THE NEWEST international video coding standard is

Size: px
Start display at page:

Download "THE NEWEST international video coding standard is"

Transcription

1 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 7, JULY Fast Mode Decision Algorithm for Intraprediction in H.264/AVC Video Coding Feng Pan, Xiao Lin, Susanto Rahardja, Keng Pang Lim, Z. G. Li, Dajun Wu, and Si Wu Abstract The H.264/AVC video coding standard aims to enable significantly improved compression performance compared to all existing video coding standards. In order to achieve this, a robust rate-distortion optimization (RDO) technique is employed to select the best coding mode and reference frame for each macroblock. As a result, the complexity and computation load increase drastically. This paper presents a fast mode decision algorithm for H.264/AVC intraprediction based on local edge information. Prior to intraprediction, an edge map is created and a local edge direction histogram is then established for each subblock. Based on the distribution of the edge direction histogram, only a small part of intraprediction modes are chosen for RDO calculation. Experimental results show that the fast intraprediction mode decision scheme increases the speed of intracoding significantly with negligible loss of peak signal-to-noise ratio. Index Terms AVC, H.264, intraprediction, JVT, MPEG, video coding. Fig 1. Variable block size for rate distortion optimization. I. INTRODUCTION THE NEWEST international video coding standard is H.264/AVC [1]. It has been approved recently by ITU-T as Recommendation H.264 and by ISO/IEC as International Standard (MPEG-4 part 10) Advanced Video Coding (AVC). The elements common to all video coding standards are present in the current H.264/AVC recommendation: an MB is in size; luminance (luma) is represented with higher resolution than chrominance (chroma) with 4:2:0 subsampling; motion compensation and block transforms are followed by scalar quantization and entropy coding; motion vectors are predicted from the median of the motion vectors of neighboring blocks; bidirectional pictures (B-pictures) are supported that may be motion compensated from both temporally previous and subsequent pictures; and a direct mode exists for B-pictures in which both forward and backward motion vectors are derived from the motion vector of a co-sited macroblock (MB) in a reference picture. Some new techniques, such as spatial prediction in intracoding, adaptive block size motion compensation, 4 4 integer transformation, multiple reference pictures (up to seven reference pictures) and content adaptive binary arithmetic coding (CABAC), are used in this standard. The testing results of H.264/AVC show that it greatly outperforms existing video coding standards in both peak signal-to-noise ratio (PSNR) and visual quality [2]. Manuscript received October 21, 2003; revised May 20, This paper was recommended by Associate Editor F. Pereira. The authors are with the Institute for Infocomm Research, Singapore ( efpan@i2r.a-star.edu.sg; linxiao@i2r.a-star.edu.sg; rsusanto@i2r.a-star.edu.sg; kplim@i2r.a-star.edu.sg; ezgli@i2r.a-star.edu.sg; djwu@i2r.a-star.edu.sg; swu@i2r.a-star.edu.sg). Digital Object Identifier /TCSVT Fig. 2. Computation of RDcost. To achieve the highest coding efficiency, H.264/AVC uses a nonnormative technique called Lagrangian rate-distortion optimization (RDO) technique to decide the coding mode [3] for an MB. Fig. 1 shows the possible MB modes and Fig. 2 shows the RDO process. As can be seen from Fig. 2, in order to choose the best coding mode for an MB, H.264/AVC encoder calculates the rate-distortion (RD) cost (RDcost) of every possible mode and chooses the mode having the minimum value, and this process is repeatedly carried out for all the possible modes for a given MB. Therefore, the computational burden of this type of brute force-searching algorithm is far more demanding than any existing video coding algorithm. To reduce the complexity of H.264/AVC, a number of efforts have been made to explore the fast algorithms in motion estimation, intramode prediction and intermode prediction for H.264/AVC video coding [4], [5]. Fast motion estimation is a well-studied topic and is widely applied in the existing standards such as MPEG-1/2/4 and H.261/H.263. However, these fast motion estimation algorithms cannot be applied directly to H.264/AVC coding due to the variable block size motion estimation. On the other hand, fast intramode decision is a new topic in H.264/AVC coding, and very few previous works exist so far. It is believed that fast intramode decision algorithms are also very /$ IEEE

2 814 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 7, JULY 2005 important in reducing the overall complexity of H.264/AVC. We have made two contributions to H.264/AVC related to the fast mode decision algorithms which are adopted as part of nonnormative reference model for H.264/AVC [6], [7]. In this paper, we present one of the contributions, a fast intramode decision algorithm for H.264/AVC intraprediction by using local edge information. The presented algorithm considerably reduces the amount of calculations needed for intraprediction with negligible loss of coding quality. We have observed that the pixels along the direction of local edge are normally of the similar values (this is true for both luma and chroma components), and a good prediction could be achieved if we predict the pixels using those neighboring pixels that are in the same direction of the edge. Therefore, an edge map which represents the local edge orientation and strength is created, and a local edge direction histogram is then established for each subblock. Based on the distribution of the edge direction histogram, only a small number of prediction modes are chosen for RDO calculation during intraprediction. Experimental results show that the fast mode decision algorithms increase the speed of intracoding significantly with negligible loss of the quality. The rest of the paper is organized as follows. Section II gives an overview of intracoding in H.264/AVC. Section III will present in detail the fast intraprediction algorithm based on the edge direction histogram. Experimental results will be presented in Section IV and conclusions will be given in Section V. II. OVERVIEW OF INTRACODING IN H.264/AVC Intracoding refers to the case where only spatial redundancies within a video picture are exploited. The resulting picture is referred to as an I-picture. Traditionally, I-pictures are encoded by directly applying the transform to all MBs in the picture. In previous video coding standards (namely H.263 and MPEG-4), intraprediction has been conducted in the transform domain. Intraprediction in H.264/AVC is always conducted in the spatial domain, by referring to neighboring samples of previously coded blocks. The difference between the actual block/mb and their prediction is then coded. With these advanced prediction modes, the performance of intracoding in H.264/AVC is comparable to that of the recent still image compression standard JPEG-2000 [8]. If an MB is encoded in intramode, a prediction block is formed based on previously coded and reconstructed blocks before deblocking. This prediction block is subtracted from the current block prior to encoding. For the luma samples, the prediction block may be formed for each 4 4 block (denoted as I4MB) or for an entire MB (denoted as I16MB). When using the I4MB prediction, each 4 4 block of the luma component utilizes one of nine prediction modes. Beside DC prediction, eight directional prediction modes are specified. When utilizing the I16MB prediction, which is well suited for smooth image areas, a uniform prediction is performed for the whole luma component of an MB. Four prediction modes are supported. The chroma samples of an MB are always predicted using a similar prediction technique as for the luma component in I16MB prediction. Fig. 3. I4MB prediction coding is conducted for samples a-p of a block using samples A-Q. (b) Eight prediction directions for I4MB prediction. A. I4MB Prediction Modes The nine prediction modes for each 4 4 luma block are shown in Fig. 3. It can be seen that I4MB prediction is conducted for samples a-p of a block using samples A-Q. There are in total eight prediction directions and one DC prediction mode for I4MB prediction as detailed in the following [1]. Mode 0: Vertical Prediction Mode 1: Horizontal prediction. Mode 2: DC prediction. Mode 3: Diagonal down-left prediction. Mode 4: Diagonal down-right prediction. Mode 5: Vertical-right prediction. Mode 6: Horizontal-down prediction. Mode 7: Vertical-left prediction. Mode 8: Horizontal-up prediction. For example, if we choose Mode 0, then the pixels,,, and are predicted based on the neighboring pixel ; pixels,, and are predicted based on pixel, and so on. If we choose Mode 7, then pixel a would be predicted by, pixels and would be predicted by, and pixels and would be predicted by and so on. Note that DC is a special prediction mode, where the mean of the left handed and upper samples (pixels A to D and I to L in Fig. 3) are used to predict the entire block. Normally DC prediction is useful for those blocks with little or no local activities. B. I16MB Prediction Modes As an alternative to I4MB prediction described above, the entire MB may be predicted. This is well suited for smooth image areas where a uniform prediction is performed for the whole luma component of an MB. Four prediction modes are supported. Mode 0 (vertical): extrapolation from upper samples. Mode 1 (horizontal): extrapolation from left samples. Mode 2 (DC): mean of upper and left-hand samples. Mode 4 (Plane): plane prediction based on a linear spatial interpolation by using the upper and left-hand samples of the MB.

3 PAN et al.: FAST MODE DECISION ALGORITHM FOR INTRA PREDICTION IN H.264/AVC VIDEO CODING 815 Fig. 4. Examples of edge patterns and their preferred intraprediction directions. C. 8 8 Chroma Prediction Mode Each 8 8 chroma component of an MB is predicted from chroma samples above and/or to the left that have previously been encoded and reconstructed. The four chroma prediction modes are very similar to that of the I16MB prediction except that the order of mode numbers is different: DC (Mode 0), horizontal (Mode 1), vertical (Mode 2) and plane (Mode 3). The same prediction mode is always applied to both chroma blocks. H.264/AVC uses the RDO technique to achieve the best coding performance. This means that the encoder has to encode the intrablock using all the mode combinations and choose the one that gives the best RDO performance. Since the choice of prediction modes for chroma components is independent to that of luma components, thus for each luma prediction modes, there should be four different chroma prediction modes. Therefore, the number of mode combinations for luma and chroma components in an MB is, where,, and represent the number of modes for chroma prediction, I4MB prediction and I16MB prediction, respectively. It means that, for an MB, it has to perform different RDO calculations before a best RDO mode is determined. As a result, the complexity and computational load of the encoder is extremely high. III. DETERMINING THE PRIMARY EDGE DIRECTION IN THE IMAGE BLOCK We observed that the pixels along the direction of local edge normally have similar values (this is true for both luma and chroma components). Therefore, a good prediction could be achieved if we predict the pixels using those neighboring pixels that are in the same direction of the edge. Fig. 4 shows a few edge patterns of a 4 4 block and their preferred directional predictions. There are a number of ways to get the local edge directional information, such as edge direction histogram which is based on a simple edge detection algorithm [9], and directional fields which are based on the local gradients [10], etc. The algorithm described in this paper is based on edge detection due to its simplicity in terms of computational complexity. The rest of this section will explain in detail the fast intraprediction algorithm by using an edge direction histogram based on edge detection. A. Edge Map In order to obtain the edge information in the neighborhood of the intrablock to be predicted, the edge map of the video picture is generated by using the Sobel edge operators. Each pixel in the video picture will then be associated with an element in the edge map, which is the edge vector containing its edge direction and amplitude. Sobel operator has two convolution kernels which respond to degree of difference in vertical direction and horizontal directions. For a pixel, in a luma (or chroma) picture, we define the corresponding edge vector,,as where and represent the degree of difference in vertical and horizontal directions respectively. Therefore, the amplitude of the edge vector can be roughly estimated by In fact, the amplitude could be obtained more accurately by using the rooted sum of the squares of and. The latter is computationally expensive and thus (2) is used. The direction of the edge (in degree) is decided by the hyper-function, (1) (2) (3)

4 816 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 7, JULY 2005 It must be noted that in the actual implementation of the algorithm, (3) is not necessary. This is due to the fact that in H.264/AVC there is only limited number of prediction modes for intracoding. In this paper, a simple thresholding technique is applied to to build up the edge direction histogram. B. Edge Direction Histogram In order to decide whether the image block contains an edge, and how strong this edge is, an edge direction histogram is calculated from all the pixel map of the block by summing up the amplitude of the edge with similar edge directions in the block. 1) 4 4 Luma Block Edge Direction Histogram: In the case of a 4 4 luma block, there are 8 directional prediction modes, as shown in Fig. 3, plus a DC prediction mode. The border between any two adjacent directional prediction modes is the bisectrix of the two corresponding directions. For example, the border of Mode 1 (0 ) and Mode 8 (26.6 ) is the direction at 13.3, this is because that for Mode 8, prediction is done at an angle of approximately 26.6 above horizontal direction. It is important to note that Mode 3 and Mode 8 are adjacent due to circular symmetry of the prediction modes. The mode of each pixel is determined by its edge direction. Therefore, the edge direction histogram of a 4 4 luma block is decided by the following algorithm. For each pixel in a 4 4 luma block, let,, be the histogram cell of the prediction mode k, and let, then Fig. 5. Edge direction histogram of Fig. 4(c). if and or Note that Mode 2 is not included in the above algorithm. This is because that Mode 2 will always be chosen as one of the candidate mode. Fig. 5 shows the edge direction histogram of Fig. 4(c). It shows that this block exhibits strong edge in the Vertical Right direction. 2) Edge Direction Histogram for Luma Block and 8 8 Chroma Block: In the case of luma and 8 8 chroma blocks, there are only two directional prediction modes, plus a plane prediction and a DC prediction mode. Therefore, the edge direction histogram for this case will be based on three (4) Fig. 6. Intra and prediction mode directions. directions, i.e., horizontal, vertical and diagonal (plane) directions, as shown in Fig. 6. Note that both diagonal down right and diagonal down left prediction modes are associated with the plane prediction. Though it is not mathematically correct to associate plane prediction to any directional edge, we can for sure associate the vertical and horizontal prediction to its respective directional edges. Therefore, it is fairly reasonable for us to try plane prediction if it is not obviously a DC prediction. The edge direction histogram for luma is constructed as follows: if else For the similar reason, Mode 2 is missing in the above algorithm. An example of such edge direction histogram is shown in Fig. 7. Note for 8 8 chroma blocks, the similar equation of the above is applied, except that the order of mode numbers is different. As mentioned above, each cell in the edge direction histogram sums up the amplitudes of those pixels with similar edge directions in the block. Obviously, the histogram cell with the maximum amplitude indicates that there is a strong edge along (5)

5 PAN et al.: FAST MODE DECISION ALGORITHM FOR INTRA PREDICTION IN H.264/AVC VIDEO CODING 817 predicted by the pixels above and/or to the left of the block. Method 4: During the experiments of Method 2, it is observed that the chosen intraprediction mode is either the primary prediction mode, or one of the two neighboring modes (in terms of direction) of the primary prediction mode. Therefore, the two additional candidate prediction modes are determined to be the two neighbors of the primary prediction mode in terms of directions (refer to Fig. 3). Experimental results have shown that Method 4 achieves a good balance between computational time and coding efficiency, and the rest of this section will describe the detailed implementation of this algorithm. However, in the experimental section, we will still present the comparison among all the methods. Fig. 7. histogram of. Example of luma and chroma block edge direction this direction in the block, and is thus considered as the preferable prediction direction. The mode whose direction complies with such is chosen as the primary prediction mode. Note that only the cell with global maximum is chosen as the primary prediction mode, even though the histogram might have multiple maximums. Therefore, the above algorithm produces one primary prediction mode each for a 4 4 luma block, luma block, and 8 8 chroma block. IV. MODE DECISION FOR INTRAPREDICTION Based on the primary prediction mode previously determined, the fast mode decision algorithms for intraprediction select a small number of the prediction modes as the candidates to be used in RDO computation. It should be noted that, the actual RDO computation in H.264/AVC intracoding is based on the reconstructed images. While the edge directional histogram is calculated from the original lossless images as the reconstructed image is not available at the time of calculating the histogram, the primary prediction mode decided above will not always be the best RDO mode in actual coding. We have thus tried a number of ways in deciding the number of preferred prediction modes, as is discussed in the following. Method 1: The mode with maximum amplitude in edge directional histogram is chosen as the candidate prediction mode, and if this amplitude is below a predefined threshold, the prediction mode will be chosen as DC. Method 2: This method simply encounters DC mode to be candidate mode besides the primary prediction mode. This will eliminate the effect that different thresholds result in different performances in different sequences, which are the cases using Method 1. Method 3: In this method, additional information is added based on Method 2. The window size of the histogram computation is enlarged, by including pixels in the left column and upper row of the block of interest. This is due to the fact that a block of interest is A. I4MB Prediction Modes Experimental results have shown that, in general, the histogram cell with the maximum amplitude is the best candidate for intraprediction (Method 1). In the case that all the cells have similar amplitudes, DC mode will be a better choice, thus an amplitude threshold is needed in deciding whether the intrablock exhibits strong edge presence or is just a flat region. However, it is difficult to pre-define a universal threshold that suits for different block context and different video sequences. Therefore, we always choose DC mode as the second candidate in participating the RDO operation (Method 2). Extensive experiments also show that, the chosen intraprediction mode is either the primary prediction mode, or one of the two neighboring modes (in terms of direction) of the primary prediction mode. The main cause for this phenomenon is that in H.264/AVC, RDO is based on the reconstructed intralossy images, while the edge directional histogram is calculated from the original lossless images. Therefore, the two additional candidate prediction modes are determined to be the two neighbors of the primary prediction mode in terms of directions. For example, if the primary prediction mode is Mode 1, then two additional candidate prediction modes will be Mode 8 and Mode 6. Note that Mode 8 and Mode 3 are adjacent modes in terms of directions due to the symmetry of the circle. In summary, for the I4MB prediction coding, the histogram cell with the maximum amplitude, and its two adjacent cells, plus DC mode are chosen to take part in RDO calculation. Therefore, for each 4 4 luma block, we will only perform 4 modes RDO calculation, instead of 9. B. I16MB Prediction Modes Based on the same observation above, the primary prediction mode decided by edge direction histogram is considered as a candidate of best prediction mode, and DC mode is also chosen as the next candidate. Therefore, in I16MB prediction coding, we will only perform 2 modes RDO calculation, instead of 4. C. 8 8 Chroma Prediction Modes For intrachroma blocks, there are two different edge direction histograms, one from component U and the other from V. The

6 818 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 7, JULY 2005 TABLE I NUMBER OF CANDIDATE MODES primary prediction modes from the two components are both considered as candidate modes. Same as before, DC mode will also be used in the RDO calculation. Note that according to the standard, the same prediction mode is always applied to both chroma blocks. Therefore, if the primary prediction modes from the two components are the same, there could only be 2 candidate modes for RDO calculation; otherwise, there will be 3. Thus, for each 8 8 chroma block intracoding, we will perform either 2 or 3 modes RDO calculation, instead of 4. D. Algorithm Complexity Analysis Table I summarizes the number of candidates selected for RDO calculation based on edge direction histogram. As can be seen from Table I, the encoder with the fast mode decision algorithm would need to perform only if the two chroma components have the same primary prediction mode. In case that the two chroma components have different primary prediction mode (which is very rare), the total number of RDO calculations would be. Thus our fast intraprediction algorithm has reduced number of RDO modes calculation significantly compared to the 592 modes that are used in the current RDO calculation in H.264/AVC video coding. E. Early Termination of RDO Calculation During the intracoding of any prediction mode, the calculation can be terminated if it can foresee that the current mode will not be the best prediction mode. By early termination of the RDO calculation which is deemed to be suboptimal, a great timesaving could be achieved. In RDO, the coding cost consists of two parts: rate and distortion. After calculating the cost of rate, there might be cases that the cost of rate is higher than the coding cost of the best mode in the previous modes. This implies that the current mode will not be the best mode since its coding cost will not be the smallest. Therefore, the RDO calculation will be terminated and the calculation of the Distortion is then eliminated. An MB is encoded by either I4MB prediction or I16MB prediction. In RDO, the selection between these two coding modes is determined by the coding costs of the MB by each coding mode. After I16MB prediction coding, I4MB prediction coding will apply to the sixteen 4 4 blocks in the MB and the cost of these blocks will be accumulated. However, if the accumulated cost before encoding the entire sixteen 4 4 blocks is already higher than that of I16MB prediction coding, the coding of the remaining of 4 4 blocks in the MB will be terminated pre-maturely. V. EXPERIMENTAL RESULTS Our proposed algorithm was implemented into JM6.1e provided by JVT. According to the specifications provided in [11], the test conditions are as follows. 1) MV search range is 32 pels for QCIF, CIF. 2) RD optimization is enabled. 3) Reference frame number equals to 1. 4) CABAC is enabled. 5) MV resolution is 1/4 pel. 6) GOP structure is IPPPP or IBBPB. A group of experiments were carried out on the recommended sequences with quantization parameters 28, 32, 36, and 40 as specified by [12]. The averaged PSNR values of luma (Y) and chroma (U, V) is used which is based on the equations below: where the average mean square error (MSE) is given by The comparison results were produced and tabulated based on the difference of coding time, the PSNR difference and the bit-rate difference, and the coding time statistics is generated from JM6.1e encoder. The test platform used is Pentium IV-2.8 GHz, 512 Mbytes RAM. In order to evaluate the timesaving of the fast intramode decision algorithm, the following calculation is defined to find the time differences. Let denote the coding time used by JM6.1e encoder and be the time taken by the faster intraprediction algorithm, and is defined as PSNR and bit-rate differences are calculated according to the numerical averages between the RD-curves derived from JM6.1e encoder and the fast algorithm, respectively. The detailed procedures in calculating these differences can be found from a JVT document authored by Bjontegaard [13], which is recommended by JVT Test Model Ad Hoc Group [12]. Note that PSNR and bit-rate differences should be regarded as equivalent, i.e., there is either the increase in PSNR or the decrease in bit-rate not both at the same time. A. Experiments on IPPPP Sequences It should be noted that, in H.264/AVC coding, MBs in P-frames also choose intracoding as the possible coding modes in the RDO operation, thus great timesaving is expected by using fast intracoding algorithm for this type of sequences. Table II shows the tabulated performance comparison of the proposed algorithm with JM6.1e for the sequences listed in [12]. In this experiment, the total number of frames is 300 for each sequence, and the period of I-frames is 100, i.e., there is one I-frame for every 100 coded frames. Note that in the table positive values mean increments, and negative values mean decrements. The differences in PSNR and bit rate are calculated (6) (7) (8)

7 PAN et al.: FAST MODE DECISION ALGORITHM FOR INTRA PREDICTION IN H.264/AVC VIDEO CODING 819 TABLE II RESULTS FOR IPPPP SEQUENCES Fig. 10. Timesaving at different intraperiod. Fig. 8. News, 1Psnr = 00:067 db, 1Bits = 1:226%. Fig. 11. Timesaving at different size of searching area. Fig. 9. Mobile, 1Psnr = 00:018 db, 1Bits = 0:451%. according to [13]. It can be seen that the fast intraprediction algorithm achieves consistent timesaving (average 25%) with negligible losses in PSNR and increments in bit rate. This means that, the fast intraalgorithm only takes about 3/4 of the time that is needed by JM6.1e. Figs. 8 and 9 show the RD curves of the two sequences news and mobile. Again, these twofigures have shown that the fast intraprediction algorithm has the similar RDO performance as that of JM6.1e. We have noticed that the simple early termination scheme described in Subsection IV-E contributed to about 6% to 8% of the total timesaving, with negligible loss of PSNR.However at higher quantization values, the increase in bit-rate is slightly higher than that in the lower quantization values. Figs. 10 and 11 show the timesaving at different intraperiods and at different searching area during motion estimation. It is noted from these ures that the fast intraalgorithm achieves similar timesaving when the intraperiod changes from 50 to 150 frames. However, the timesaving has reduced significantly when the size of the searching area increases. This is because that in H.264 video coding, the rate distortion optimization for intercoding mode decision is much more complex than that for intracoding mode decision due to motion estimation operations, i.e., the time takes to perform the RDO for intercoding is much longer than that for intracoding, and this becomes even so when the searching area increases. Fig. 12 shows the timesaving by using different number reference frames. It can be seen that the timesaving has reduced as the number of reference frames increases. This is similar to that case of Fig. 11, as the increased number of reference frames has increased the proportion of intercoding in the overall computational load.

8 820 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 7, JULY 2005 Fig. 12. Timesaving at different # of reference frames. TABLE III RESULTS FOR IIIII SEQUENCES Fig. 13. News, 1Psnr = 00:294 db, 1Bits = 3:902%. B. Experiments on All Intraframes Sequences In this experiment, a total number of 300 frames are used for each sequence, and the period of I-frames is set to 1, i.e., all the frames in the sequence are intracoded. It can be seen from Table III that the fast intraprediction algorithm achieves consistent timesaving (average 60%), which means that the fast intraalgorithm only takes about 40% of the time that is needed by JM6.1e. The average loss of PSNR of about 0.24 db, or equivalently, a slight increment in bit rate of about 3.7%. Figs. 13 and 14 show the RD curves of the two sequences news and mobile. Again, these two ures have shown that the fast intraprediction algorithm has the similar RDO performance as that of JM6.1e. C. Experiments on IBBPBB Sequences In this experiment, the picture type is set to IBBPB, i.e., there are two B-frames between any two I- or P-frames. A total number of 300 frames are used for each sequence, and the period of I-frames is set to 100. It can be seen from Table IV that the fast intraprediction algorithm achieves consistent timesaving (average 10%) with negligible losses in PSNR in increments in bit rate. It is noted that the timesaving for this type of sequence is much less than that of the IPPPP format. This is due to the fact that in H.264/AVC coding, B-frames do not use intracoding, and also, in B-frame coding, the motion estimation takes much longer time than that in P-frame coding. Fig. 14. Mobile, 1Psnr = 00:255 db, 1Bits = 3:168%. TABLE IV RESULTS FOR IBBPB SEQUENCES Another interesting observation from the table is that QCIF sequences achieve more timesaving than CIF. This is due to the high percentage of the boundary MBs in a QCIF sequence, and the searching area for those MBs is much smaller compared to the nonboundary MBs. Figs. 15 and 16 show the RD curves of the two sequences news and mobile. Again, these two ures have shown that the fast intraprediction algorithm has similar RDO performance as that of JM6.1e.

9 PAN et al.: FAST MODE DECISION ALGORITHM FOR INTRA PREDICTION IN H.264/AVC VIDEO CODING 821 VI. CONCLUSION This paper presented a fast mode decision algorithm for intraprediction in H.264/AVC video coding. By making use of the edge direction histogram, the number of mode combinations for luma and chroma blocks in an MB that takes part in RDO calculation has been reduced significantly from 592 to as low as 132. Other techniques such as early termination of RDO mode calculation are also used to further reduce the computation time. This results in a great reduction of the complexity and computation load of the encoder. Experimental results show that the fast algorithm has a negligible loss of PSNR compared to the original scheme. Fig. 15. News, 1Psnr = 00:156 db, 1Bits = 3:106%. Fig. 16. Mobile, 1Psnr = 00:013 db, 1Bits = 0:379%. TABLE V COMPARISON OF DIFFERENT FAST INTRA PREDICTION METHODS REFERENCES [1] Information Technology Coding of Audio-Visual Objects Part 10: Advanced Video Coding, Final Draft International Standard, ISO/IEC FDIS , Dec [2] Report of the formal verification tests on AVC (ISO/IEC ITU-T Rec. H.264),, MPEG2003/N6231, Dec [3] G. Sullivan, T. Wiegand, and K.-P. Lim, Joint model reference encoding methods and decoding concealment methods, presented at the 9th JVT Meeting (JVT-I049d0), San Diego, CA, Sep [4] X. Li and G. Wu, Fast integer pixel motion estimation, presented at the 6th JVT Meeting (JVT-F011), Awaji Island, Japan, Dec [5] Z. Chen, P. Zhou, and Y. He, Fast integer pel and fractional pel motion estimation for JVT, presented at the 6th JVT Meeting (JVT-F017), Awaji Island, Japan, Dec [6] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, G. N. Feng, D. J. Wu, and S. Wu, Fast mode decision algorithm for JVT intra prediction, presented at the 7th JVT Meeting (JVT-G013), Pattaya, Thailand, Mar [7] K. P. Lim, S. Wu, D. J. Wu, S. Rahardja, X. Lin, F. Pan, and Z. G. Li, Fast intermode decision, presented at the 9th JVT Meeting (JVT-I020), San Diego, CA, Sep [8] D. Marpe, V. George, H. L. Cycon, and K. U. Barthel, Performance evaluation of motion-jpeg2000 in comparison with H.264/AVC operated in intra coding mode, in SPIE Conf. Wavelet Applications in Industrial Processing, Oct. 2003, pp [9] A. K. Jain and A. Vailaya, Image retrieval using color and shape, Pattern Recognit., vol. 29, pp , [10] A. M. Bazen and S. H. Gerez, Systematic methods for the computation of the directional fields and singular points of fingerprints, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp , Jul [11] G. Sullivan, Recommended simulation common conditions for H.26L coding efficiency experiments on low resolution progressive scan source material, presented at the 14th VCEG-N81 Meeting, Santa Barbara, CA, Sep [12] JVT Test Model Ad Hoc Group, Evaluation sheet for motion estimation,, Draft version 4, Feb. 19, [13] G. Bjontegaard, Calculation of average PSNR differences between RD-curves, presented at the 13th VCEG-M33 Meeting, Austin, TX, Apr D. Comparison of Different Fast Intraprediction Methods As mentioned in the beginning of Section IV, besides the proposed methods, we have also tried different ways in deciding the number of preferred prediction modes based on the primary prediction mode. Table V gives the comparison of these methods. In this experiment, the settings and parameters used are the same as that in Section V-A, and we only present the results of the two sequences, i.e., news and mobile. It can be seen from Table V that all the four methods have achieved significant timesaving, and in terms of RD performance, Method 3 achieves the best results, though it is slightly inferior in timesaving. Feng Pan (M 00 SM 03) received the B.Sc., M.Sc., and Ph.D. degrees in communication and electronic engineering from Zhejiang University, Hangzhou, China in 1983, 1986, and 1989, respectively. Since then, he has been teaching and researching in a number of universities in China, U.K., Ireland, and Singapore. He is now with Institute for Infocomm Research, Singapore. His research areas are digital image processing, digital signal processing, digital video compression, and digital television broadcasting. He has published numerous technical papers and offered many short courses for industries. Dr. Pan currently serves as the Chapter Chairman of IEEE Consumer Electronics, Singapore.

10 822 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 7, JULY 2005 Xiao Lin (M 99 SM 02) received the Ph.D degree from the Electronics and Computer Science Department, University of Southampton, Southampton, U.K., in He worked with Centre for Signal Processing (CSP) for about five years as a Researcher and Manager on the Multimedia Program. He worked for DeSOC Technology as a technical director where he contributed on the VoIP solution, speech packet lost concealment for Bluetooth WCDMA baseband SOC development. He joined Institute for Infocomm Research, Singapore, in July 2002, where he is now Research Manager in charge of multimedia signal processing areas. computer network. Z. G. Li (M 97 SM 04) received the B.Sci. degree and the M. Eng. degree from Northeastern University, Shen Yang, China in 1992 and 1995, respectively, and received the Ph.D. degree from Nanyang Technological University, Singapore, in Currently, he is with the Institute for Infocomm Research (I2R), Singapore. He is an also Adjunct Assistant Professor of Nanyang Technological University, Singapore. He has published more than 30 journal papers in the fields of video processing, hybrid systems, chaotic secure communication, and Susanto Rahardja (M 00 SM 04) received the B.Eng. degree in electrical engineering from the National University of Singapore (NUS), Singapore, the M.Eng. degree in digital communication and microwave circuits, and the Ph.D. degree in the area of logic synthesis and signal processing from the Nanyang Technological University (NTU), Singapore, in 1991, 1993, and 1997, respectively. He joined the Centre for Signal Processing, NTU, as a Research Engineer in 1996, a Research Fellow in 1997, and served as a Business Development Manager in In 2001, he joined NTU as an Academic Professor and was appointed the Assistant Director of the Centre for Signal Processing. In 2002, he joined the Agency for Science, Technology, and Research and was appointed as the Program Director to lead the Signal Processing Program. He is the Co-Founder of AMIK Raharja Informatika and STMIK Raharja, an institute of higher learning in Tangerang, Indonesia. He is currently the Director of Media Division in the Institute for Infocomm Research, Singapore. He has more than 100 articles in international journals and conferences. He is currently an Associate Professor at the School of Electrical and Electronic Engineering in the Nanyang Technological University. His research interests include binary and multiple-valued logic synthesis, digital communication systems, and digital signal processing. Dr. Rahardja was the recipient of IEE Hartree Premium Award in 2002 and the Tan Kah Kee Young Inventors GOLD Award (Open Category) in Dajun Wu received the B.S. degree in computer science from Northwest University, Xi an, China, and the M. Eng. degree in computer engineering from Xi an Jiatong University, Xi an, China, in 1993 and 1998, respectively. From 1998 to 2000, he was a Researcher Scholar in the School of Computer Engineering, Nanyang Technological University, Singapore. Since 2000, he has been with Institute for Infocomm Research, Singapore. His research field includes image/video coding and computer vision. Keng Pang Lim (M 95) received the B.A.Sc. and Ph.D. degrees from the School of Computer Engineering, Nanyang Technological University, Singapore, in 1994 and 2001, respectively. He is an Associate Lead Scientist in Institute for Infocomm Research, Singapore, where he is currently leading a video coding group. His research interests include video coding, computer vision, and number theoretical transform. Dr. Lim was the recipient of the Du Pont Scholarship and Sony Prize Award. Si Wu received the B.S and M.Eng. degrees in telecommunication from Xidian University, Xi an, China. He is currently working as Senior Technical Officer in the Institute for Infocomm Research, Singapore. His research interests are multimedia communication, networking, and video processing.

Fast Mode Decision Algorithm for Intra prediction in H.264/AVC Video Coding

Fast Mode Decision Algorithm for Intra prediction in H.264/AVC Video Coding 356 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.1, January 27 Fast Mode Decision Algorithm for Intra prediction in H.264/AVC Video Coding Abderrahmane Elyousfi 12, Ahmed

More information

Selective Intra Prediction Mode Decision for H.264/AVC Encoders

Selective Intra Prediction Mode Decision for H.264/AVC Encoders Selective Intra Prediction Mode Decision for H.264/AVC Encoders Jun Sung Park, and Hyo Jung Song Abstract H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression

More information

SCALABLE video coding (SVC) is currently being developed

SCALABLE video coding (SVC) is currently being developed IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006 889 Fast Mode Decision Algorithm for Inter-Frame Coding in Fully Scalable Video Coding He Li, Z. G. Li, Senior

More information

Fast MBAFF/PAFF Motion Estimation and Mode Decision Scheme for H.264

Fast MBAFF/PAFF Motion Estimation and Mode Decision Scheme for H.264 Fast MBAFF/PAFF Motion Estimation and Mode Decision Scheme for H.264 Ju-Heon Seo, Sang-Mi Kim, Jong-Ki Han, Nonmember Abstract-- In the H.264, MBAFF (Macroblock adaptive frame/field) and PAFF (Picture

More information

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur Module 8 VIDEO CODING STANDARDS Lesson 27 H.264 standard Lesson Objectives At the end of this lesson, the students should be able to: 1. State the broad objectives of the H.264 standard. 2. List the improved

More information

FAST SPATIAL AND TEMPORAL CORRELATION-BASED REFERENCE PICTURE SELECTION

FAST SPATIAL AND TEMPORAL CORRELATION-BASED REFERENCE PICTURE SELECTION FAST SPATIAL AND TEMPORAL CORRELATION-BASED REFERENCE PICTURE SELECTION 1 YONGTAE KIM, 2 JAE-GON KIM, and 3 HAECHUL CHOI 1, 3 Hanbat National University, Department of Multimedia Engineering 2 Korea Aerospace

More information

Comparative Study of JPEG2000 and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences

Comparative Study of JPEG2000 and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences Comparative Study of and H.264/AVC FRExt I Frame Coding on High-Definition Video Sequences Pankaj Topiwala 1 FastVDO, LLC, Columbia, MD 210 ABSTRACT This paper reports the rate-distortion performance comparison

More information

Overview: Video Coding Standards

Overview: Video Coding Standards Overview: Video Coding Standards Video coding standards: applications and common structure ITU-T Rec. H.261 ISO/IEC MPEG-1 ISO/IEC MPEG-2 State-of-the-art: H.264/AVC Video Coding Standards no. 1 Applications

More information

Chapter 2 Introduction to

Chapter 2 Introduction to Chapter 2 Introduction to H.264/AVC H.264/AVC [1] is the newest video coding standard of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). The main improvements

More information

Chapter 10 Basic Video Compression Techniques

Chapter 10 Basic Video Compression Techniques Chapter 10 Basic Video Compression Techniques 10.1 Introduction to Video compression 10.2 Video Compression with Motion Compensation 10.3 Video compression standard H.261 10.4 Video compression standard

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ISCAS.2005.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ISCAS.2005. Wang, D., Canagarajah, CN., & Bull, DR. (2005). S frame design for multiple description video coding. In IEEE International Symposium on Circuits and Systems (ISCAS) Kobe, Japan (Vol. 3, pp. 19 - ). Institute

More information

COMPLEXITY REDUCTION FOR HEVC INTRAFRAME LUMA MODE DECISION USING IMAGE STATISTICS AND NEURAL NETWORKS.

COMPLEXITY REDUCTION FOR HEVC INTRAFRAME LUMA MODE DECISION USING IMAGE STATISTICS AND NEURAL NETWORKS. COMPLEXITY REDUCTION FOR HEVC INTRAFRAME LUMA MODE DECISION USING IMAGE STATISTICS AND NEURAL NETWORKS. DILIP PRASANNA KUMAR 1000786997 UNDER GUIDANCE OF DR. RAO UNIVERSITY OF TEXAS AT ARLINGTON. DEPT.

More information

The H.26L Video Coding Project

The H.26L Video Coding Project The H.26L Video Coding Project New ITU-T Q.6/SG16 (VCEG - Video Coding Experts Group) standardization activity for video compression August 1999: 1 st test model (TML-1) December 2001: 10 th test model

More information

Research Topic. Error Concealment Techniques in H.264/AVC for Wireless Video Transmission in Mobile Networks

Research Topic. Error Concealment Techniques in H.264/AVC for Wireless Video Transmission in Mobile Networks Research Topic Error Concealment Techniques in H.264/AVC for Wireless Video Transmission in Mobile Networks July 22 nd 2008 Vineeth Shetty Kolkeri EE Graduate,UTA 1 Outline 2. Introduction 3. Error control

More information

Error concealment techniques in H.264 video transmission over wireless networks

Error concealment techniques in H.264 video transmission over wireless networks Error concealment techniques in H.264 video transmission over wireless networks M U L T I M E D I A P R O C E S S I N G ( E E 5 3 5 9 ) S P R I N G 2 0 1 1 D R. K. R. R A O F I N A L R E P O R T Murtaza

More information

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Motion Compensation Techniques Adopted In HEVC

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Motion Compensation Techniques Adopted In HEVC Motion Compensation Techniques Adopted In HEVC S.Mahesh 1, K.Balavani 2 M.Tech student in Bapatla Engineering College, Bapatla, Andahra Pradesh Assistant professor in Bapatla Engineering College, Bapatla,

More information

Robust 3-D Video System Based on Modified Prediction Coding and Adaptive Selection Mode Error Concealment Algorithm

Robust 3-D Video System Based on Modified Prediction Coding and Adaptive Selection Mode Error Concealment Algorithm International Journal of Signal Processing Systems Vol. 2, No. 2, December 2014 Robust 3-D Video System Based on Modified Prediction Coding and Adaptive Selection Mode Error Concealment Algorithm Walid

More information

A Fast Intra Skip Detection Algorithm for H.264/AVC Video Encoding

A Fast Intra Skip Detection Algorithm for H.264/AVC Video Encoding A Fast ntra Skip Detection Algorithm for H264/AVC Video Encoding Byung-Gyu im, ong-ho im, and Chang-Sik Cho A fast intra skip detection algorithm based on the ratedistortion (RD) cost for an inter frame

More information

Visual Communication at Limited Colour Display Capability

Visual Communication at Limited Colour Display Capability Visual Communication at Limited Colour Display Capability Yan Lu, Wen Gao and Feng Wu Abstract: A novel scheme for visual communication by means of mobile devices with limited colour display capability

More information

H.264/AVC Baseline Profile Decoder Complexity Analysis

H.264/AVC Baseline Profile Decoder Complexity Analysis 704 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003 H.264/AVC Baseline Profile Decoder Complexity Analysis Michael Horowitz, Anthony Joch, Faouzi Kossentini, Senior

More information

Project Proposal: Sub pixel motion estimation for side information generation in Wyner- Ziv decoder.

Project Proposal: Sub pixel motion estimation for side information generation in Wyner- Ziv decoder. EE 5359 MULTIMEDIA PROCESSING Subrahmanya Maira Venkatrav 1000615952 Project Proposal: Sub pixel motion estimation for side information generation in Wyner- Ziv decoder. Wyner-Ziv(WZ) encoder is a low

More information

Reduced complexity MPEG2 video post-processing for HD display

Reduced complexity MPEG2 video post-processing for HD display Downloaded from orbit.dtu.dk on: Dec 17, 2017 Reduced complexity MPEG2 video post-processing for HD display Virk, Kamran; Li, Huiying; Forchhammer, Søren Published in: IEEE International Conference on

More information

WITH the rapid development of high-fidelity video services

WITH the rapid development of high-fidelity video services 896 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 7, JULY 2015 An Efficient Frame-Content Based Intra Frame Rate Control for High Efficiency Video Coding Miaohui Wang, Student Member, IEEE, KingNgiNgan,

More information

COMP 249 Advanced Distributed Systems Multimedia Networking. Video Compression Standards

COMP 249 Advanced Distributed Systems Multimedia Networking. Video Compression Standards COMP 9 Advanced Distributed Systems Multimedia Networking Video Compression Standards Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs.unc.edu September,

More information

An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions

An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions 1128 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 10, OCTOBER 2001 An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions Kwok-Wai Wong, Kin-Man Lam,

More information

Color Quantization of Compressed Video Sequences. Wan-Fung Cheung, and Yuk-Hee Chan, Member, IEEE 1 CSVT

Color Quantization of Compressed Video Sequences. Wan-Fung Cheung, and Yuk-Hee Chan, Member, IEEE 1 CSVT CSVT -02-05-09 1 Color Quantization of Compressed Video Sequences Wan-Fung Cheung, and Yuk-Hee Chan, Member, IEEE 1 Abstract This paper presents a novel color quantization algorithm for compressed video

More information

AN IMPROVED ERROR CONCEALMENT STRATEGY DRIVEN BY SCENE MOTION PROPERTIES FOR H.264/AVC DECODERS

AN IMPROVED ERROR CONCEALMENT STRATEGY DRIVEN BY SCENE MOTION PROPERTIES FOR H.264/AVC DECODERS AN IMPROVED ERROR CONCEALMENT STRATEGY DRIVEN BY SCENE MOTION PROPERTIES FOR H.264/AVC DECODERS Susanna Spinsante, Ennio Gambi, Franco Chiaraluce Dipartimento di Elettronica, Intelligenza artificiale e

More information

Intra-frame JPEG-2000 vs. Inter-frame Compression Comparison: The benefits and trade-offs for very high quality, high resolution sequences

Intra-frame JPEG-2000 vs. Inter-frame Compression Comparison: The benefits and trade-offs for very high quality, high resolution sequences Intra-frame JPEG-2000 vs. Inter-frame Compression Comparison: The benefits and trade-offs for very high quality, high resolution sequences Michael Smith and John Villasenor For the past several decades,

More information

Express Letters. A Novel Four-Step Search Algorithm for Fast Block Motion Estimation

Express Letters. A Novel Four-Step Search Algorithm for Fast Block Motion Estimation IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 6, NO. 3, JUNE 1996 313 Express Letters A Novel Four-Step Search Algorithm for Fast Block Motion Estimation Lai-Man Po and Wing-Chung

More information

Key Techniques of Bit Rate Reduction for H.264 Streams

Key Techniques of Bit Rate Reduction for H.264 Streams Key Techniques of Bit Rate Reduction for H.264 Streams Peng Zhang, Qing-Ming Huang, and Wen Gao Institute of Computing Technology, Chinese Academy of Science, Beijing, 100080, China {peng.zhang, qmhuang,

More information

A High Performance VLSI Architecture with Half Pel and Quarter Pel Interpolation for A Single Frame

A High Performance VLSI Architecture with Half Pel and Quarter Pel Interpolation for A Single Frame I J C T A, 9(34) 2016, pp. 673-680 International Science Press A High Performance VLSI Architecture with Half Pel and Quarter Pel Interpolation for A Single Frame K. Priyadarshini 1 and D. Jackuline Moni

More information

Video coding standards

Video coding standards Video coding standards Video signals represent sequences of images or frames which can be transmitted with a rate from 5 to 60 frames per second (fps), that provides the illusion of motion in the displayed

More information

WYNER-ZIV VIDEO CODING WITH LOW ENCODER COMPLEXITY

WYNER-ZIV VIDEO CODING WITH LOW ENCODER COMPLEXITY WYNER-ZIV VIDEO CODING WITH LOW ENCODER COMPLEXITY (Invited Paper) Anne Aaron and Bernd Girod Information Systems Laboratory Stanford University, Stanford, CA 94305 {amaaron,bgirod}@stanford.edu Abstract

More information

ERROR CONCEALMENT TECHNIQUES IN H.264 VIDEO TRANSMISSION OVER WIRELESS NETWORKS

ERROR CONCEALMENT TECHNIQUES IN H.264 VIDEO TRANSMISSION OVER WIRELESS NETWORKS Multimedia Processing Term project on ERROR CONCEALMENT TECHNIQUES IN H.264 VIDEO TRANSMISSION OVER WIRELESS NETWORKS Interim Report Spring 2016 Under Dr. K. R. Rao by Moiz Mustafa Zaveri (1001115920)

More information

MPEG has been established as an international standard

MPEG has been established as an international standard 1100 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 7, OCTOBER 1999 Fast Extraction of Spatially Reduced Image Sequences from MPEG-2 Compressed Video Junehwa Song, Member,

More information

Multimedia Communications. Image and Video compression

Multimedia Communications. Image and Video compression Multimedia Communications Image and Video compression JPEG2000 JPEG2000: is based on wavelet decomposition two types of wavelet filters one similar to what discussed in Chapter 14 and the other one generates

More information

Error Resilient Video Coding Using Unequally Protected Key Pictures

Error Resilient Video Coding Using Unequally Protected Key Pictures Error Resilient Video Coding Using Unequally Protected Key Pictures Ye-Kui Wang 1, Miska M. Hannuksela 2, and Moncef Gabbouj 3 1 Nokia Mobile Software, Tampere, Finland 2 Nokia Research Center, Tampere,

More information

Adaptive Key Frame Selection for Efficient Video Coding

Adaptive Key Frame Selection for Efficient Video Coding Adaptive Key Frame Selection for Efficient Video Coding Jaebum Jun, Sunyoung Lee, Zanming He, Myungjung Lee, and Euee S. Jang Digital Media Lab., Hanyang University 17 Haengdang-dong, Seongdong-gu, Seoul,

More information

A Novel Macroblock-Level Filtering Upsampling Architecture for H.264/AVC Scalable Extension

A Novel Macroblock-Level Filtering Upsampling Architecture for H.264/AVC Scalable Extension 05-Silva-AF:05-Silva-AF 8/19/11 6:18 AM Page 43 A Novel Macroblock-Level Filtering Upsampling Architecture for H.264/AVC Scalable Extension T. L. da Silva 1, L. A. S. Cruz 2, and L. V. Agostini 3 1 Telecommunications

More information

Modeling and Optimization of a Systematic Lossy Error Protection System based on H.264/AVC Redundant Slices

Modeling and Optimization of a Systematic Lossy Error Protection System based on H.264/AVC Redundant Slices Modeling and Optimization of a Systematic Lossy Error Protection System based on H.264/AVC Redundant Slices Shantanu Rane, Pierpaolo Baccichet and Bernd Girod Information Systems Laboratory, Department

More information

Video Over Mobile Networks

Video Over Mobile Networks Video Over Mobile Networks Professor Mohammed Ghanbari Department of Electronic systems Engineering University of Essex United Kingdom June 2005, Zadar, Croatia (Slides prepared by M. Mahdi Ghandi) INTRODUCTION

More information

Multimedia Communications. Video compression

Multimedia Communications. Video compression Multimedia Communications Video compression Video compression Of all the different sources of data, video produces the largest amount of data There are some differences in our perception with regard to

More information

Temporal Error Concealment Algorithm Using Adaptive Multi- Side Boundary Matching Principle

Temporal Error Concealment Algorithm Using Adaptive Multi- Side Boundary Matching Principle 184 IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 Temporal Error Concealment Algorithm Using Adaptive Multi- Side Boundary Matching Principle Seung-Soo

More information

Highly Efficient Video Codec for Entertainment-Quality

Highly Efficient Video Codec for Entertainment-Quality Highly Efficient Video Codec for Entertainment-Quality Seyoon Jeong, Sung-Chang Lim, Hahyun Lee, Jongho Kim, Jin Soo Choi, and Haechul Choi We present a novel video codec for supporting entertainment-quality

More information

Variable Block-Size Transforms for H.264/AVC

Variable Block-Size Transforms for H.264/AVC 604 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003 Variable Block-Size Transforms for H.264/AVC Mathias Wien, Member, IEEE Abstract A concept for variable block-size

More information

Region Adaptive Unsharp Masking based DCT Interpolation for Efficient Video Intra Frame Up-sampling

Region Adaptive Unsharp Masking based DCT Interpolation for Efficient Video Intra Frame Up-sampling International Conference on Electronic Design and Signal Processing (ICEDSP) 0 Region Adaptive Unsharp Masking based DCT Interpolation for Efficient Video Intra Frame Up-sampling Aditya Acharya Dept. of

More information

Performance Evaluation of Error Resilience Techniques in H.264/AVC Standard

Performance Evaluation of Error Resilience Techniques in H.264/AVC Standard Performance Evaluation of Error Resilience Techniques in H.264/AVC Standard Ram Narayan Dubey Masters in Communication Systems Dept of ECE, IIT-R, India Varun Gunnala Masters in Communication Systems Dept

More information

WITH the demand of higher video quality, lower bit

WITH the demand of higher video quality, lower bit IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 8, AUGUST 2006 917 A High-Definition H.264/AVC Intra-Frame Codec IP for Digital Video and Still Camera Applications Chun-Wei

More information

CODING EFFICIENCY IMPROVEMENT FOR SVC BROADCAST IN THE CONTEXT OF THE EMERGING DVB STANDARDIZATION

CODING EFFICIENCY IMPROVEMENT FOR SVC BROADCAST IN THE CONTEXT OF THE EMERGING DVB STANDARDIZATION 17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009 CODING EFFICIENCY IMPROVEMENT FOR SVC BROADCAST IN THE CONTEXT OF THE EMERGING DVB STANDARDIZATION Heiko

More information

A Novel Approach towards Video Compression for Mobile Internet using Transform Domain Technique

A Novel Approach towards Video Compression for Mobile Internet using Transform Domain Technique A Novel Approach towards Video Compression for Mobile Internet using Transform Domain Technique Dhaval R. Bhojani Research Scholar, Shri JJT University, Jhunjunu, Rajasthan, India Ved Vyas Dwivedi, PhD.

More information

Video compression principles. Color Space Conversion. Sub-sampling of Chrominance Information. Video: moving pictures and the terms frame and

Video compression principles. Color Space Conversion. Sub-sampling of Chrominance Information. Video: moving pictures and the terms frame and Video compression principles Video: moving pictures and the terms frame and picture. one approach to compressing a video source is to apply the JPEG algorithm to each frame independently. This approach

More information

Motion Video Compression

Motion Video Compression 7 Motion Video Compression 7.1 Motion video Motion video contains massive amounts of redundant information. This is because each image has redundant information and also because there are very few changes

More information

Contents. xv xxi xxiii xxiv. 1 Introduction 1 References 4

Contents. xv xxi xxiii xxiv. 1 Introduction 1 References 4 Contents List of figures List of tables Preface Acknowledgements xv xxi xxiii xxiv 1 Introduction 1 References 4 2 Digital video 5 2.1 Introduction 5 2.2 Analogue television 5 2.3 Interlace 7 2.4 Picture

More information

Joint Optimization of Source-Channel Video Coding Using the H.264/AVC encoder and FEC Codes. Digital Signal and Image Processing Lab

Joint Optimization of Source-Channel Video Coding Using the H.264/AVC encoder and FEC Codes. Digital Signal and Image Processing Lab Joint Optimization of Source-Channel Video Coding Using the H.264/AVC encoder and FEC Codes Digital Signal and Image Processing Lab Simone Milani Ph.D. student simone.milani@dei.unipd.it, Summer School

More information

Principles of Video Compression

Principles of Video Compression Principles of Video Compression Topics today Introduction Temporal Redundancy Reduction Coding for Video Conferencing (H.261, H.263) (CSIT 410) 2 Introduction Reduce video bit rates while maintaining an

More information

ROBUST ADAPTIVE INTRA REFRESH FOR MULTIVIEW VIDEO

ROBUST ADAPTIVE INTRA REFRESH FOR MULTIVIEW VIDEO ROBUST ADAPTIVE INTRA REFRESH FOR MULTIVIEW VIDEO Sagir Lawan1 and Abdul H. Sadka2 1and 2 Department of Electronic and Computer Engineering, Brunel University, London, UK ABSTRACT Transmission error propagation

More information

AUDIOVISUAL COMMUNICATION

AUDIOVISUAL COMMUNICATION AUDIOVISUAL COMMUNICATION Laboratory Session: Recommendation ITU-T H.261 Fernando Pereira The objective of this lab session about Recommendation ITU-T H.261 is to get the students familiar with many aspects

More information

An Overview of Video Coding Algorithms

An Overview of Video Coding Algorithms An Overview of Video Coding Algorithms Prof. Ja-Ling Wu Department of Computer Science and Information Engineering National Taiwan University Video coding can be viewed as image compression with a temporal

More information

Project Proposal Time Optimization of HEVC Encoder over X86 Processors using SIMD. Spring 2013 Multimedia Processing EE5359

Project Proposal Time Optimization of HEVC Encoder over X86 Processors using SIMD. Spring 2013 Multimedia Processing EE5359 Project Proposal Time Optimization of HEVC Encoder over X86 Processors using SIMD Spring 2013 Multimedia Processing Advisor: Dr. K. R. Rao Department of Electrical Engineering University of Texas, Arlington

More information

Performance Comparison of JPEG2000 and H.264/AVC High Profile Intra Frame Coding on HD Video Sequences

Performance Comparison of JPEG2000 and H.264/AVC High Profile Intra Frame Coding on HD Video Sequences Performance Comparison of and H.264/AVC High Profile Intra Frame Coding on HD Video Sequences Pankaj Topiwala, Trac Tran, Wei Dai {pankaj, trac, daisy} @ fastvdo.com FastVDO, LLC, Columbia, MD 210 ABSTRACT

More information

CONSTRAINING delay is critical for real-time communication

CONSTRAINING delay is critical for real-time communication 1726 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 7, JULY 2007 Compression Efficiency and Delay Tradeoffs for Hierarchical B-Pictures and Pulsed-Quality Frames Athanasios Leontaris, Member, IEEE,

More information

Impact of scan conversion methods on the performance of scalable. video coding. E. Dubois, N. Baaziz and M. Matta. INRS-Telecommunications

Impact of scan conversion methods on the performance of scalable. video coding. E. Dubois, N. Baaziz and M. Matta. INRS-Telecommunications Impact of scan conversion methods on the performance of scalable video coding E. Dubois, N. Baaziz and M. Matta INRS-Telecommunications 16 Place du Commerce, Verdun, Quebec, Canada H3E 1H6 ABSTRACT The

More information

Chapter 2 Video Coding Standards and Video Formats

Chapter 2 Video Coding Standards and Video Formats Chapter 2 Video Coding Standards and Video Formats Abstract Video formats, conversions among RGB, Y, Cb, Cr, and YUV are presented. These are basically continuation from Chap. 1 and thus complement the

More information

Motion Re-estimation for MPEG-2 to MPEG-4 Simple Profile Transcoding. Abstract. I. Introduction

Motion Re-estimation for MPEG-2 to MPEG-4 Simple Profile Transcoding. Abstract. I. Introduction Motion Re-estimation for MPEG-2 to MPEG-4 Simple Profile Transcoding Jun Xin, Ming-Ting Sun*, and Kangwook Chun** *Department of Electrical Engineering, University of Washington **Samsung Electronics Co.

More information

WE CONSIDER an enhancement technique for degraded

WE CONSIDER an enhancement technique for degraded 1140 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 9, SEPTEMBER 2014 Example-based Enhancement of Degraded Video Edson M. Hung, Member, IEEE, Diogo C. Garcia, Member, IEEE, and Ricardo L. de Queiroz, Senior

More information

DELTA MODULATION AND DPCM CODING OF COLOR SIGNALS

DELTA MODULATION AND DPCM CODING OF COLOR SIGNALS DELTA MODULATION AND DPCM CODING OF COLOR SIGNALS Item Type text; Proceedings Authors Habibi, A. Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings

More information

ERROR CONCEALMENT TECHNIQUES IN H.264

ERROR CONCEALMENT TECHNIQUES IN H.264 Final Report Multimedia Processing Term project on ERROR CONCEALMENT TECHNIQUES IN H.264 Spring 2016 Under Dr. K. R. Rao by Moiz Mustafa Zaveri (1001115920) moiz.mustafazaveri@mavs.uta.edu 1 Acknowledgement

More information

The H.263+ Video Coding Standard: Complexity and Performance

The H.263+ Video Coding Standard: Complexity and Performance The H.263+ Video Coding Standard: Complexity and Performance Berna Erol (bernae@ee.ubc.ca), Michael Gallant (mikeg@ee.ubc.ca), Guy C t (guyc@ee.ubc.ca), and Faouzi Kossentini (faouzi@ee.ubc.ca) Department

More information

HEVC Subjective Video Quality Test Results

HEVC Subjective Video Quality Test Results HEVC Subjective Video Quality Test Results T. K. Tan M. Mrak R. Weerakkody N. Ramzan V. Baroncini G. J. Sullivan J.-R. Ohm K. D. McCann NTT DOCOMO, Japan BBC, UK BBC, UK University of West of Scotland,

More information

Video Compression - From Concepts to the H.264/AVC Standard

Video Compression - From Concepts to the H.264/AVC Standard PROC. OF THE IEEE, DEC. 2004 1 Video Compression - From Concepts to the H.264/AVC Standard GARY J. SULLIVAN, SENIOR MEMBER, IEEE, AND THOMAS WIEGAND Invited Paper Abstract Over the last one and a half

More information

PACKET-SWITCHED networks have become ubiquitous

PACKET-SWITCHED networks have become ubiquitous IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 7, JULY 2004 885 Video Compression for Lossy Packet Networks With Mode Switching and a Dual-Frame Buffer Athanasios Leontaris, Student Member, IEEE,

More information

CERIAS Tech Report Preprocessing and Postprocessing Techniques for Encoding Predictive Error Frames in Rate Scalable Video Codecs by E

CERIAS Tech Report Preprocessing and Postprocessing Techniques for Encoding Predictive Error Frames in Rate Scalable Video Codecs by E CERIAS Tech Report 2001-118 Preprocessing and Postprocessing Techniques for Encoding Predictive Error Frames in Rate Scalable Video Codecs by E Asbun, P Salama, E Delp Center for Education and Research

More information

A Study of Encoding and Decoding Techniques for Syndrome-Based Video Coding

A Study of Encoding and Decoding Techniques for Syndrome-Based Video Coding MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com A Study of Encoding and Decoding Techniques for Syndrome-Based Video Coding Min Wu, Anthony Vetro, Jonathan Yedidia, Huifang Sun, Chang Wen

More information

A video signal consists of a time sequence of images. Typical frame rates are 24, 25, 30, 50 and 60 images per seconds.

A video signal consists of a time sequence of images. Typical frame rates are 24, 25, 30, 50 and 60 images per seconds. Video coding Concepts and notations. A video signal consists of a time sequence of images. Typical frame rates are 24, 25, 30, 50 and 60 images per seconds. Each image is either sent progressively (the

More information

Interim Report Time Optimization of HEVC Encoder over X86 Processors using SIMD. Spring 2013 Multimedia Processing EE5359

Interim Report Time Optimization of HEVC Encoder over X86 Processors using SIMD. Spring 2013 Multimedia Processing EE5359 Interim Report Time Optimization of HEVC Encoder over X86 Processors using SIMD Spring 2013 Multimedia Processing Advisor: Dr. K. R. Rao Department of Electrical Engineering University of Texas, Arlington

More information

1022 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010

1022 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010 1022 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010 Delay Constrained Multiplexing of Video Streams Using Dual-Frame Video Coding Mayank Tiwari, Student Member, IEEE, Theodore Groves,

More information

Constant Bit Rate for Video Streaming Over Packet Switching Networks

Constant Bit Rate for Video Streaming Over Packet Switching Networks International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Constant Bit Rate for Video Streaming Over Packet Switching Networks Mr. S. P.V Subba rao 1, Y. Renuka Devi 2 Associate professor

More information

A Unified Approach to Restoration, Deinterlacing and Resolution Enhancement in Decoding MPEG-2 Video

A Unified Approach to Restoration, Deinterlacing and Resolution Enhancement in Decoding MPEG-2 Video Downloaded from orbit.dtu.dk on: Dec 15, 2017 A Unified Approach to Restoration, Deinterlacing and Resolution Enhancement in Decoding MPEG-2 Video Forchhammer, Søren; Martins, Bo Published in: I E E E

More information

Introduction to Video Compression Techniques. Slides courtesy of Tay Vaughan Making Multimedia Work

Introduction to Video Compression Techniques. Slides courtesy of Tay Vaughan Making Multimedia Work Introduction to Video Compression Techniques Slides courtesy of Tay Vaughan Making Multimedia Work Agenda Video Compression Overview Motivation for creating standards What do the standards specify Brief

More information

SUMMIT LAW GROUP PLLC 315 FIFTH AVENUE SOUTH, SUITE 1000 SEATTLE, WASHINGTON Telephone: (206) Fax: (206)

SUMMIT LAW GROUP PLLC 315 FIFTH AVENUE SOUTH, SUITE 1000 SEATTLE, WASHINGTON Telephone: (206) Fax: (206) Case 2:10-cv-01823-JLR Document 154 Filed 01/06/12 Page 1 of 153 1 The Honorable James L. Robart 2 3 4 5 6 7 UNITED STATES DISTRICT COURT FOR THE WESTERN DISTRICT OF WASHINGTON AT SEATTLE 8 9 10 11 12

More information

Skip Length and Inter-Starvation Distance as a Combined Metric to Assess the Quality of Transmitted Video

Skip Length and Inter-Starvation Distance as a Combined Metric to Assess the Quality of Transmitted Video Skip Length and Inter-Starvation Distance as a Combined Metric to Assess the Quality of Transmitted Video Mohamed Hassan, Taha Landolsi, Husameldin Mukhtar, and Tamer Shanableh College of Engineering American

More information

PERCEPTUAL QUALITY OF H.264/AVC DEBLOCKING FILTER

PERCEPTUAL QUALITY OF H.264/AVC DEBLOCKING FILTER PERCEPTUAL QUALITY OF H./AVC DEBLOCKING FILTER Y. Zhong, I. Richardson, A. Miller and Y. Zhao School of Enginnering, The Robert Gordon University, Schoolhill, Aberdeen, AB1 1FR, UK Phone: + 1, Fax: + 1,

More information

SCENE CHANGE ADAPTATION FOR SCALABLE VIDEO CODING

SCENE CHANGE ADAPTATION FOR SCALABLE VIDEO CODING 17th European Signal Processing Conference (EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009 SCENE CHANGE ADAPTATION FOR SCALABLE VIDEO CODING Tea Anselmo, Daniele Alfonso Advanced System Technology

More information

UC San Diego UC San Diego Previously Published Works

UC San Diego UC San Diego Previously Published Works UC San Diego UC San Diego Previously Published Works Title Wyner-Ziv Video Coding With Classified Correlation Noise Estimation and Key Frame Coding Mode Selection Permalink https://escholarship.org/uc/item/26n2f9r4

More information

Rate-Distortion Analysis for H.264/AVC Video Coding and its Application to Rate Control

Rate-Distortion Analysis for H.264/AVC Video Coding and its Application to Rate Control IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 12, DECEMBER 2005 1533 Rate-Distortion Analysis for H.264/AVC Video Coding and its Application to Rate Control Siwei Ma, Student

More information

1. INTRODUCTION. Index Terms Video Transcoding, Video Streaming, Frame skipping, Interpolation frame, Decoder, Encoder.

1. INTRODUCTION. Index Terms Video Transcoding, Video Streaming, Frame skipping, Interpolation frame, Decoder, Encoder. Video Streaming Based on Frame Skipping and Interpolation Techniques Fadlallah Ali Fadlallah Department of Computer Science Sudan University of Science and Technology Khartoum-SUDAN fadali@sustech.edu

More information

Dual Frame Video Encoding with Feedback

Dual Frame Video Encoding with Feedback Video Encoding with Feedback Athanasios Leontaris and Pamela C. Cosman Department of Electrical and Computer Engineering University of California, San Diego, La Jolla, CA 92093-0407 Email: pcosman,aleontar

More information

Analysis of a Two Step MPEG Video System

Analysis of a Two Step MPEG Video System Analysis of a Two Step MPEG Video System Lufs Telxeira (*) (+) (*) INESC- Largo Mompilhet 22, 4000 Porto Portugal (+) Universidade Cat61ica Portnguesa, Rua Dingo Botelho 1327, 4150 Porto, Portugal Abstract:

More information

complex than coding of interlaced data. This is a significant component of the reduced complexity of AVS coding.

complex than coding of interlaced data. This is a significant component of the reduced complexity of AVS coding. AVS - The Chinese Next-Generation Video Coding Standard Wen Gao*, Cliff Reader, Feng Wu, Yun He, Lu Yu, Hanqing Lu, Shiqiang Yang, Tiejun Huang*, Xingde Pan *Joint Development Lab., Institute of Computing

More information

EMBEDDED ZEROTREE WAVELET CODING WITH JOINT HUFFMAN AND ARITHMETIC CODING

EMBEDDED ZEROTREE WAVELET CODING WITH JOINT HUFFMAN AND ARITHMETIC CODING EMBEDDED ZEROTREE WAVELET CODING WITH JOINT HUFFMAN AND ARITHMETIC CODING Harmandeep Singh Nijjar 1, Charanjit Singh 2 1 MTech, Department of ECE, Punjabi University Patiala 2 Assistant Professor, Department

More information

Error Concealment for SNR Scalable Video Coding

Error Concealment for SNR Scalable Video Coding Error Concealment for SNR Scalable Video Coding M. M. Ghandi and M. Ghanbari University of Essex, Wivenhoe Park, Colchester, UK, CO4 3SQ. Emails: (mahdi,ghan)@essex.ac.uk Abstract This paper proposes an

More information

ARTICLE IN PRESS. Signal Processing: Image Communication

ARTICLE IN PRESS. Signal Processing: Image Communication Signal Processing: Image Communication 23 (2008) 677 691 Contents lists available at ScienceDirect Signal Processing: Image Communication journal homepage: www.elsevier.com/locate/image H.264/AVC-based

More information

A Study on AVS-M video standard

A Study on AVS-M video standard 1 A Study on AVS-M video standard EE 5359 Sahana Devaraju University of Texas at Arlington Email:sahana.devaraju@mavs.uta.edu 2 Outline Introduction Data Structure of AVS-M AVS-M CODEC Profiles & Levels

More information

CHROMA CODING IN DISTRIBUTED VIDEO CODING

CHROMA CODING IN DISTRIBUTED VIDEO CODING International Journal of Computer Science and Communication Vol. 3, No. 1, January-June 2012, pp. 67-72 CHROMA CODING IN DISTRIBUTED VIDEO CODING Vijay Kumar Kodavalla 1 and P. G. Krishna Mohan 2 1 Semiconductor

More information

Concealment of Whole-Picture Loss in Hierarchical B-Picture Scalable Video Coding Xiangyang Ji, Debin Zhao, and Wen Gao, Senior Member, IEEE

Concealment of Whole-Picture Loss in Hierarchical B-Picture Scalable Video Coding Xiangyang Ji, Debin Zhao, and Wen Gao, Senior Member, IEEE IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 11, NO. 1, JANUARY 2009 11 Concealment of Whole-Picture Loss in Hierarchical B-Picture Scalable Video Coding Xiangyang Ji, Debin Zhao, and Wen Gao, Senior Member,

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks Video Basics Jianping Pan Spring 2017 3/10/17 csc466/579 1 Video is a sequence of images Recorded/displayed at a certain rate Types of video signals component video separate

More information

A VLSI Architecture for Variable Block Size Video Motion Estimation

A VLSI Architecture for Variable Block Size Video Motion Estimation A VLSI Architecture for Variable Block Size Video Motion Estimation Yap, S. Y., & McCanny, J. (2004). A VLSI Architecture for Variable Block Size Video Motion Estimation. IEEE Transactions on Circuits

More information

UNIVERSAL SPATIAL UP-SCALER WITH NONLINEAR EDGE ENHANCEMENT

UNIVERSAL SPATIAL UP-SCALER WITH NONLINEAR EDGE ENHANCEMENT UNIVERSAL SPATIAL UP-SCALER WITH NONLINEAR EDGE ENHANCEMENT Stefan Schiemenz, Christian Hentschel Brandenburg University of Technology, Cottbus, Germany ABSTRACT Spatial image resizing is an important

More information

Systematic Lossy Error Protection of Video based on H.264/AVC Redundant Slices

Systematic Lossy Error Protection of Video based on H.264/AVC Redundant Slices Systematic Lossy Error Protection of based on H.264/AVC Redundant Slices Shantanu Rane and Bernd Girod Information Systems Laboratory Stanford University, Stanford, CA 94305. {srane,bgirod}@stanford.edu

More information

Final Report Time Optimization of HEVC Encoder over X86 Processors using SIMD. Spring 2013 Multimedia Processing EE5359

Final Report Time Optimization of HEVC Encoder over X86 Processors using SIMD. Spring 2013 Multimedia Processing EE5359 Final Report Time Optimization of HEVC Encoder over X86 Processors using SIMD Spring 2013 Multimedia Processing Advisor: Dr. K. R. Rao Department of Electrical Engineering University of Texas, Arlington

More information