 EXAMINATION

WINTER 14 EXAMINATION Subject Code: 17320 WINTER 14 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

Note 5. Digital Electronic Devices

Note 5. Digital Electronic Devices Note 5 Digital Electronic Devices Department of Mechanical Engineering, University Of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada 1 1. Binary and Hexadecimal Numbers Digital systems perform

More information

Chapter 11 Sections 1 3 Dr. Iyad Jafar

Chapter 11 Sections 1 3 Dr. Iyad Jafar Data Acquisition and Manipulation Chapter 11 Sections 1 3 Dr. Iyad Jafar Outline Analog and Digital Quantities The Analog to Digital Converter Features of Analog to Digital Converter The Data Acquisition

More information

Digital Fundamentals. Introduction to Digital Signal Processing

Digital Fundamentals. Introduction to Digital Signal Processing Digital Fundamentals Introduction to Digital Signal Processing 1 Objectives List the essential elements in a digital signal processing system Explain how analog signals are converted to digital form Discuss

More information

AN919: Using the EFM8LB1 ADC

AN919: Using the EFM8LB1 ADC This application note shows general operation and usage of the EFM8LB1's and EFM8BB3's ADC. In addition, this document describes the advanced features of the ADC including Window Compare, Autoscan mode,

More information

Synthesis Technology E102 Quad Temporal Shifter User Guide Version 1.0. Dec

Synthesis Technology E102 Quad Temporal Shifter User Guide Version 1.0. Dec Synthesis Technology E102 Quad Temporal Shifter User Guide Version 1.0 Dec. 2014 www.synthtech.com/euro/e102 OVERVIEW The Synthesis Technology E102 is a digital implementation of the classic Analog Shift

More information

PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036

PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 PCI-DAS6034, PCI-DAS6035, and PCI-DAS6036 Specifications Document Revision 1.2, February, 2010 Copyright 2010, Measurement Computing Corporation Typical for 25 C unless otherwise specified. Specifications

More information

Analog-to-Digital Conversion

Analog-to-Digital Conversion ADC-DAC ผศ.ดร. ส ร นทร ก ตต ธรก ล และ อ.สรย ทธ กลมกล อม ภาคว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร สถาบ นเทคโนโลย พระจอมเกล าเจ าค ณทหารลาดกระบ ง Computer Interfacing, KMITL ADC-DAC 1 Analog-to-Digital

More information

Sources of Error in Time Interval Measurements

Sources of Error in Time Interval Measurements Sources of Error in Time Interval Measurements Application Note Some timer/counters available today offer resolution of below one nanosecond in their time interval measurements. Of course, high resolution

More information

INF4420 Project Spring Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)

INF4420 Project Spring Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) INF4420 Project Spring 2011 Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) 1. Introduction Data converters are one of the fundamental building blocks in integrated circuit design.

More information

Chapter 29 Analog Digital Converter (ADC)

Chapter 29 Analog Digital Converter (ADC) Chapter 29 Analog Digital Converter (ADC) 29.1 Introduction The analog-to-digital (ADC) converter block consists of two separate analog to digital converters, each with four analog inputs and their own

More information

B I O E N / Biological Signals & Data Acquisition

B I O E N / Biological Signals & Data Acquisition B I O E N 4 6 8 / 5 6 8 Lectures 1-2 Analog to Conversion Binary numbers Biological Signals & Data Acquisition In order to extract the information that may be crucial to understand a particular biological

More information

Copyright. Robert Alexander Fontaine

Copyright. Robert Alexander Fontaine Copyright by Robert Alexander Fontaine 2013 The Report Committee for Robert Alexander Fontaine Certifies that this is the approved version of the following report: Investigation of 10-Bit SAR ADC Using

More information

Introduction to Embedded Microcomputer Systems Lecture Discrete digital signal. Continuous analog signal

Introduction to Embedded Microcomputer Systems Lecture Discrete digital signal. Continuous analog signal Introduction to Embedded Microcomputer Systems Lecture 22.1 Recap Output compare interrupts Metrowerks Codewarrior Overview to Convertor Transducer: mechanical, electrical Using output compare interrupts

More information

High Performance TFT LCD Driver ICs for Large-Size Displays

High Performance TFT LCD Driver ICs for Large-Size Displays Name: Eugenie Ip Title: Technical Marketing Engineer Company: Solomon Systech Limited www.solomon-systech.com The TFT LCD market has rapidly evolved in the last decade, enabling the occurrence of large

More information

3 V/5 V, 450 μa 16-Bit, Sigma-Delta ADC AD7715

3 V/5 V, 450 μa 16-Bit, Sigma-Delta ADC AD7715 3 V/5 V, 450 μa 16-Bit, Sigma-Delta ADC AD7715 FEATURES Charge-balancing ADC 16-bits no missing codes 0.0015% nonlinearity Programmable gain front end Gains of 1, 2, 32 and 128 Differential input capability

More information

Politecnico di Torino HIGH SPEED AND HIGH PRECISION ANALOG TO DIGITAL CONVERTER. Professor : Del Corso Mahshid Hooshmand ID Student Number:

Politecnico di Torino HIGH SPEED AND HIGH PRECISION ANALOG TO DIGITAL CONVERTER. Professor : Del Corso Mahshid Hooshmand ID Student Number: Politecnico di Torino HIGH SPEED AND HIGH PRECISION ANALOG TO DIGITAL CONVERTER Professor : Del Corso Mahshid Hooshmand ID Student Number: 181517 13/06/2013 Introduction Overview.....2 Applications of

More information

AD16-64(LPCI)LA. Non-isolated high precision analog input board for Low Profile PCI AD16-64(LPCI)LA 1. Ver.1.01

AD16-64(LPCI)LA. Non-isolated high precision analog input board for Low Profile PCI AD16-64(LPCI)LA 1. Ver.1.01 Non-isolated high precision analog board for Low Profile PCI AD16-64(LPCI)LA * Specifications, color and design of the products are subject to change without notice. This product is a PCI bus compatible

More information

Experiment 2: Sampling and Quantization

Experiment 2: Sampling and Quantization ECE431, Experiment 2, 2016 Communications Lab, University of Toronto Experiment 2: Sampling and Quantization Bruno Korst - bkf@comm.utoronto.ca Abstract In this experiment, you will see the effects caused

More information

nc... Freescale Semiconductor, I

nc... Freescale Semiconductor, I Application Note Rev. 0, 2/2003 Interfacing to the HCS12 ATD Module by Martyn Gallop, Application Engineering, Freescale, East Kilbride Introduction Many of the HCS12 family of 16-bit microcontrollers

More information

International Islamic University Chittagong (IIUC) Department of Electrical and Electronic Engineering (EEE)

International Islamic University Chittagong (IIUC) Department of Electrical and Electronic Engineering (EEE) International Islamic University Chittagong (IIUC) Department of Electrical and Electronic Engineering (EEE) Course Code: EEE 3518 Course Title: Embedded System Sessional EXPERIMENT NO. 8 Name of the Experiment:

More information

Complete 12-Bit 30 MSPS CCD Signal Processor AD9845B

Complete 12-Bit 30 MSPS CCD Signal Processor AD9845B Complete 12-Bit 30 MSPS CCD Signal Processor AD9845B FEATURES Pin Compatible with AD9845A Designs 12-Bit 30 MSPS A/D Converter 30 MSPS Correlated Double Sampler (CDS) 4 db 6 db 6-Bit Pixel Gain Amplifier

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) Subject Code: 17320 Model Answer Page 1 of 32 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the Model answer scheme. 2) The model

More information

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Logic Gates, Timers, Flip-Flops & Counters. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates, Timers, Flip-Flops & Counters Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Logic Gates Transistor NOT Gate Let I C be the collector current.

More information

TV Synchronism Generation with PIC Microcontroller

TV Synchronism Generation with PIC Microcontroller TV Synchronism Generation with PIC Microcontroller With the widespread conversion of the TV transmission and coding standards, from the early analog (NTSC, PAL, SECAM) systems to the modern digital formats

More information

ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control

ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control Broadband frequency range from 20Mbps 18.0Gbps Minimal insertion jitter Fast rise and

More information

ES /2 digit with LCD

ES /2 digit with LCD Features Max. ±19,999 counts QFP-44L and DIP-40L package Input full scale range: 200mV or 2V Built-in multiplexed LCD display driver Underrange/Overrange outputs 10µV resolution on 200mV scale Display

More information

3 V/5 V, CMOS, 500 A Signal Conditioning ADC AD7714

3 V/5 V, CMOS, 500 A Signal Conditioning ADC AD7714 a FEATURES Charge Balancing ADC 24 Bits No Missing Codes 0.0015% Nonlinearity Five-Channel Programmable Gain Front End Gains from 1 to 128 Can Be Configured as Three Fully Differential Inputs or Five Pseudo-Differential

More information

GALILEO Timing Receiver

GALILEO Timing Receiver GALILEO Timing Receiver The Space Technology GALILEO Timing Receiver is a triple carrier single channel high tracking performances Navigation receiver, specialized for Time and Frequency transfer application.

More information

2 The Essentials of Binary Arithmetic

2 The Essentials of Binary Arithmetic ENGG1000: Engineering esign and Innovation Stream: School of EE&T Lecture Notes Chapter 5: igital Circuits A/Prof avid Taubman April5,2007 1 Introduction This chapter can be read at any time after Chapter

More information

Digital Correction for Multibit D/A Converters

Digital Correction for Multibit D/A Converters Digital Correction for Multibit D/A Converters José L. Ceballos 1, Jesper Steensgaard 2 and Gabor C. Temes 1 1 Dept. of Electrical Engineering and Computer Science, Oregon State University, Corvallis,

More information

Digital Signal. Continuous. Continuous. amplitude. amplitude. Discrete-time Signal. Analog Signal. Discrete. Continuous. time. time.

Digital Signal. Continuous. Continuous. amplitude. amplitude. Discrete-time Signal. Analog Signal. Discrete. Continuous. time. time. Discrete amplitude Continuous amplitude Continuous amplitude Digital Signal Analog Signal Discrete-time Signal Continuous time Discrete time Digital Signal Discrete time 1 Digital Signal contd. Analog

More information

Fast Quadrature Decode TPU Function (FQD)

Fast Quadrature Decode TPU Function (FQD) PROGRAMMING NOTE Order this document by TPUPN02/D Fast Quadrature Decode TPU Function (FQD) by Jeff Wright 1 Functional Overview The fast quadrature decode function is a TPU input function that uses two

More information

GHz Sampling Design Challenge

GHz Sampling Design Challenge GHz Sampling Design Challenge 1 National Semiconductor Ghz Ultra High Speed ADCs Target Applications Test & Measurement Communications Transceivers Ranging Applications (Lidar/Radar) Set-top box direct

More information

ADC0804C, ADC BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS

ADC0804C, ADC BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS 8-Bit esolution atiometric Conversion 100-µs Conversion Time 135-ns Access Time No Zero Adjust equirement On-Chip Clock Generator Single 5-V Power Supply Operates With Microprocessor or as Stand-Alone

More information

The Successive Approximation Converter Concept - 8 Bit, 5 Volt Example

The Successive Approximation Converter Concept - 8 Bit, 5 Volt Example Successive Approximation Converter A successive approximation converter provides a fast conversion of a momentary value of the input signal. It works by first comparing the input with a voltage which is

More information

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of applications such as home appliances, medical, automotive,

More information

Complete 12-Bit 40 MHz CCD Signal Processor AD9945

Complete 12-Bit 40 MHz CCD Signal Processor AD9945 Complete 12-Bit 40 MHz CCD Signal Processor AD9945 FEATURES 40 MSPS Correlated Double Sampler (CDS) 6 db to 40 db 10-Bit Variable Gain Amplifier (VGA) Low Noise Optical Black Clamp Circuit Preblanking

More information

Generation and Measurement of Burst Digital Audio Signals with Audio Analyzer UPD

Generation and Measurement of Burst Digital Audio Signals with Audio Analyzer UPD Generation and Measurement of Burst Digital Audio Signals with Audio Analyzer UPD Application Note GA8_0L Klaus Schiffner, Tilman Betz, 7/97 Subject to change Product: Audio Analyzer UPD . Introduction

More information

Analogue Versus Digital [5 M]

Analogue Versus Digital [5 M] Q.1 a. Analogue Versus Digital [5 M] There are two basic ways of representing the numerical values of the various physical quantities with which we constantly deal in our day-to-day lives. One of the ways,

More information

AI-1616L-LPE. Features. High-precision Analog input board (Low Profile size) for PCI Express AI-1616L-LPE 1. Ver.1.02 Ver.1.01

AI-1616L-LPE. Features. High-precision Analog input board (Low Profile size) for PCI Express AI-1616L-LPE 1. Ver.1.02 Ver.1.01 High-precision Analog input board (Low Profile size) for PCI Express AI-1616L-LPE This product is a multi-function, PCI Express bus-compliant interface board that incorporates high-precision 16-bit analog

More information

NanoGiant Oscilloscope/Function-Generator Program. Getting Started

NanoGiant Oscilloscope/Function-Generator Program. Getting Started Getting Started Page 1 of 17 NanoGiant Oscilloscope/Function-Generator Program Getting Started This NanoGiant Oscilloscope program gives you a small impression of the capabilities of the NanoGiant multi-purpose

More information

ELCT706 MicroLab Session #3 7-segment LEDs and Analog to Digital Conversion. Eng. Salma Hesham

ELCT706 MicroLab Session #3 7-segment LEDs and Analog to Digital Conversion. Eng. Salma Hesham ELCT706 MicroLab Session #3 7-segment LEDs and Analog to Digital Conversion 7-Segment LED Display g f com a b e d com c P 7-Segment LED Display Common Cathode - Com Pin = Gnd - Active high inputs - Example

More information

SignalTap Plus System Analyzer

SignalTap Plus System Analyzer SignalTap Plus System Analyzer June 2000, ver. 1 Data Sheet Features Simultaneous internal programmable logic device (PLD) and external (board-level) logic analysis 32-channel external logic analyzer 166

More information

B. Sc. III Semester (Electronics) - ( ) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791)

B. Sc. III Semester (Electronics) - ( ) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791) B. Sc. III Semester (Electronics) - (2013-14) Digital Electronics-II) BE-301 MODEL ANSWER (AS-2791) Section-[A] i. (B) ii. (A) iii. (D) iv. (C) v. (C) vi. (C) vii. (D) viii. (B) Ans-(ix): In JK flip flop

More information

Low Power, 16-Bit Buffered Sigma-Delta ADC AD7790

Low Power, 16-Bit Buffered Sigma-Delta ADC AD7790 Low Power, 16-Bit Buffered Sigma-Delta ADC AD7790 FEATURES Power Supply: 2.5 V to 5.25 V operation Normal: 75 µa maximum Power-down: 1 µa maximum RMS noise: 1.1 µv at 9.5 Hz update rate 16-bit p-p resolution

More information

LX3V-4AD User manual Website: Technical Support: Skype: Phone: QQ Group: Technical forum:

LX3V-4AD User manual Website: Technical Support: Skype: Phone: QQ Group: Technical forum: User manual Website: http://www.we-con.com.cn/en Technical Support: support@we-con.com.cn Skype: fcwkkj Phone: 86-591-87868869 QQ Group: 465230233 Technical forum: http://wecon.freeforums.net/ 1. Introduction

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

BASCOM-TV. TV Code Features: ICs supported: BASCOM versions:

BASCOM-TV. TV Code Features: ICs supported: BASCOM versions: BASCOM-TV With this software module you can generate output directly to a TV - via an RGB SCART connection - from BASCOM (AVR), using a just few resistors and a 20 MHz crystal. Write your program with

More information

Published in A R DIGITECH

Published in A R DIGITECH Design of propeller clock by using 8051 Microcontroller Ahmed H. Al-Saadi*1 *1 (B.Sc. of Computer Engineering in Al Hussein University College of Engineering, Iraq) ah9@outlook.com*1 Abstract The propeller

More information

Chapter 4. Logic Design

Chapter 4. Logic Design Chapter 4 Logic Design 4.1 Introduction. In previous Chapter we studied gates and combinational circuits, which made by gates (AND, OR, NOT etc.). That can be represented by circuit diagram, truth table

More information

3 V/5 V, CMOS, 500 A Signal Conditioning ADC AD7714

3 V/5 V, CMOS, 500 A Signal Conditioning ADC AD7714 a FEATURES Charge Balancing ADC 24 Bits No Missing Codes 0.0015% Nonlinearity Five-Channel Programmable Gain Front End Gains from 1 to 128 Can Be Configured as Three Fully Differential Inputs or Five Pseudo-Differential

More information

DT9837 Series. High Performance, USB Powered Modules for Sound & Vibration Analysis. Key Features:

DT9837 Series. High Performance, USB Powered Modules for Sound & Vibration Analysis. Key Features: DT9837 Series High Performance, Powered Modules for Sound & Vibration Analysis The DT9837 Series high accuracy dynamic signal acquisition modules are ideal for portable noise, vibration, and acoustic measurements.

More information

DT8837. High Performance Ethernet Instrument Module for Sound & Vibration. Overview. Key Features

DT8837. High Performance Ethernet Instrument Module for Sound & Vibration. Overview. Key Features DT8837 High Performance Ethernet Instrument Module for Sound & Vibration Overview The DT8837 is a high-accuracy, multi-channel module that is ideal for sound and vibration measurements. All the I/O channels

More information

PICOSECOND TIMING USING FAST ANALOG SAMPLING

PICOSECOND TIMING USING FAST ANALOG SAMPLING PICOSECOND TIMING USING FAST ANALOG SAMPLING H. Frisch, J-F Genat, F. Tang, EFI Chicago, Tuesday 6 th Nov 2007 INTRODUCTION In the context of picosecond timing, analog detector pulse sampling in the 10

More information

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment FAST SHIPPING AND DELIVERY TENS OF THOUSANDS OF IN-STOCK ITEMS EQUIPMENT DEMOS HUNDREDS OF MANUFACTURERS SUPPORTED

More information

Department of Communication Engineering Digital Communication Systems Lab CME 313-Lab

Department of Communication Engineering Digital Communication Systems Lab CME 313-Lab German Jordanian University Department of Communication Engineering Digital Communication Systems Lab CME 313-Lab Experiment 3 Pulse Code Modulation Eng. Anas Alashqar Dr. Ala' Khalifeh 1 Experiment 2Experiment

More information

Integrated Circuit for Musical Instrument Tuners

Integrated Circuit for Musical Instrument Tuners Document History Release Date Purpose 8 March 2006 Initial prototype 27 April 2006 Add information on clip indication, MIDI enable, 20MHz operation, crystal oscillator and anti-alias filter. 8 May 2006

More information

IV 251. Signal Converter SSI Analogue and SSI Serial. Operating Instructions. control motion interface

IV 251. Signal Converter SSI Analogue and SSI Serial. Operating Instructions. control motion interface control motion interface IV 251 Signal Converter SSI Analogue and SSI Serial Suitable for operation with all sensors and encoders using SSI interface Scalable analogue outputs +/- 10 volts, 0-20 ma and

More information

110 MHz 256-Word Color Palette 15-, 16-, and 24-Bit True Color Power-Down RAMDAC

110 MHz 256-Word Color Palette 15-, 16-, and 24-Bit True Color Power-Down RAMDAC 110 MHz 256-Word Color Palette 15-, 16-, and 24-Bit True Color Power-Down RAMDAC Designed specifically for high-performance color graphics, the RAM- DAC supports three true-color modes: 15-bit (5:5:5,

More information

DT9857E. Key Features: Dynamic Signal Analyzer for Sound and Vibration Analysis Expandable to 64 Channels

DT9857E. Key Features: Dynamic Signal Analyzer for Sound and Vibration Analysis Expandable to 64 Channels DT9857E Dynamic Signal Analyzer for Sound and Vibration Analysis Expandable to 64 Channels The DT9857E is a high accuracy dynamic signal acquisition module for noise, vibration, and acoustic measurements

More information

Major Differences Between the DT9847 Series Modules

Major Differences Between the DT9847 Series Modules DT9847 Series Dynamic Signal Analyzer for USB With Low THD and Wide Dynamic Range The DT9847 Series are high-accuracy, dynamic signal acquisition modules designed for sound and vibration applications.

More information

DIGITAL ELECTRONICS: LOGIC AND CLOCKS

DIGITAL ELECTRONICS: LOGIC AND CLOCKS DIGITL ELECTRONICS: LOGIC ND CLOCKS L 6 INTRO: INTRODUCTION TO DISCRETE DIGITL LOGIC, MEMORY, ND CLOCKS GOLS In this experiment, we will learn about the most basic elements of digital electronics, from

More information

FRQM-2 Frequency Counter & RF Multimeter

FRQM-2 Frequency Counter & RF Multimeter FRQM-2 Frequency Counter & RF Multimeter Usage Instructions Firmware v2.09 Copyright 2007-2011 by ASPiSYS Ltd. Distributed by: ASPiSYS Ltd. P.O.Box 14386, Athens 11510 (http://www.aspisys.com) Tel. (+30)

More information

Notes on Digital Circuits

Notes on Digital Circuits PHYS 331: Junior Physics Laboratory I Notes on Digital Circuits Digital circuits are collections of devices that perform logical operations on two logical states, represented by voltage levels. Standard

More information