Design of Memory Based Implementation Using LUT Multiplier

Size: px
Start display at page:

Download "Design of Memory Based Implementation Using LUT Multiplier"

Transcription

1 Design of Memory Based Implementation Using LUT Multiplier Charan Kumar.k 1, S. Vikrama Narasimha Reddy 2, Neelima Koppala 3 1,2 M.Tech(VLSI) Student, 3 Assistant Professor, ECE Department, Sree Vidyanikethan Engineering College(Autonomous), A.Rangampet, Tirupati. Abstract - Multiplication is major arithmetic operation in signal processing. In ALU s the multiplier uses lookup-table (LUT) as memory for their computations. We do not find any significant work on LUT optimization for memory-based multiplication. In this project, the anti symmetric product coding (APC) and odd-multiple storage (OMS) are used for lookup-table (LUT) design for memory-based multipliers used in the signal processing applications like filter design. Each of this technique results in the reduction of LUT size by a factor of two. A different form of APC and modified OMS scheme can be combined for efficient memory implementation which reduces LUT size to one-fourth of the conventional LUT. The proposed design of LUTbased multiplier involves less area-delay product for higher word sizes due to operand decomposition than the canonical-signed-digit (CSD)-based multipliers. The coding is proposed to be done in Veriolg HDL and synthesized using XillinxISE10.1i and implemented using Spartan3E FPGA. Key words- digital signal processing (DSP) chip, lookuptable (LUT)-based computing, memory-based computing, very large scale integrations (VLSI). operation of the these devices is very fast which consumes less power, less area, reduces time of operation & become more efficient with respect to the several factors such as reliability, flexibility, scaling etc. therefore it leads to significant growth & improvement of these devices become cheaper. The semiconductors have embedded memory which results in dominating presence in the SOC s exceeding 90% of the total soc [2]. When compared to logical components, the semiconductor memory devices has high transistor packing density with increasing fast rate [1]. Apart from that, memory based computing structures offers more other advantages rather than multiply accumulate structures such as greater potential for high throughput, low latency implementation and less dynamic power consumption. Memory-based computing is well suited for many digital signal processing (DSP) algorithms, which involve multiplication with a fixed set of coefficients. The following block diagram shows the conventional look up table based multiplier in fig1 I. INTRODUCTION Due to the rapid development of increasing technology, now a day s semiconductor devices has become more prominent usage in every field. The ISSN: Page 46

2 Fig. 1: Conventional LUT-based multiplier. Whereas X is an input address & A is a multiplier to the input X with fixed coefficient then resulting product is taken as output. Suppose X is a positive binary number of word length L, it provides 2 L possible values of X in which corresponding resultant product as C=A X for possible values of X. In memory based multiplication, for all possible values of X, A conventional LUT having word length 2 L Provides pre-computed product values. For an LUT, Xi is an input address with a L bit binary digit then the corresponding product A. XI is as its output. Therefore the product A. XI is stored in the location XI for 0 XI 2L 1. In earlier days, for memory based implementation of DSP algorithms involving orthogonal transforms & digital filters [5]-[12] had reported by several architectures but they could not find any significant work for LUT optimization. Recently we introduced a new approach for LUT optimization in which only the odd multiples of fixed coefficient are to be stored which is termed as oddmultiple-storage-scheme (OMS) [3]. An LUT size can also be reduced to half by another approach known as anti-symmetric product coding (APC) scheme where as the product words are termed as anti symmetric pairs [4]. manner such that the input address & LUT output could always be transformed into odd integers. When OMS scheme is combined with APC approach [3], it does not provide efficient output since APC functions [4] for odd multiples only. So therefore, for efficient memory based multiplication a modified form of OMS scheme is combined with different form of APC. A modified OMS [4] scheme & combined OMS APC approaches are discussed in section 2 where as the implementation of combined schemes is described in section 3 and the design of LUT based multiplier is described in section 4. Finally the conclusion and the synthesizing results of proposed multiplier presented in section5. II. LUT OPTIMIZATIONS FOR MEMORY- BASED MULTIPLICATION This section describes about the APC technique and its optimization by combining it with a modified form of OMS. A. APC for LUT Optimization: For our convenience, we assume both X and A is to be positive integers to simply the operation. The above table1 shows the product values for different values of input X for L=5 as shown. In APC approach, even it reduces the LUT size by a factor of two but for LUT output it takes more time & space for performing the 2s complement operation for sign modification to the corresponding input. We find that, by combining the techniques of APC & OMS scheme the 2s complement operations could be simplified in a ISSN: Page 47

3 Table I APC words for L=5 with different input values the 4-bit LUT address values and corresponding coded words respectively. here the product representation is derived from the anti-symmetric behavior of the products, so we can term it as antisymmetric product code. The 4-bit address X = (x3 x2 x1 x0 ) of the APC word is given by X = XL, if x4 = 1 XL if x4 = 0 (2) For X= ( ), the encoded word to be stored is 16A. From the above table it is clear that for every input word X in the third column of each row resembles the 2s complement of every input word X on the first column of the same row. In addition, the sum of product values of two input values on the same row is 32A. Let u & v be the product values of second and fourth columns of each row respectively. Therefore we can write u=[(u + v)/2 (v u)/2] and v=[(u + v)/2 + (v u)/2] for (u + v) = 32A, We have u=16a [(v u)/2] and v=16 A + [(v u)/2] (1) from the above terms, the product values of the second and fourth columns of the table 1 shows negative- mirror symmetry. Therefore from the above symmetry of the product words of those two columns reduces LUT size, whereas instead of storing u and v, only [(v u)/2] is stored for a pair of input on a given row. The fifth and sixth columns of the table shows where XL = (x3x2x1x0) is the four less significant bits of X and XL is the 2s complement of X. the required product could be obtained by adding or subtracting the stored value (v u) to or from the fixed value 16A when x4 is 1or 0, respectively, i.e., Product word = 16A + (sign value) X (APC word) (3) Where sign value = 1 for x4 = 1 and Sign value = 1 for x4 = 0. The product value for X = (10000) corresponds to APC value zero, which could be derived by resetting the LUT output, instead of storing that in the LUT. B. Modified OMS for LUT Optimization As the name OMS itself specifies that it stores only odd multiples of fixed coefficient. The multiplication of a binary of binary word X of word size L with fixed coefficient A, instead of storing all possible 2 L product values, LUT stores only 2 L /2 words corresponding to odd multiples of A. While all even multiples of A can be converted into odd multiples by left shift operations.from the above assumptions, the LUT for the multiplication of an L-bit input with a ISSN: Page 48

4 W-bit coefficient could be designed by the following strategy. 1) A memory unit of [(2L/2) + 1] words of (W + L)-bit width is used to store the product values, where the first (2L/2) words are odd multiples of A, and the last word is zero. 2) A barrel shifter for producing a maximum of (L 1) left shifts is used to derive all the even multiples of A. 3) The L-bit input word is mapped to the (L 1)-bit address of the LUT by an address encoder, and control bits for the barrel shifter are derived by a control circuit. Table 2 shows that eight odd multiples, A (2i + 1) are stored in eight memory locations as pi for i= 0, 1 7. The even multiples 2A, 4A, and 8A are derived by left-shift Table II OMS-Based design of LUT of APC words for L=5 multiples of Aare derived from barrel shifter which produces maximum of three left shifts. As eq(3) states that the word to be stored for X = (00000) is not 0 but 16A, which we can obtain from A by four left shifts using a barrel shifter. However, if 16A is not derived from A, only a maximum of three left shifts is required to obtain all other even multiples of A. a two-stage logarithmic barrel shifter operates only for a maximum of 3 shifts while for a four shift operations it requires a 3 stage barrel shifter. For input X = (00000), this modified OMS scheme is more efficient to store 2A such that the product 16A can be obtained by three arithmetic left shifts. Table3 shows that the product values and encoded words for input words X = (00000) and (10000) respectively. For X = (00000), the required encoded word 16A is obtained by 3-bit left shifts operations of 2A [stored at address (1000)]. For X = (10000), the APC word 0 is derived by resetting the LUT output, by an active-high RESET signal given by RESET = (x0 + x1 + x2 + x3) x4. (4) Table III Products and encoded words for X= (00000) and (10000) operations of A. Similarly, 6A and 12A are derived by left shifting 3A, while 10A and 14A are derived by left shifting 5A and 7A, respectively. All even ISSN: Page 49

5 From Tables II and III it shows that that the 5-bit input word X can be mapped into a 4-bit LUT address (d3d2d1d0), by a simple set of mapping relations di = x i+1, for i = 0, 1, 2 and d3 = x0 (5) where X = (x3 x2 x1 x0) is generated by shifting-out all the leading zeros of X by an arithmetic right shift followed by address mapping, i.e., X = YL, if x4 = 1 Y L, if x4 = 0 (6) Where Y L and Y L are derived by circularly shiftingout all the leading zeros of X L and X L, respectively. III. IMPLEMENTATION OF THE LUT-BASED MULTIPLIER USING THE PROPOSED LUT OPTIMIZATION SCHEME This section deals with the implementation of the LUT-based multiplier using the proposed scheme, where the LUT is optimized by a combination of the APC scheme and a modified OMS technique. Fig 2 shows that the structure and function of the LUT-based multiplier for L = 5 using the APC technique. It consists of a four-input LUT of 16 words to store the APC values of product words as given in the sixth column of Table I, except on the last row, where 2A is stored for input X = (00000) instead of storing a 0 for input X = (10000). Besides, it consists of an address-mapping circuit and an add/subtract circuit. The address-mapping circuit generates the desired address (X 3, X 2, X 1, X 0 ) according to (2). A straightforward implementation of address mapping can be done by multiplexing XL and X L using x4 as the control bit. The addressmapping circuit, can be optimized by the realization of three XOR gates, three AND gates, two OR gates, and a NOT gate, as shown in fig 2. According to eq (4) RESET can be generated by a control circuit (not shown in fig). The output of the LUT is added with or subtracted from 16A, for x4 = 1 or 0, respectively, according to (3) by the add/subtract cell. Hence, x4 is used as the control for the add/subtract cell. B. Implementation of the Optimized LUT Using Modified OMS A. Implementation of the LUT Multiplier Using APC for L = 5 Fig.: 3 APC-OMS combined LUT design for multiplication of W-bit fixed coefficient. Fig.: 2 LUT based multiplier using APC technique for L=5. ISSN: Page 50

6 Fig 3 shows that the combined schemes of proposed APC OMS design of an LUT for L = 5 for any coefficient width W. It consists of an LUT of nine words of (W + 4)-bit width, a four-to-nine-line address decoder, a barrel shifter, an address generation circuit, and a control circuit for generating the RESET signal and control word (s1,s0) for the barrel shifter. As noted in Table-II and Table-III control signals are 2-bit binary equivalent for required number of shifts. Alternative of reset signal for (4) is generated as (d3 AND x4). In Fig. 4(b) generation of control signals and reset signal is shown. According to (5) and (6) address-generator circuit receives the input operand X as 5-bit and maps that onto the 4-bit address word (d3d2d1d0). IV. Results and Discussion Comparison factors No. of 4-input LUT s (9312) Table IV No. of word size for LUT s 4-bit 5-bit 6-bit No. of slices (4656) No. of IO s (a) (b) Fig.: 4(a) four-to-nine-line decoder. (b) Control circuit The pre-computed values of A (2i + 1) are stored in stored in Table II as Pi, for i = 0, 1, 2,..., 7, in the eight consecutive locations of the memory array, while for input X= (00000) is stored for 2A at LUT address 1000, as mentioned in Table III. The decoder generates the nine-word select lines by taking 4-bit address lines, to select the required word from the LUT multiplier. With simple modification of 3-to-8 decoder we are getting 4-to-9-line decoder as shown in Fig. 4(a). To produce desired number of shifts in barrel shifter control signals S0 and S1 are used according to the relations. s0 =x0 + (x1 + x2) (7a) s1 =(x0 + x1) (8b) No. of bonded IO s (232) Delay (ns) Fig. (5) Simulated results for L=4 From the above fig. (5) We are applying the input bit sequences for X=4 h0 and getting the output response for q=8 h03. ISSN: Page 51

7 Fig. (6) Simulated results for L=5 Fig. (7) Simulated results for L=6 From the above fig. (6) We are applying the input bit sequences for X=5 h00 and getting the output response for q=9 h003. From the above fig. (7) We are applying the input bit sequences for X=6 h00 and getting the output response for q=10 h003. As shown in the above table IV, for the increase in the word size in the LUT multiplier, there is a gradual degradation of delay for L=4 and L=5 and for L=6 there is no delay change with respect to L=5 with optimum utilization of memory. The LUT multiplier for L=W=4, 5 and 6 bits are coded in Verilog HDL and synthesized using Xillinx ISE 10.1i environment by using SPARTAN 3E FPGA fg320 package, device used is XC3S500e with speed grade of -5. IV CONCLUSION The LUTs are implemented as arrays of constants for efficient utilization of area-delay product. The area and delay complexities of the multipliers estimated from the synthesis results are listed in Table IV. It is found that the proposed LUT design involves comparable area and time complexities for a word size of 4 bits, but for higher word sizes, it has comparatively less delay factor. In this brief, we have derived the possibility of using LUT based multipliers for the constant implement of operations like multiplication especially for DSP applications. Future scope for this will be implementation of derived OMS APC-based LUTs for higher input sizes for suitable area-delay product with different forms of decompositions. REFERENCES [1] Pramod Kumar Meher, LUT Optimization for Memory-Based Computation IEEE Transactions on circuits and systems ii: express briefs, vol. 57, no. 4, april 2010 [2] International Technology Roadmap for Semiconductors. [Online]. Available: [3] P. K. Meher, New approach to LUT implementation and accumulation for memory-based Multiplication, in Proc. IEEE ISCAS, May 2009, pp [4] P. K. Meher, New look-up-table optimizations for memory-based multiplication, in Pro. Int. Symp.Integr. Circuits (ISIC 09), Dec. 2009, to be published. [5] P. K. Meher, Memory-based Hardware for resourceconstrained digital signal processing systems, inproc. 6th Int Conf. ICICS, Dec.2007, pp.1 4. [6] P. K. Meher, Systolic designs for DCT using a lowcomplexity Concurrent convolutional formulation, IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 9, pp , Sep [7] D. F. Chiper, M. N. S. Swamy, M. O. Ahmad, and T. Stouraitis, Systolic algorithms and a memory-based design approach for a unified architecture for the computation of DCT/DST/IDCT/IDST,IEEE Trans. ISSN: Page 52

8 Circuits Syst. I, Reg. Papers, vol. 52, no. 6, pp , Jun [8] H.-C. Chen, J.-I. Guo, T.-S. Chang, and C.-W. Jen, A memory-efficient realization of cyclic convolution and its application to discrete cosine transform, IEEE Trans. Circuits Syst.Video Technol., vol. 15, no. 3, pp , Mar [9] A. K. Sharma, Advanced Semiconductor Memories: Architectures,Designs,and Applications. Piscataway, NJ: IEEE Press, [10] D. F. Chiper, M. N. S. Swamy, M. O. Ahmad, and T. Stouraitis, A Systolic array architecture for the discrete sine transform, IEEE Trans. Signal Process., vol. 50, no. 9, pp , Sep [11] H.-R. Lee, C.-W. Jen, and C.-M. Liu, On the design automation of The memory-based VLSI architectures for FIR filters, IEEE Trans. Consum. Electron., vol. 39, no. 3, pp , Aug [12] J.-I. Guo, C.-M. Liu, and C.-W. Jen, The efficient memory-based VLSI array design for DFT and DCT, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 39, no. 10, pp , Oct ISSN: Page 53

OMS Based LUT Optimization

OMS Based LUT Optimization International Journal of Advanced Education and Research ISSN: 2455-5746, Impact Factor: RJIF 5.34 www.newresearchjournal.com/education Volume 1; Issue 5; May 2016; Page No. 11-15 OMS Based LUT Optimization

More information

ALONG with the progressive device scaling, semiconductor

ALONG with the progressive device scaling, semiconductor IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 57, NO. 4, APRIL 2010 285 LUT Optimization for Memory-Based Computation Pramod Kumar Meher, Senior Member, IEEE Abstract Recently, we

More information

A Novel Architecture of LUT Design Optimization for DSP Applications

A Novel Architecture of LUT Design Optimization for DSP Applications A Novel Architecture of LUT Design Optimization for DSP Applications O. Anjaneyulu 1, Parsha Srikanth 2 & C. V. Krishna Reddy 3 1&2 KITS, Warangal, 3 NNRESGI, Hyderabad E-mail : anjaneyulu_o@yahoo.com

More information

Implementation of Memory Based Multiplication Using Micro wind Software

Implementation of Memory Based Multiplication Using Micro wind Software Implementation of Memory Based Multiplication Using Micro wind Software U.Palani 1, M.Sujith 2,P.Pugazhendiran 3 1 IFET College of Engineering, Department of Information Technology, Villupuram 2,3 IFET

More information

Optimization of memory based multiplication for LUT

Optimization of memory based multiplication for LUT Optimization of memory based multiplication for LUT V. Hari Krishna *, N.C Pant ** * Guru Nanak Institute of Technology, E.C.E Dept., Hyderabad, India ** Guru Nanak Institute of Technology, Prof & Head,

More information

LUT Optimization for Memory Based Computation using Modified OMS Technique

LUT Optimization for Memory Based Computation using Modified OMS Technique LUT Optimization for Memory Based Computation using Modified OMS Technique Indrajit Shankar Acharya & Ruhan Bevi Dept. of ECE, SRM University, Chennai, India E-mail : indrajitac123@gmail.com, ruhanmady@yahoo.co.in

More information

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue8- August 2013

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue8- August 2013 International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue8- August 2013 Design and Implementation of an Enhanced LUT System in Security Based Computation dama.dhanalakshmi 1, K.Annapurna

More information

Modified Reconfigurable Fir Filter Design Using Look up Table

Modified Reconfigurable Fir Filter Design Using Look up Table Modified Reconfigurable Fir Filter Design Using Look up Table R. Dhayabarani, Assistant Professor. M. Poovitha, PG scholar, V.S.B Engineering College, Karur, Tamil Nadu. Abstract - Memory based structures

More information

Design and Implementation of LUT Optimization DSP Techniques

Design and Implementation of LUT Optimization DSP Techniques Design and Implementation of LUT Optimization DSP Techniques 1 D. Srinivasa rao & 2 C. Amala 1 M.Tech Research Scholar, Priyadarshini Institute of Technology & Science, Chintalapudi 2 Associate Professor,

More information

K. Phanindra M.Tech (ES) KITS, Khammam, India

K. Phanindra M.Tech (ES) KITS, Khammam, India Volume 7, Issue 5, May 2017 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com LUT Optimization

More information

Memory efficient Distributed architecture LUT Design using Unified Architecture

Memory efficient Distributed architecture LUT Design using Unified Architecture Research Article Memory efficient Distributed architecture LUT Design using Unified Architecture Authors: 1 S.M.L.V.K. Durga, 2 N.S. Govind. Address for Correspondence: 1 M.Tech II Year, ECE Dept., ASR

More information

Designing an Efficient and Secured LUT Approach for Area Based Occupations

Designing an Efficient and Secured LUT Approach for Area Based Occupations Designing an Efficient and Secured LUT Approach for Area Based Occupations 1 D. Jahnavi, 2 Y. Ravikiran varma 1 M.Tech scholar, E.C.E, Sreenivasa institute of technology and management studies, Chittoor

More information

LUT OPTIMIZATION USING COMBINED APC-OMS TECHNIQUE

LUT OPTIMIZATION USING COMBINED APC-OMS TECHNIQUE LUT OPTIMIZATION USING COMBINED APC-OMS TECHNIQUE S.Basi Reddy* 1, K.Sreenivasa Rao 2 1 M.Tech Student, VLSI System Design, Annamacharya Institute of Technology & Sciences (Autonomous), Rajampet (A.P),

More information

LUT Design Using OMS Technique for Memory Based Realization of FIR Filter

LUT Design Using OMS Technique for Memory Based Realization of FIR Filter International Journal of Emerging Engineering Research and Technology Volume. 2, Issue 6, September 2014, PP 72-80 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) LUT Design Using OMS Technique for Memory

More information

N.S.N College of Engineering and Technology, Karur

N.S.N College of Engineering and Technology, Karur Modified Reconfigurable CSD Fir Filter Design Using Look up Table Sivakumar.M 1, Ranjitha.S 2, Vijayabharathi.P 3, Dhivya.G 4 1 Assistant professor, 2,3,4 UG student-final year, Department of Electronics

More information

Keywords Xilinx ISE, LUT, FIR System, SDR, Spectrum- Sensing, FPGA, Memory- optimization, A-OMS LUT.

Keywords Xilinx ISE, LUT, FIR System, SDR, Spectrum- Sensing, FPGA, Memory- optimization, A-OMS LUT. An Advanced and Area Optimized L.U.T Design using A.P.C. and O.M.S K.Sreelakshmi, A.Srinivasa Rao Department of Electronics and Communication Engineering Nimra College of Engineering and Technology Krishna

More information

An Lut Adaptive Filter Using DA

An Lut Adaptive Filter Using DA An Lut Adaptive Filter Using DA ISSN: 2321-9939 An Lut Adaptive Filter Using DA 1 k.krishna reddy, 2 ch k prathap kumar m 1 M.Tech Student, 2 Assistant Professor 1 CVSR College of Engineering, Department

More information

Designing Fir Filter Using Modified Look up Table Multiplier

Designing Fir Filter Using Modified Look up Table Multiplier Designing Fir Filter Using Modified Look up Table Multiplier T. Ranjith Kumar Scholar, M-Tech (VLSI) GITAM University, Visakhapatnam Email id:-ranjithkmr55@gmail.com ABSTRACT- With the advancement in device

More information

Implementation of Area Efficient Memory-Based FIR Digital Filter Using LUT-Multiplier

Implementation of Area Efficient Memory-Based FIR Digital Filter Using LUT-Multiplier Implementation of Area Efficient Memory-Based FIR Digital Filter Using LUT-Multiplier K.Purnima, S.AdiLakshmi, M.Jyothi Department of ECE, K L University Vijayawada, INDIA Abstract Memory based structures

More information

The input-output relationship of an N-tap FIR filter in timedomain

The input-output relationship of an N-tap FIR filter in timedomain LUT Optimization for Memory-Based Computation 1. M.Purna kishore 2. P.Srinivas Pursuing M.Tech, NCET, Vijayawada Abstract Recently, we have proposed the antisymmetric product coding (APC) and odd-multiple-storage

More information

Efficient Method for Look-Up-Table Design in Memory Based Fir Filters

Efficient Method for Look-Up-Table Design in Memory Based Fir Filters International Journal of Computer Applications (975 8887) Volume 78 No.6, September Efficient Method for Look-Up-Table Design in Memory Based Fir Filters Md.Zameeruddin M.Tech, DECS, Dept. of ECE, Vardhaman

More information

OF AN ADVANCED LUT METHODOLOGY BASED FIR FILTER DESIGN PROCESS

OF AN ADVANCED LUT METHODOLOGY BASED FIR FILTER DESIGN PROCESS IMPLEMENTATION OF AN ADVANCED LUT METHODOLOGY BASED FIR FILTER DESIGN PROCESS 1 G. Sowmya Bala 2 A. Rama Krishna 1 PG student, Dept. of ECM. K.L.University, Vaddeswaram, A.P, India, 2 Assistant Professor,

More information

An Efficient Reduction of Area in Multistandard Transform Core

An Efficient Reduction of Area in Multistandard Transform Core An Efficient Reduction of Area in Multistandard Transform Core A. Shanmuga Priya 1, Dr. T. K. Shanthi 2 1 PG scholar, Applied Electronics, Department of ECE, 2 Assosiate Professor, Department of ECE Thanthai

More information

Memory Based Computing for DSP. Pramod Meher Institute for Infocomm Research

Memory Based Computing for DSP. Pramod Meher Institute for Infocomm Research Memory Based Computing for DSP Applications Pramod Meher Institute for Infocomm Research Singapore outline trends in memory technology memory based computing: advantages and examples DA based computation

More information

FPGA Hardware Resource Specific Optimal Design for FIR Filters

FPGA Hardware Resource Specific Optimal Design for FIR Filters International Journal of Computer Engineering and Information Technology VOL. 8, NO. 11, November 2016, 203 207 Available online at: www.ijceit.org E-ISSN 2412-8856 (Online) FPGA Hardware Resource Specific

More information

Research Article. Implementation of Low Power, Delay and Area Efficient Shifters for Memory Based Computation

Research Article. Implementation of Low Power, Delay and Area Efficient Shifters for Memory Based Computation International Journal of Modern Science and Technology Vol. 2, No. 5, 2017. Page 217-222. http://www.ijmst.co/ ISSN: 2456-0235. Research Article Implementation of Low Power, Delay and Area Efficient Shifters

More information

Reconfigurable FPGA Implementation of FIR Filter using Modified DA Method

Reconfigurable FPGA Implementation of FIR Filter using Modified DA Method Reconfigurable FPGA Implementation of FIR Filter using Modified DA Method M. Backia Lakshmi 1, D. Sellathambi 2 1 PG Student, Department of Electronics and Communication Engineering, Parisutham Institute

More information

Implementation of Low Power and Area Efficient Carry Select Adder

Implementation of Low Power and Area Efficient Carry Select Adder International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 8 ǁ August 2014 ǁ PP.36-48 Implementation of Low Power and Area Efficient Carry Select

More information

An MFA Binary Counter for Low Power Application

An MFA Binary Counter for Low Power Application Volume 118 No. 20 2018, 4947-4954 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu An MFA Binary Counter for Low Power Application Sneha P Department of ECE PSNA CET, Dindigul, India

More information

Research Article Design and Implementation of High Speed and Low Power Modified Square Root Carry Select Adder (MSQRTCSLA)

Research Article Design and Implementation of High Speed and Low Power Modified Square Root Carry Select Adder (MSQRTCSLA) Research Journal of Applied Sciences, Engineering and Technology 12(1): 43-51, 2016 DOI:10.19026/rjaset.12.2302 ISSN: 2040-7459; e-issn: 2040-7467 2016 Maxwell Scientific Publication Corp. Submitted: August

More information

Performance Evolution of 16 Bit Processor in FPGA using State Encoding Techniques

Performance Evolution of 16 Bit Processor in FPGA using State Encoding Techniques Performance Evolution of 16 Bit Processor in FPGA using State Encoding Techniques Madhavi Anupoju 1, M. Sunil Prakash 2 1 M.Tech (VLSI) Student, Department of Electronics & Communication Engineering, MVGR

More information

Design and Implementation of Partial Reconfigurable Fir Filter Using Distributed Arithmetic Architecture

Design and Implementation of Partial Reconfigurable Fir Filter Using Distributed Arithmetic Architecture Design and Implementation of Partial Reconfigurable Fir Filter Using Distributed Arithmetic Architecture Vinaykumar Bagali 1, Deepika S Karishankari 2 1 Asst Prof, Electrical and Electronics Dept, BLDEA

More information

Adaptive Fir Filter with Optimised Area and Power using Modified Inner-Product Block

Adaptive Fir Filter with Optimised Area and Power using Modified Inner-Product Block Adaptive Fir Filter with Optimised Area and Power using Modified Inner-Product Block Jesmin Joy M. Tech Scholar (VLSI & Embedded Systems), Dept. of ECE, IIET, M. G. University, Kottayam, Kerala, India

More information

Implementation and Analysis of Area Efficient Architectures for CSLA by using CLA

Implementation and Analysis of Area Efficient Architectures for CSLA by using CLA Volume-6, Issue-3, May-June 2016 International Journal of Engineering and Management Research Page Number: 753-757 Implementation and Analysis of Area Efficient Architectures for CSLA by using CLA Anshu

More information

An Efficient High Speed Wallace Tree Multiplier

An Efficient High Speed Wallace Tree Multiplier Chepuri satish,panem charan Arur,G.Kishore Kumar and G.Mamatha 38 An Efficient High Speed Wallace Tree Multiplier Chepuri satish, Panem charan Arur, G.Kishore Kumar and G.Mamatha Abstract: The Wallace

More information

VLSI IEEE Projects Titles LeMeniz Infotech

VLSI IEEE Projects Titles LeMeniz Infotech VLSI IEEE Projects Titles -2019 LeMeniz Infotech 36, 100 feet Road, Natesan Nagar(Near Indira Gandhi Statue and Next to Fish-O-Fish), Pondicherry-605 005 Web : www.ieeemaster.com / www.lemenizinfotech.com

More information

The main design objective in adder design are area, speed and power. Carry Select Adder (CSLA) is one of the fastest

The main design objective in adder design are area, speed and power. Carry Select Adder (CSLA) is one of the fastest ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com IMPLEMENTATION OF FAST SQUARE ROOT SELECT WITH LOW POWER CONSUMPTION V.Elanangai*, Dr. K.Vasanth Department of

More information

Research Article Low Power 256-bit Modified Carry Select Adder

Research Article Low Power 256-bit Modified Carry Select Adder Research Journal of Applied Sciences, Engineering and Technology 8(10): 1212-1216, 2014 DOI:10.19026/rjaset.8.1086 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted:

More information

ISSN:

ISSN: 427 AN EFFICIENT 64-BIT CARRY SELECT ADDER WITH REDUCED AREA APPLICATION CH PALLAVI 1, VSWATHI 2 1 II MTech, Chadalawada Ramanamma Engg College, Tirupati 2 Assistant Professor, DeptofECE, CREC, Tirupati

More information

FPGA Implementation of DA Algritm for Fir Filter

FPGA Implementation of DA Algritm for Fir Filter International Journal of Computational Engineering Research Vol, 03 Issue, 8 FPGA Implementation of DA Algritm for Fir Filter 1, Solmanraju Putta, 2, J Kishore, 3, P. Suresh 1, M.Tech student,assoc. Prof.,Professor

More information

An Efficient 64-Bit Carry Select Adder With Less Delay And Reduced Area Application

An Efficient 64-Bit Carry Select Adder With Less Delay And Reduced Area Application An Efficient 64-Bit Carry Select Adder With Less Delay And Reduced Area Application K Allipeera, M.Tech Student & S Ahmed Basha, Assitant Professor Department of Electronics & Communication Engineering

More information

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532 www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issue 10 Oct. 2016, Page No. 18532-18540 Pulsed Latches Methodology to Attain Reduced Power and Area Based

More information

Investigation of Look-Up Table Based FPGAs Using Various IDCT Architectures

Investigation of Look-Up Table Based FPGAs Using Various IDCT Architectures Investigation of Look-Up Table Based FPGAs Using Various IDCT Architectures Jörn Gause Abstract This paper presents an investigation of Look-Up Table (LUT) based Field Programmable Gate Arrays (FPGAs)

More information

Distributed Arithmetic Unit Design for Fir Filter

Distributed Arithmetic Unit Design for Fir Filter Distributed Arithmetic Unit Design for Fir Filter ABSTRACT: In this paper different distributed Arithmetic (DA) architectures are proposed for Finite Impulse Response (FIR) filter. FIR filter is the main

More information

Implementation of High Speed Adder using DLATCH

Implementation of High Speed Adder using DLATCH International Journal of Emerging Engineering Research and Technology Volume 3, Issue 12, December 2015, PP 162-172 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Implementation of High Speed Adder using

More information

128 BIT CARRY SELECT ADDER USING BINARY TO EXCESS-ONE CONVERTER FOR DELAY REDUCTION AND AREA EFFICIENCY

128 BIT CARRY SELECT ADDER USING BINARY TO EXCESS-ONE CONVERTER FOR DELAY REDUCTION AND AREA EFFICIENCY 128 BIT CARRY SELECT ADDER USING BINARY TO EXCESS-ONE CONVERTER FOR DELAY REDUCTION AND AREA EFFICIENCY 1 Mrs.K.K. Varalaxmi, M.Tech, Assoc. Professor, ECE Department, 1varuhello@Gmail.Com 2 Shaik Shamshad

More information

Implementation of 2-D Discrete Wavelet Transform using MATLAB and Xilinx System Generator

Implementation of 2-D Discrete Wavelet Transform using MATLAB and Xilinx System Generator Implementation of 2-D Discrete Wavelet Transform using MATLAB and Xilinx System Generator Syed Tajdar Naqvi Research Scholar,Department of Electronics & Communication, Institute of Engineering & Technology,

More information

Optimizing area of local routing network by reconfiguring look up tables (LUTs)

Optimizing area of local routing network by reconfiguring look up tables (LUTs) Vol.2, Issue.3, May-June 2012 pp-816-823 ISSN: 2249-6645 Optimizing area of local routing network by reconfiguring look up tables (LUTs) Sathyabhama.B 1 and S.Sudha 2 1 M.E-VLSI Design 2 Dept of ECE Easwari

More information

Efficient Implementation of Multi Stage SQRT Carry Select Adder

Efficient Implementation of Multi Stage SQRT Carry Select Adder International Journal of Research Studies in Science, Engineering and Technology Volume 2, Issue 8, August 2015, PP 31-36 ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) Efficient Implementation of Multi

More information

A Fast Constant Coefficient Multiplier for the XC6200

A Fast Constant Coefficient Multiplier for the XC6200 A Fast Constant Coefficient Multiplier for the XC6200 Tom Kean, Bernie New and Bob Slous Xilinx Inc. Abstract. We discuss the design of a high performance constant coefficient multiplier on the Xilinx

More information

Design of Polar List Decoder using 2-Bit SC Decoding Algorithm V Priya 1 M Parimaladevi 2

Design of Polar List Decoder using 2-Bit SC Decoding Algorithm V Priya 1 M Parimaladevi 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 V Priya 1 M Parimaladevi 2 1 Master of Engineering 2 Assistant Professor 1,2 Department

More information

Bus Encoded LUT Multiplier for Portable Biomedical Therapeutic Devices

Bus Encoded LUT Multiplier for Portable Biomedical Therapeutic Devices Copyright 2017 Tech Science Press CMC, vol.53, no.1, pp.37-47, 2017 Bus Encoded LUT Multiplier for Portable Biomedical Therapeutic Devices R. Praveena 1 and S. Nirmala 2 Abstract: DSP operation in a Biomedical

More information

An optimized implementation of 128 bit carry select adder using binary to excess-one converter for delay reduction and area efficiency

An optimized implementation of 128 bit carry select adder using binary to excess-one converter for delay reduction and area efficiency Journal From the SelectedWorks of Journal December, 2014 An optimized implementation of 128 bit carry select adder using binary to excess-one converter for delay reduction and area efficiency P. Manga

More information

Design and Simulation of Modified Alum Based On Glut

Design and Simulation of Modified Alum Based On Glut IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 6 (June. 2018), V (I) PP 67-73 www.iosrjen.org Design and Simulation of Modified Alum Based On Glut Ms. Shreya

More information

Design And Implimentation Of Modified Sqrt Carry Select Adder On FPGA

Design And Implimentation Of Modified Sqrt Carry Select Adder On FPGA Design And Implimentation Of Modified Sqrt Carry Select Adder On FPGA Ch. Pavan kumar #1, V.Narayana Reddy, *2, R.Sravanthi *3 #Dept. of ECE, PBR VIT, Kavali, A.P, India #2 Associate.Proffesor, Department

More information

Design and FPGA Implementation of 100Gbit/s Scrambler Architectures for OTN Protocol Chethan Kumar M 1, Praveen Kumar Y G 2, Dr. M. Z. Kurian 3.

Design and FPGA Implementation of 100Gbit/s Scrambler Architectures for OTN Protocol Chethan Kumar M 1, Praveen Kumar Y G 2, Dr. M. Z. Kurian 3. International Journal of Computer Engineering and Applications, Volume VI, Issue II, May 14 www.ijcea.com ISSN 2321 3469 Design and FPGA Implementation of 100Gbit/s Scrambler Architectures for OTN Protocol

More information

Reconfigurable Fir Digital Filter Realization on FPGA

Reconfigurable Fir Digital Filter Realization on FPGA Reconfigurable Fir Digital Filter Realization on FPGA Atmakuri Vasavi 1 Sita Madhuri Bondila 2 1 PG Student (M.Tech), Dept. of ECE, Gandhiji Institute of Science & Tech., Jaggaiahpeta, AP, India 2 Assistant

More information

THE USE OF forward error correction (FEC) in optical networks

THE USE OF forward error correction (FEC) in optical networks IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 8, AUGUST 2005 461 A High-Speed Low-Complexity Reed Solomon Decoder for Optical Communications Hanho Lee, Member, IEEE Abstract

More information

Modeling Digital Systems with Verilog

Modeling Digital Systems with Verilog Modeling Digital Systems with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 6-1 Composition of Digital Systems Most digital systems can be partitioned into two types

More information

FPGA Based Implementation of Convolutional Encoder- Viterbi Decoder Using Multiple Booting Technique

FPGA Based Implementation of Convolutional Encoder- Viterbi Decoder Using Multiple Booting Technique FPGA Based Implementation of Convolutional Encoder- Viterbi Decoder Using Multiple Booting Technique Dr. Dhafir A. Alneema (1) Yahya Taher Qassim (2) Lecturer Assistant Lecturer Computer Engineering Dept.

More information

Clock Gating Aware Low Power ALU Design and Implementation on FPGA

Clock Gating Aware Low Power ALU Design and Implementation on FPGA Clock Gating Aware Low ALU Design and Implementation on FPGA Bishwajeet Pandey and Manisha Pattanaik Abstract This paper deals with the design and implementation of a Clock Gating Aware Low Arithmetic

More information

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath Objectives Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath In the previous chapters we have studied how to develop a specification from a given application, and

More information

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES DIGITAL CIRCUIT LOGIC UNIT 9: MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES 1 Learning Objectives 1. Explain the function of a multiplexer. Implement a multiplexer using gates. 2. Explain the

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal

International Journal of Engineering Research-Online A Peer Reviewed International Journal RESEARCH ARTICLE ISSN: 2321-7758 VLSI IMPLEMENTATION OF SERIES INTEGRATOR COMPOSITE FILTERS FOR SIGNAL PROCESSING MURALI KRISHNA BATHULA Research scholar, ECE Department, UCEK, JNTU Kakinada ABSTRACT The

More information

Further Details Contact: A. Vinay , , #301, 303 & 304,3rdFloor, AVR Buildings, Opp to SV Music College, Balaji

Further Details Contact: A. Vinay , , #301, 303 & 304,3rdFloor, AVR Buildings, Opp to SV Music College, Balaji S.NO 2018-2019 B.TECH VLSI IEEE TITLES TITLES FRONTEND 1. Approximate Quaternary Addition with the Fast Carry Chains of FPGAs 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. A Low-Power

More information

Design and Implementation of High Speed 256-Bit Modified Square Root Carry Select Adder

Design and Implementation of High Speed 256-Bit Modified Square Root Carry Select Adder Design and Implementation of High Speed 256-Bit Modified Square Root Carry Select Adder Muralidharan.R [1], Jodhi Mohana Monica [2], Meenakshi.R [3], Lokeshwaran.R [4] B.Tech Student, Department of Electronics

More information

A Review on Hybrid Adders in VHDL Payal V. Mawale #1, Swapnil Jain *2, Pravin W. Jaronde #3

A Review on Hybrid Adders in VHDL Payal V. Mawale #1, Swapnil Jain *2, Pravin W. Jaronde #3 A Review on Hybrid Adders in VHDL Payal V. Mawale #1, Swapnil Jain *2, Pravin W. Jaronde #3 #1 Electronics & Communication, RTMNU. *2 Electronics & Telecommunication, RTMNU. #3 Electronics & Telecommunication,

More information

Area and Speed Efficient Implementation of Symmetric FIR Digital Filter through Reduced Parallel LUT Decomposed DA Approach

Area and Speed Efficient Implementation of Symmetric FIR Digital Filter through Reduced Parallel LUT Decomposed DA Approach Circuits and Systems, 216, 7, 1379-1391 Pulished Online June 216 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/1.4236/cs.216.78121 Area and Speed Efficient Implementation of Symmetric FIR

More information

Design of Low Power Efficient Viterbi Decoder

Design of Low Power Efficient Viterbi Decoder International Journal of Research Studies in Electrical and Electronics Engineering (IJRSEEE) Volume 2, Issue 2, 2016, PP 1-7 ISSN 2454-9436 (Online) DOI: http://dx.doi.org/10.20431/2454-9436.0202001 www.arcjournals.org

More information

VLSI Based Minimized Composite S-Box and Inverse Mix Column for AES Encryption and Decryption

VLSI Based Minimized Composite S-Box and Inverse Mix Column for AES Encryption and Decryption VLSI Based Minimized Composite S-Bo and Inverse Mi Column for AES Encryption and Decryption 1 J. Balamurugan, 2 Dr. E. Logashanmugam 1 Research scholar, 2 Professor and Head, 1 St. Peter s University,

More information

Design of BIST with Low Power Test Pattern Generator

Design of BIST with Low Power Test Pattern Generator IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 5, Ver. II (Sep-Oct. 2014), PP 30-39 e-issn: 2319 4200, p-issn No. : 2319 4197 Design of BIST with Low Power Test Pattern Generator

More information

Available online at ScienceDirect. Procedia Computer Science 46 (2015 ) Aida S Tharakan a *, Binu K Mathew b

Available online at  ScienceDirect. Procedia Computer Science 46 (2015 ) Aida S Tharakan a *, Binu K Mathew b Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 46 (2015 ) 1409 1416 International Conference on Information and Communication Technologies (ICICT 2014) Design and Implementation

More information

Transactions Briefs. Interframe Bus Encoding Technique and Architecture for MPEG-4 AVC/H.264 Video Compression

Transactions Briefs. Interframe Bus Encoding Technique and Architecture for MPEG-4 AVC/H.264 Video Compression IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 5, MAY 2010 831 Transactions Briefs Interframe Bus Encoding Technique and Architecture for MPEG-4 AVC/H.264 Video Compression

More information

A Low Energy HEVC Inverse Transform Hardware

A Low Energy HEVC Inverse Transform Hardware 754 IEEE Transactions on Consumer Electronics, Vol. 60, No. 4, November 2014 A Low Energy HEVC Inverse Transform Hardware Ercan Kalali, Erdem Ozcan, Ozgun Mert Yalcinkaya, Ilker Hamzaoglu, Senior Member,

More information

L12: Reconfigurable Logic Architectures

L12: Reconfigurable Logic Architectures L12: Reconfigurable Logic Architectures Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Frank Honore Prof. Randy Katz (Unified Microelectronics

More information

A Parallel Area Delay Efficient Interpolation Filter Architecture

A Parallel Area Delay Efficient Interpolation Filter Architecture A Parallel Area Delay Efficient Interpolation Filter Architecture [1] Anusha Ajayan, [2] Rafeekha M J [1] PG Student [VLSI & ES] [2] Assistant professor, Department of ECE, TKM Institute of Technology,

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 4, FEBRUARY 15,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 4, FEBRUARY 15, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 4, FEBRUARY 15, 2013 921 A High-Performance Energy-Efficient Architecture for FIR Adaptive Filter Based on New Distributed Arithmetic Formulation of

More information

Design & Simulation of 128x Interpolator Filter

Design & Simulation of 128x Interpolator Filter Design & Simulation of 128x Interpolator Filter Rahul Sinha 1, Sonika 2 1 Dept. of Electronics & Telecommunication, CSIT, DURG, CG, INDIA rsinha.vlsieng@gmail.com 2 Dept. of Information Technology, CSIT,

More information

Optimization of Multi-Channel BCH Error Decoding for Common Cases. Russell Dill Master's Thesis Defense April 20, 2015

Optimization of Multi-Channel BCH Error Decoding for Common Cases. Russell Dill Master's Thesis Defense April 20, 2015 Optimization of Multi-Channel BCH Error Decoding for Common Cases Russell Dill Master's Thesis Defense April 20, 2015 Bose-Chaudhuri-Hocquenghem (BCH) BCH is an Error Correcting Code (ECC) and is used

More information

FPGA IMPEMENTATION OF LOW POWER AND AREA EFFICIENT CARRY SELECT ADDER

FPGA IMPEMENTATION OF LOW POWER AND AREA EFFICIENT CARRY SELECT ADDER FPGA IMPEMENTATION OF LOW POWER AND AREA EFFICIENT CARRY SELECT ADDER A.Nithya [3],A.G.Priyanka [3],B.Ajitha [3],D.Gracia Nirmala Rani [2],S.Rajaram [1] [1]- Associate Professor, [2]- Assistant Professor,

More information

Hardware Modeling of Binary Coded Decimal Adder in Field Programmable Gate Array

Hardware Modeling of Binary Coded Decimal Adder in Field Programmable Gate Array American Journal of Applied Sciences 10 (5): 466-477, 2013 ISSN: 1546-9239 2013 M.I. Ibrahimy et al., This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license doi:10.3844/ajassp.2013.466.477

More information

OPTIMIZED DIGITAL FILTER ARCHITECTURES FOR MULTI-STANDARD RF TRANSCEIVERS

OPTIMIZED DIGITAL FILTER ARCHITECTURES FOR MULTI-STANDARD RF TRANSCEIVERS OPTIMIZED DIGITAL FILTER ARCHITECTURES FOR MULTI-STANDARD RF TRANSCEIVERS 1 R.LATHA, 2 Dr.P.T.VANATHI 1 Department of Electronics &Communication Engineering, Christ University-Faculty of Engineering, Bangalore-560

More information

VLSI Technology used in Auto-Scan Delay Testing Design For Bench Mark Circuits

VLSI Technology used in Auto-Scan Delay Testing Design For Bench Mark Circuits VLSI Technology used in Auto-Scan Delay Testing Design For Bench Mark Circuits N.Brindha, A.Kaleel Rahuman ABSTRACT: Auto scan, a design for testability (DFT) technique for synchronous sequential circuits.

More information

High Speed 8-bit Counters using State Excitation Logic and their Application in Frequency Divider

High Speed 8-bit Counters using State Excitation Logic and their Application in Frequency Divider High Speed 8-bit Counters using State Excitation Logic and their Application in Frequency Divider Ranjith Ram. A 1, Pramod. P 2 1 Department of Electronics and Communication Engineering Government College

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 917 The Power Optimization of Linear Feedback Shift Register Using Fault Coverage Circuits K.YARRAYYA1, K CHITAMBARA

More information

DDC and DUC Filters in SDR platforms

DDC and DUC Filters in SDR platforms Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) DDC and DUC Filters in SDR platforms RAVI KISHORE KODALI Department of E and C E, National Institute of Technology, Warangal,

More information

The Design of Efficient Viterbi Decoder and Realization by FPGA

The Design of Efficient Viterbi Decoder and Realization by FPGA Modern Applied Science; Vol. 6, No. 11; 212 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education The Design of Efficient Viterbi Decoder and Realization by FPGA Liu Yanyan

More information

EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH

EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH 1 Kalaivani.S, 2 Sathyabama.R 1 PG Scholar, 2 Professor/HOD Department of ECE, Government College of Technology Coimbatore,

More information

FPGA Implementation of Low Power and Area Efficient Carry Select Adder

FPGA Implementation of Low Power and Area Efficient Carry Select Adder Journal From the SelectedWorks of Kirat Pal Singh Summer July 17, 2014 FPGA Implementation of Low Power and Area Efficient Carry Select Adder A. Nithya, Thiagarajar College of Engineering, Madurai, India

More information

Figure.1 Clock signal II. SYSTEM ANALYSIS

Figure.1 Clock signal II. SYSTEM ANALYSIS International Journal of Advances in Engineering, 2015, 1(4), 518-522 ISSN: 2394-9260 (printed version); ISSN: 2394-9279 (online version); url:http://www.ijae.in RESEARCH ARTICLE Multi bit Flip-Flop Grouping

More information

Design and Analysis of Modified Fast Compressors for MAC Unit

Design and Analysis of Modified Fast Compressors for MAC Unit Design and Analysis of Modified Fast Compressors for MAC Unit Anusree T U 1, Bonifus P L 2 1 PG Student & Dept. of ECE & Rajagiri School of Engineering & Technology 2 Assistant Professor & Dept. of ECE

More information

Modified128 bit CSLA For Effective Area and Speed

Modified128 bit CSLA For Effective Area and Speed Modified128 bit CSLA For Effective Area and Speed Shaik Bademia Babu, Sada.Ravindar,M.Tech,VLSI, Assistant professor Nimra Inst Of Sci and tech college, jupudi, Ibrahimpatnam,Vijayawada,AP state,india

More information

Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) Field Programmable Gate Arrays (FPGAs) Introduction Simulations and prototyping have been a very important part of the electronics industry since a very long time now. Before heading in for the actual

More information

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P11 ISSN Online:

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P11 ISSN Online: LOW POWER SHIFT REGISTERS USING CLOCK GATING TECHNIQUE #1 G.SHIREESHA, M.Tech student, #2 T.NAGESWARRAO, Assistant Professor, #3 S.NAGESWARA RAO, Assistant Professor, Dept of ECE, SRI VENKATESWARA ENGINEERING

More information

Design on CIC interpolator in Model Simulator

Design on CIC interpolator in Model Simulator Design on CIC interpolator in Model Simulator Manjunathachari k.b 1, Divya Prabha 2, Dr. M Z Kurian 3 M.Tech [VLSI], Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India 1 Asst. Professor,

More information

Hardware Implementation of Viterbi Decoder for Wireless Applications

Hardware Implementation of Viterbi Decoder for Wireless Applications Hardware Implementation of Viterbi Decoder for Wireless Applications Bhupendra Singh 1, Sanjeev Agarwal 2 and Tarun Varma 3 Deptt. of Electronics and Communication Engineering, 1 Amity School of Engineering

More information

Microprocessor Design

Microprocessor Design Microprocessor Design Principles and Practices With VHDL Enoch O. Hwang Brooks / Cole 2004 To my wife and children Windy, Jonathan and Michelle Contents 1. Designing a Microprocessor... 2 1.1 Overview

More information

A Low Power Delay Buffer Using Gated Driver Tree

A Low Power Delay Buffer Using Gated Driver Tree IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 4 (Nov. - Dec. 2012), PP 26-30 A Low Power Delay Buffer Using Gated Driver Tree Kokkilagadda

More information

March 13, :36 vra80334_appe Sheet number 1 Page number 893 black. appendix. Commercial Devices

March 13, :36 vra80334_appe Sheet number 1 Page number 893 black. appendix. Commercial Devices March 13, 2007 14:36 vra80334_appe Sheet number 1 Page number 893 black appendix E Commercial Devices In Chapter 3 we described the three main types of programmable logic devices (PLDs): simple PLDs, complex

More information

Low Power and Area Efficient 256-bit Shift Register based on Pulsed Latches

Low Power and Area Efficient 256-bit Shift Register based on Pulsed Latches 2018 IJSRST Volume 4 Issue 5 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Low Power and Area Efficient 256-bit Shift Register based on Pulsed es K.V.Janardhan 1,

More information