CS 152 Midterm 2 May 2, 2002 Bob Brodersen

Size: px
Start display at page:

Download "CS 152 Midterm 2 May 2, 2002 Bob Brodersen"

Transcription

1 CS 152 Midterm 2 May 2, 2002 Bob Brodersen Name Solutions Show your work if you want partial credit! Try all the problems, don t get stuck on one of them. Each one is worth 10 points. 1) 2) 3) 4) 5) 6) 7) 8)

2 Question 1: Delay, Capacitance and Energy W Compound gate Y W Equivalent compound block Y X Z X Z B Delay ->O (or B->O) for high to low transitions.1 ns Load at and B= 10 ff O Slope =.01 ns/ff Load at = 10 ff Use the graphs below for the delay characteristics of the inverter and NND gate. Co is the capacitance connected to the output. Delay ->O (or B->O) for low to high transitions.2 ns O Slope =.04 ns/ff C o C o a) Fill in this table for the composite block (W to Y) ssume the wiring load is negligible and X = 1. W-> Y Internal delay Load dependent delay Input load at W Low to High at Y High to Low at Y.2 ns.9 ns.04 ns/ff.01 ns/ff 20fF 20fF b) If W & X start high and go low at the same time how much energy does the logic in this compound gate use if the supply is at 3 volts? (assume no load at X and Y and do not include the energy used to drive this gate). ssume the only capacitance being switched is the input capacitance of each gate. CV 2 = (40fF of internal node capacitance) *3 2 = 360 femtojoules.

3 Question 2: CPI ssume a processor has a clock rate of 500 MHz and an ideal CPI (no memory misses) of 1.0. What is the effective CPI if a program with a mix of 50% arithmetic and logic, 30% load/stores and 20% control instructions is run, if 10% of the data memory operations and 1% of the instructions have a miss penalty of 50 cycles. Show the equation you used to get your answer. Base CPI + Data Mem misses+ Inst. Mem misses 1 + (.3)(.1) (1)(50) = 3.0

4 Question 3: Pipelining hazards The = block after the registers is a comparator, assume its output is available to the controller. (a) How many branch delay slots does this datapath need? Explain why. One delay slot. By the time the branch is decoded and a decision is made by the comparator, there is already one instruction following it in the IF stage. (b) add $2, $1, $3 addiu $1, $2, 1234 beq $1, $0, label This code demonstrates that this datapath has a hazard problem. What is the hazard, what kind is it and what changes to the datapath are needed to eliminate it? Read after write hazard between the addiu and BEQ instructions. This doesn t work because there is no way to forward register $1 to the ID stage. Therefore, the beq will not get the proper value for register $1. It can be fixed by moving the forwarding muxes to the ID stage before the comparator or adding an extra set of forwarding muxes there.

5 Question 4: Tomasulo scheduling Functional Unit type: Loads 1 Integer 1 FP adder 3 FP multiplier 6 Cycles: Consider the single issue Tomasulo processor and program shown above. ssume there is an integer unit that can process all integer operations in one clock cycle. Enter into the table below the clock cycle of the issue, start of execution and when the result is posted to the CDB. lso fill in the entries in the table below which show the value in each FP register and what the entries are in the Register Result Status table at the clock cycle right after issue of each instruction. Register result status table FP Registers Issue Exec CDB F0 F2 F4 F6 F0 F2 F4 F6 ld ld1 mlt ld1 mult1 ld1: ld $f0, 0($r1) mlt1: multd $f4, $f0, $f2 ld2: ld $f6, 0($r2) mlt2: multd $f6, $f4, $f6 mlt3: multd $f2, $f4, $f6 sd: sd 0($r2), $f2 ld mult1 ld2 M ($r1) mlt mult1 mult2 M ($r1) mlt mult1 mult2 M ($r1) sd N/ mult1 mult2 M ($r1) $r1* $f2 $r1* $f2 M ($r2) M ($r2) M ($r2) M ($r2)

6 Question 5: Logic delay clk1 Write clock 32-bits clock skew LU LU Op Control clk2 B Shift right WriteB LSB 64-bits Registers and B: - setup time = 3 ns - hold time = 2 ns - clock-to-q time = 3 ns - shift time = 1 ns LU: - shortest delay path = 1 ns - longest delay path = 6 ns ssume delays through the control logic are negligible. a) Suppose that Write and WriteB are always asserted. What is the maximum allowable skew between clk1 and clk2 and in which direction? clktoq + LU Skew > B hold Skew > 2 Skew < 2 ns with Clk1 being skewed to be before Clk2 b) Suppose that Write is asserted once to load a value into register and then the circuit is allowed to run for a number of cycles. While running, the control unit will alternately assert the Shift right signal and then the WriteB signal. What is the maximum clock frequency at which we can run this circuit? B clktoq + LU + B setup = 12ns ; f clk = 83 MHz

7 Question 6: Branch Prediction Suppose we have a deeply pipelined processor, for which we implement a branch-target buffer for the conditional branches, which are 15% of the instructions. ssume that the misprediction penalty is always 3 cycles and the buffer miss penalty is always 6 cycles. ssume 90% hit rate in the buffer and 75% accuracy of the buffer prediction. ssume a base CPI without branch stalls of 1. a) What is the CPI? Explain your answer in words as well as equations. 1 +prob of branch( miss in buffer + in buffer but miss prediction ) = ( (.1)6 +.9 (.25) 3 ) = 1.19 b) What are the entries in a branch history table and how are they indexed? The entries are the bits to indicate if past branches were taken or not and it is indexed by the lower bits of the instruction address.

8 Question 7: Caches Cache C1 is direct-mapped, C2 is fully associative, and C3 is 2-way set associative. Each has 4, one-word blocks (4 total words). ssume that the miss penalty for each is 10 clock cycles. ssume that the caches are initially empty. Using word addresses, fill in the chart below whether each memory hits or misses and which block it would be in, for all of the caches. t the bottom of the chart, compute the hit rate and the total miss penalty. Use an LRU strategy for replacement when appropriate. Memory Cache 1 (direct) Cache 2 (assoc) Cache 3 (2 way Set ssoc) Reference H/M? Block #? H/M? Block #? H/M? Set Block #? 0 M 0 M 0 M M 0 M 1 M M 0 M 2 M M 0 H 0 M M 0 H 1 M M 0 H 2 M 0 1 Hit rate 0 50% 0 Miss penalty 6 * 10 = 60 cycles 30 cycles 60 cycles

9 Question 8: Multicycle datapath Bus Bus B npc P C I R SX ZX Rs,Rt,Rd Register File D B S D MEM M The datapath above forms a multicycle processor which uses two time-multiplexed buses for communication rather than point-to-point connections and muxes. SX and ZX is the sign and zero extended immediate. a) For this datapath draw a FSM (with bubbles and arcs) for Fetch, Decode and the operations DDI and LW. Fetch Decode Fetch Dispatch DDI: S <- + SX LW: S<- + SX Mem <-S Execute Memory Regfile <-S Regfile <- M Writeback b) Fill out the microprogram table below to implement this FSM. Src and SrcB fields specify which signals will be assigned to Bus and BusB, Wrt and WrtB fields specify what components are receiving inputs from the busses. The SrcX and WrtX fields can be any one of the state registers(ir,, B, S, M), the register file (RegFile), or memory(mem). Sequence specifies the function of a jump counter (next for next instruction, fetch for go to 00 or dispatch). mddr Instruction Src SrcB LUOp Wrt WrtB Sequence 00 Fetch PC Mem IR Next 01 Decode Dispatch 02 DDI SX DD Next 03 S RegFile Fetch 04 LW SX DD Next 05 S Mem Next 06 M RegFile Fetch 07 08

10

EEC 581 Computer Architecture. Instruction Level Parallelism (3.4 & 3.5 Dynamic Scheduling)

EEC 581 Computer Architecture. Instruction Level Parallelism (3.4 & 3.5 Dynamic Scheduling) 1 EEC 581 Computer Architecture Instruction Level Parallelism (3.4 & 3.5 Dynamic Scheduling) Chansu Yu Electrical and Computer Engineering Cleveland State University Overview of Chap. 3 (again) Pipelined

More information

Contents Slide Set 6. Introduction to Chapter 7 of the textbook. Outline of Slide Set 6. An outline of the first part of Chapter 7

Contents Slide Set 6. Introduction to Chapter 7 of the textbook. Outline of Slide Set 6. An outline of the first part of Chapter 7 CM 69 W4 Section Slide Set 6 slide 2/9 Contents Slide Set 6 for CM 69 Winter 24 Lecture Section Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary

More information

Instruction Level Parallelism

Instruction Level Parallelism Instruction Level Parallelism Pipelining, Hazards Appendix C, HPe Outline Pipelining, Hazards Branch prediction Static and Dynamic Scheduling Speculation Compiler techniques, VLIW Limits of ILP. Pipelining

More information

Tomasulo Algorithm. Developed at IBM and first implemented in IBM s 360/91

Tomasulo Algorithm. Developed at IBM and first implemented in IBM s 360/91 Tomasulo Algorithm Developed at IBM and first implemented in IBM s 360/91 IBM wanted to use the existing compiler instead of a specialized compiler for high end machines. Tracks when operands are available

More information

Instruction Level Parallelism and Its. (Part II) ECE 154B

Instruction Level Parallelism and Its. (Part II) ECE 154B Instruction Level Parallelism and Its Exploitation (Part II) ECE 154B Dmitri Strukov ILP techniques not covered last week this week next week Scoreboard Technique Review Allow for out of order execution

More information

Slide Set 9. for ENCM 501 in Winter Steve Norman, PhD, PEng

Slide Set 9. for ENCM 501 in Winter Steve Norman, PhD, PEng Slide Set 9 for ENCM 501 in Winter 2018 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary March 2018 ENCM 501 Winter 2018 Slide Set 9 slide

More information

Chapter 3 Instruction-Level Parallelism and its Exploitation (Part 1)

Chapter 3 Instruction-Level Parallelism and its Exploitation (Part 1) Chapter 3 Instruction-Level Parallelism and its Exploitation (Part 1) ILP vs. Parallel Computers Dynamic Scheduling (Section 3.4, 3.5) Dynamic Branch Prediction (Section 3.3) Hardware Speculation and Precise

More information

Lecture 16: Instruction Level Parallelism -- Dynamic Scheduling (OOO) via Tomasulo s Approach

Lecture 16: Instruction Level Parallelism -- Dynamic Scheduling (OOO) via Tomasulo s Approach Lecture 16: Instruction Level Parallelism -- Dynamic Scheduling (OOO) via Tomasulo s Approach CSE 564 Computer Architecture Summer 2017 Department of Computer Science and Engineering Yonghong Yan yan@oakland.edu

More information

CS152 Computer Architecture and Engineering Lecture 17 Advanced Pipelining: Tomasulo Algorithm

CS152 Computer Architecture and Engineering Lecture 17 Advanced Pipelining: Tomasulo Algorithm CS152 Computer Architecture and Engineering Lecture 17 Advanced Pipelining: Tomasulo Algorithm 2003-10-23 Dave Patterson (www.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs152/ CS 152 L17 Adv.

More information

Advanced Pipelining and Instruction-Level Paralelism (2)

Advanced Pipelining and Instruction-Level Paralelism (2) Advanced Pipelining and Instruction-Level Paralelism (2) Riferimenti bibliografici Computer architecture, a quantitative approach, Hennessy & Patterson: (Morgan Kaufmann eds.) Tomasulo s Algorithm For

More information

Slide Set 8. for ENCM 501 in Winter Term, Steve Norman, PhD, PEng

Slide Set 8. for ENCM 501 in Winter Term, Steve Norman, PhD, PEng Slide Set 8 for ENCM 501 in Winter Term, 2017 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2017 ENCM 501 W17 Lectures: Slide

More information

Modeling Digital Systems with Verilog

Modeling Digital Systems with Verilog Modeling Digital Systems with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 6-1 Composition of Digital Systems Most digital systems can be partitioned into two types

More information

Slide Set 6. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng

Slide Set 6. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng Slide Set 6 for ENCM 369 Winter 2018 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary February 2018 ENCM 369 Winter 2018 Section

More information

EECS150 - Digital Design Lecture 9 - CPU Microarchitecture. CMOS Devices

EECS150 - Digital Design Lecture 9 - CPU Microarchitecture. CMOS Devices EECS150 - Digital Design Lecture 9 - CPU Microarchitecture Feb 17, 2009 John Wawrzynek Spring 2009 EECS150 - Lec9-cpu Page 1 CMOS Devices Review: Transistor switch-level models The gate acts like a capacitor.

More information

Instruction Level Parallelism Part III

Instruction Level Parallelism Part III Course on: Advanced Computer Architectures Instruction Level Parallelism Part III Prof. Cristina Silvano Politecnico di Milano email: cristina.silvano@polimi.it 1 Outline of Part III Tomasulo Dynamic Scheduling

More information

Outline. 1 Reiteration. 2 Dynamic scheduling - Tomasulo. 3 Superscalar, VLIW. 4 Speculation. 5 ILP limitations. 6 What we have done so far.

Outline. 1 Reiteration. 2 Dynamic scheduling - Tomasulo. 3 Superscalar, VLIW. 4 Speculation. 5 ILP limitations. 6 What we have done so far. Outline 1 Reiteration Lecture 5: EIT090 Computer Architecture 2 Dynamic scheduling - Tomasulo Anders Ardö 3 Superscalar, VLIW EIT Electrical and Information Technology, Lund University Sept. 30, 2009 4

More information

Instruction Level Parallelism Part III

Instruction Level Parallelism Part III Course on: Advanced Computer Architectures Instruction Level Parallelism Part III Prof. Cristina Silvano Politecnico di Milano email: cristina.silvano@polimi.it 1 Outline of Part III Dynamic Scheduling

More information

DYNAMIC INSTRUCTION SCHEDULING WITH TOMASULO

DYNAMIC INSTRUCTION SCHEDULING WITH TOMASULO DYNAMIC INSTRUCTION SCHEDULING WITH TOMASULO Slides by: Pedro Tomás Additional reading: Computer Architecture: A Quantitative Approach, 5th edition, Chapter 3, John L. Hennessy and David A. Patterson,

More information

Out-of-Order Execution

Out-of-Order Execution 1 Out-of-Order Execution Several implementations out-of-order completion CDC 6600 with scoreboarding IBM 360/91 with Tomasulo s algorithm & reservation stations out-of-order completion leads to: imprecise

More information

Computer Architecture Spring 2016

Computer Architecture Spring 2016 Computer Architecture Spring 2016 Lecture 12: Dynamic Scheduling: Tomasulo s Algorithm Shuai Wang Department of Computer Science and Technology Nanjing University [Slides adapted from CS252, UC Berkeley

More information

On the Rules of Low-Power Design

On the Rules of Low-Power Design On the Rules of Low-Power Design (and How to Break Them) Prof. Todd Austin Advanced Computer Architecture Lab University of Michigan austin@umich.edu Once upon a time 1 Rules of Low-Power Design P = acv

More information

CS 110 Computer Architecture. Finite State Machines, Functional Units. Instructor: Sören Schwertfeger.

CS 110 Computer Architecture. Finite State Machines, Functional Units. Instructor: Sören Schwertfeger. CS 110 Computer Architecture Finite State Machines, Functional Units Instructor: Sören Schwertfeger http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University

More information

PIPELINING: BRANCH AND MULTICYCLE INSTRUCTIONS

PIPELINING: BRANCH AND MULTICYCLE INSTRUCTIONS PIPELINING: BRANCH AND MULTICYCLE INSTRUCTIONS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 1 submission

More information

Scoreboard Limitations!

Scoreboard Limitations! Scoreboard Limitations! No forwarding read from register! Structural hazards stall at issue! WAW hazard stall at issue!! WAR hazard stall at write! Inf3 Computer Architecture - 2015-2016 1 Dynamic Scheduling

More information

06 1 MIPS Implementation Pipelined DLX and MIPS Implementations: Hardware, notation, hazards.

06 1 MIPS Implementation Pipelined DLX and MIPS Implementations: Hardware, notation, hazards. 06 1 MIPS Implementation 06 1 Material from Chapter 3 of H&P (for DLX). Material from Chapter 6 of P&H (for MIPS). line: (In this set.) Unpipelined DLX Implementation. (Diagram only.) Pipelined DLX and

More information

Logic Design II (17.342) Spring Lecture Outline

Logic Design II (17.342) Spring Lecture Outline Logic Design II (17.342) Spring 2012 Lecture Outline Class # 03 February 09, 2012 Dohn Bowden 1 Today s Lecture Registers and Counters Chapter 12 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

CS 151 Final. Instructions: Student ID. (Last Name) (First Name) Signature

CS 151 Final. Instructions: Student ID. (Last Name) (First Name) Signature CS 151 Final Name Student ID Signature :, (Last Name) (First Name) : : Instructions: 1. Please verify that your paper contains 19 pages including this cover. 2. Write down your Student-Id on the top of

More information

VLSI Design: 3) Explain the various MOSFET Capacitances & their significance. 4) Draw a CMOS Inverter. Explain its transfer characteristics

VLSI Design: 3) Explain the various MOSFET Capacitances & their significance. 4) Draw a CMOS Inverter. Explain its transfer characteristics 1) Explain why & how a MOSFET works VLSI Design: 2) Draw Vds-Ids curve for a MOSFET. Now, show how this curve changes (a) with increasing Vgs (b) with increasing transistor width (c) considering Channel

More information

Pipeline design. Mehran Rezaei

Pipeline design. Mehran Rezaei Pipeline design Mehran Rezaei Shift Left 2 pc Opcode ExtOp Cont Unit RegDst Addr Addr2 Addr npcsle Reg ALUSrc Mem 2 OVF Branch ALUCtr MemtoReg Mem Funct Extension ALUOp ALU Cont Shift Left 2 ID EXE MEM

More information

problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts

problem maximum score 1 28pts 2 10pts 3 10pts 4 15pts 5 14pts 6 12pts 7 11pts total 100pts University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS150 J. Wawrzynek Spring 2002 4/5/02 Midterm Exam II Name: Solutions ID number:

More information

Scoreboard Limitations

Scoreboard Limitations Scoreboard Limitations! No forwarding read from register! Structural hazards stall at issue! WAW hazard stall at issue! WAR hazard stall at write Inf3 Computer Architecture - 2016-2017 1 Dynamic Scheduling

More information

Registers. Unit 12 Registers and Counters. Registers (D Flip-Flop based) Register Transfers (example not out of text) Accumulator Registers

Registers. Unit 12 Registers and Counters. Registers (D Flip-Flop based) Register Transfers (example not out of text) Accumulator Registers Unit 2 Registers and Counters Fundamentals of Logic esign EE2369 Prof. Eric Maconald Fall Semester 23 Registers Groups of flip-flops Can contain data format can be unsigned, 2 s complement and other more

More information

EECS150 - Digital Design Lecture 17 - Circuit Timing. Performance, Cost, Power

EECS150 - Digital Design Lecture 17 - Circuit Timing. Performance, Cost, Power EECS150 - Digital Design Lecture 17 - Circuit Timing March 10, 2011 John Wawrzynek Spring 2011 EECS150 - Lec16-timing Page 1 Performance, Cost, Power How do we measure performance? operations/sec? cycles/sec?

More information

Sequential logic circuits

Sequential logic circuits Computer Mathematics Week 10 Sequential logic circuits College of Information Science and Engineering Ritsumeikan University last week combinational digital circuits signals and busses logic gates and,

More information

Dynamic Scheduling. Differences between Tomasulo. Tomasulo Algorithm. CDC 6600 scoreboard. Or ydanicm ceshuldngi

Dynamic Scheduling. Differences between Tomasulo. Tomasulo Algorithm. CDC 6600 scoreboard. Or ydanicm ceshuldngi Dynamic Scheduling (or out-of-order execution) Dynamic Scheduling Or ydanicm ceshuldngi CDC 6600 scoreboard Instruction storage added to each functional execution unit Instructions issue to FU when no

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems A Pipelined MIPS Processor Stephen A. Edwards Columbia University Summer 25 Technical Illustrations Copyright c 27 Elsevier Sequential Laundry Time Alice Bob Cindy Pipelined

More information

ASIC = Application specific integrated circuit

ASIC = Application specific integrated circuit ASIC = Application specific integrated circuit CS 2630 Computer Organization Meeting 19: Building a MIPS processor Brandon Myers University of Iowa The goal: implement most of MIPS So far Implementing

More information

More Digital Circuits

More Digital Circuits More Digital Circuits 1 Signals and Waveforms: Showing Time & Grouping 2 Signals and Waveforms: Circuit Delay 2 3 4 5 3 10 0 1 5 13 4 6 3 Sample Debugging Waveform 4 Type of Circuits Synchronous Digital

More information

Enhancing Performance in Multiple Execution Unit Architecture using Tomasulo Algorithm

Enhancing Performance in Multiple Execution Unit Architecture using Tomasulo Algorithm Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 6.017 IJCSMC,

More information

Digital Electronics II 2016 Imperial College London Page 1 of 8

Digital Electronics II 2016 Imperial College London Page 1 of 8 Information for Candidates: The following notation is used in this paper: 1. Unless explicitly indicated otherwise, digital circuits are drawn with their inputs on the left and their outputs on the right.

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers and Counters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Digital System Design

Digital System Design Digital System Design by Dr. Lesley Shannon Email: lshannon@ensc.sfu.ca Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350 Simon Fraser University Slide Set: 8 Date: February 9, 2009 Timing

More information

First Name Last Name November 10, 2009 CS-343 Exam 2

First Name Last Name November 10, 2009 CS-343 Exam 2 CS-343 Exam 2 Instructions: For multiple choice questions, circle the letter of the one best choice unless the question explicitly states that it might have multiple correct answers. There is no penalty

More information

6.3 Sequential Circuits (plus a few Combinational)

6.3 Sequential Circuits (plus a few Combinational) 6.3 Sequential Circuits (plus a few Combinational) Logic Gates: Fundamental Building Blocks Introduction to Computer Science Robert Sedgewick and Kevin Wayne Copyright 2005 http://www.cs.princeton.edu/introcs

More information

Differences between Tomasulo. Another Dynamic Algorithm: Tomasulo Organization. Reservation Station Components

Differences between Tomasulo. Another Dynamic Algorithm: Tomasulo Organization. Reservation Station Components Another Dynamic Algorithm: Tomasulo Algorithm Differences between Tomasulo Algorithm & Scoreboard For IBM 360/9 about 3 years after CDC 6600 Goal: High Performance without special compilers Differences

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Fundamentals Of Digital Logic 1 Our Goal Understand Fundamentals and basics Concepts How computers work at the lowest level Avoid whenever possible Complexity Implementation

More information

Digital Design and Computer Architecture

Digital Design and Computer Architecture Digital Design and Computer Architecture Lab 0: Multicycle Processor (Part ) Introduction In this lab and the next, you will design and build your own multicycle MIPS processor. You will be much more on

More information

CS3350B Computer Architecture Winter 2015

CS3350B Computer Architecture Winter 2015 CS3350B Computer Architecture Winter 2015 Lecture 5.2: State Circuits: Circuits that Remember Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design,

More information

1. Convert the decimal number to binary, octal, and hexadecimal.

1. Convert the decimal number to binary, octal, and hexadecimal. 1. Convert the decimal number 435.64 to binary, octal, and hexadecimal. 2. Part A. Convert the circuit below into NAND gates. Insert or remove inverters as necessary. Part B. What is the propagation delay

More information

Chapter 4 (Part I) The Processor. Baback Izadi Division of Engineering Programs

Chapter 4 (Part I) The Processor. Baback Izadi Division of Engineering Programs EGC442 Introdction to Compter Architectre Chapter 4 (Part I) The Processor Baback Izadi Division of Engineering Programs bai@engr.newpaltz.ed Introdction CPU performance factors Instrction cont Determined

More information

CSE115: Digital Design Lecture 23: Latches & Flip-Flops

CSE115: Digital Design Lecture 23: Latches & Flip-Flops Faculty of Engineering CSE115: Digital Design Lecture 23: Latches & Flip-Flops Sections 7.1-7.2 Suggested Reading A Generic Digital Processor Building Blocks for Digital Architectures INPUT - OUTPUT Interconnect:

More information

EEC 118 Lecture #9: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #9: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #9: Sequential Logic Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Outline Review: Static CMOS Logic Finish Static CMOS transient analysis Sequential

More information

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20

Advanced Devices. Registers Counters Multiplexers Decoders Adders. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 20 Advanced Devices Using a combination of gates and flip-flops, we can construct more sophisticated logical devices. These devices, while more complex, are still considered fundamental to basic logic design.

More information

EECS 270 Midterm 1 Exam Closed book portion Winter 2017

EECS 270 Midterm 1 Exam Closed book portion Winter 2017 EES 270 Midterm 1 Exam losed book portion Winter 2017 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. NOTES: 1. This part of

More information

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath

Objectives. Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath Objectives Combinational logics Sequential logics Finite state machine Arithmetic circuits Datapath In the previous chapters we have studied how to develop a specification from a given application, and

More information

Chapter 2. Digital Circuits

Chapter 2. Digital Circuits Chapter 2. Digital Circuits Logic gates Flip-flops FF registers IC registers Data bus Encoders/Decoders Multiplexers Troubleshooting digital circuits Most contents of this chapter were covered in 88-217

More information

Counter dan Register

Counter dan Register Counter dan Register Introduction Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory.

More information

Sequencing. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall,

Sequencing. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, Sequencing ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2013 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines Introduction Sequencing

More information

EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited

EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited EECS150 - Digital Design Lecture 19 - Finite State Machines Revisited April 2, 2013 John Wawrzynek Spring 2013 EECS150 - Lec19-fsm Page 1 Finite State Machines (FSMs) FSM circuits are a type of sequential

More information

CS8803: Advanced Digital Design for Embedded Hardware

CS8803: Advanced Digital Design for Embedded Hardware CS883: Advanced Digital Design for Embedded Hardware Lecture 4: Latches, Flip-Flops, and Sequential Circuits Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

More information

12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009

12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009 12-bit Wallace Tree Multiplier CMPEN 411 Final Report Matthew Poremba 5/1/2009 Project Overview This project was originally titled Fast Fourier Transform Unit, but due to space and time constraints, the

More information

4.5 Pipelining. Pipelining is Natural!

4.5 Pipelining. Pipelining is Natural! 4.5 Pipelining Ovelapped execution of instuctions Instuction level paallelism (concuency) Example pipeline: assembly line ( T Fod) Response time fo any instuction is the same Instuction thoughput inceases

More information

Register Transfer Level (RTL) Design Cont.

Register Transfer Level (RTL) Design Cont. CSE4: Components and Design Techniques for Digital Systems Register Transfer Level (RTL) Design Cont. Tajana Simunic Rosing Where we are now What we are covering today: RTL design examples, RTL critical

More information

CS61C : Machine Structures

CS61C : Machine Structures CS 6C L4 State () inst.eecs.berkeley.edu/~cs6c/su5 CS6C : Machine Structures Lecture #4: State and FSMs Outline Waveforms State Clocks FSMs 25-7-3 Andy Carle CS 6C L4 State (2) Review (/3) (2/3): Circuit

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 1-Bus Architecture and Datapath 10262011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline 1-Bus Microarchitecture and

More information

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of 1 The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of the AND gate, you get the NAND gate etc. 2 One of the

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers and Counters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Chapter 05: Basic Processing Units Control Unit Design Organization. Lesson 11: Multiple Bus Organisation

Chapter 05: Basic Processing Units Control Unit Design Organization. Lesson 11: Multiple Bus Organisation Chapter 05: Basic Processing Units Control Unit Design Organization Lesson 11: Multiple Bus Organisation Objective Understand multiple bus organisation Learn how the number of independent steps can be

More information

Testability: Lecture 23 Design for Testability (DFT) Slide 1 of 43

Testability: Lecture 23 Design for Testability (DFT) Slide 1 of 43 Testability: Lecture 23 Design for Testability (DFT) Shaahin hi Hessabi Department of Computer Engineering Sharif University of Technology Adapted, with modifications, from lecture notes prepared p by

More information

Course Administration

Course Administration EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN Lecture 5: Sequential Logic - 2 Analysis of Clocked Sequential Systems 4/2/2 Avinash Kodi, kodi@ohio.edu Course Administration 2 Hw 2 due on today

More information

CSE 352 Laboratory Assignment 3

CSE 352 Laboratory Assignment 3 CSE 352 Laboratory Assignment 3 Introduction to Registers The objective of this lab is to introduce you to edge-trigged D-type flip-flops as well as linear feedback shift registers. Chapter 3 of the Harris&Harris

More information

Go BEARS~ What are Machine Structures? Lecture #15 Intro to Synchronous Digital Systems, State Elements I C

Go BEARS~ What are Machine Structures? Lecture #15 Intro to Synchronous Digital Systems, State Elements I C CS6C L5 Intro to SDS, State Elements I () inst.eecs.berkeley.edu/~cs6c CS6C : Machine Structures Lecture #5 Intro to Synchronous Digital Systems, State Elements I 28-7-6 Go BEARS~ Albert Chae, Instructor

More information

Logic Devices for Interfacing, The 8085 MPU Lecture 4

Logic Devices for Interfacing, The 8085 MPU Lecture 4 Logic Devices for Interfacing, The 8085 MPU Lecture 4 1 Logic Devices for Interfacing Tri-State devices Buffer Bidirectional Buffer Decoder Encoder D Flip Flop :Latch and Clocked 2 Tri-state Logic Outputs

More information

Outline. EECS150 - Digital Design Lecture 27 - Asynchronous Sequential Circuits. Cross-coupled NOR gates. Asynchronous State Transition Diagram

Outline. EECS150 - Digital Design Lecture 27 - Asynchronous Sequential Circuits. Cross-coupled NOR gates. Asynchronous State Transition Diagram EECS150 - Digital Design Lecture 27 - Asynchronous Sequential Circuits Nov 26, 2002 John Wawrzynek Outline SR Latches and other storage elements Synchronizers Figures from Digital Design, John F. Wakerly

More information

EECS150 - Digital Design Lecture 3 - Timing

EECS150 - Digital Design Lecture 3 - Timing EECS150 - Digital Design Lecture 3 - Timing September 3, 2002 John Wawrzynek Fall 2002 EECS150 - Lec03-Timing Page 1 Outline Finish up from lecture 2 General Model of Synchronous Systems Performance Limits

More information

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Revision Decoder A decoder is a circuit that changes a code into a

More information

EECS150 - Digital Design Lecture 15 Finite State Machines. Announcements

EECS150 - Digital Design Lecture 15 Finite State Machines. Announcements EECS150 - Digital Design Lecture 15 Finite State Machines October 18, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150

More information

Contents Circuits... 1

Contents Circuits... 1 Contents Circuits... 1 Categories of Circuits... 1 Description of the operations of circuits... 2 Classification of Combinational Logic... 2 1. Adder... 3 2. Decoder:... 3 Memory Address Decoder... 5 Encoder...

More information

Computer Organization & Architecture Lecture #5

Computer Organization & Architecture Lecture #5 Computer Organization & Architecture Lecture #5 Shift Register A shift register is a register in which binary data can be stored and then shifted left or right when a shift signal is applied. Bits shifted

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science SOLUTIONS

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science SOLUTIONS University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science EECS 5 Fall 25 R. H. Katz SOLUTIONS Problem Set #3: Combinational and Sequential Logic

More information

Asynchronous (Ripple) Counters

Asynchronous (Ripple) Counters Circuits for counting events are frequently used in computers and other digital systems. Since a counter circuit must remember its past states, it has to possess memory. The chapter about flip-flops introduced

More information

Spring 2017 EE 3613: Computer Organization Chapter 5: The Processor: Datapath & Control - 1

Spring 2017 EE 3613: Computer Organization Chapter 5: The Processor: Datapath & Control - 1 Spring 27 EE 363: Computer Organization Chapter 5: The Processor: atapath & Control - Avinash Kodi epartment of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 457 E-mail: kodi@ohio.edu

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-III SEQUENTIAL CIRCUITS

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-III SEQUENTIAL CIRCUITS NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS CLASS: II YEAR ECE SUBJECT CODE: EC2203

More information

Combinational vs Sequential

Combinational vs Sequential Combinational vs Sequential inputs X Combinational Circuits outputs Z A combinational circuit: At any time, outputs depends only on inputs Changing inputs changes outputs No regard for previous inputs

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - III Sequential Logic I Sequential circuits: latches flip flops analysis of clocked sequential circuits state reduction and assignments Registers and Counters: Registers shift registers ripple counters

More information

Chapter Contents. Appendix A: Digital Logic. Some Definitions

Chapter Contents. Appendix A: Digital Logic. Some Definitions A- Appendix A - Digital Logic A-2 Appendix A - Digital Logic Chapter Contents Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A. Introduction A.2 Combinational

More information

CSE 140 Exam #3 Solution Tajana Simunic Rosing

CSE 140 Exam #3 Solution Tajana Simunic Rosing CSE 140 Exam #3 Solution Tajana Simunic Rosing Winter 2010 Do not start the exam until you are told to. Turn off any cell phones or pagers. Write your name and PID at the top of every page. Do not separate

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 24 State Circuits : Circuits that Remember Senior Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Bio NAND gate Researchers at Imperial

More information

Microprocessor Design

Microprocessor Design Microprocessor Design Principles and Practices With VHDL Enoch O. Hwang Brooks / Cole 2004 To my wife and children Windy, Jonathan and Michelle Contents 1. Designing a Microprocessor... 2 1.1 Overview

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science. EECS 150 Spring 2000

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science. EECS 150 Spring 2000 University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science EECS 150 Spring 2000 Lab 2 Finite State Machine 1 Objectives You will enter and debug

More information

Principles of Computer Architecture. Appendix A: Digital Logic

Principles of Computer Architecture. Appendix A: Digital Logic A-1 Appendix A - Digital Logic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix A - Digital Logic Chapter Contents A.1 Introduction A.2 Combinational

More information

BUSES IN COMPUTER ARCHITECTURE

BUSES IN COMPUTER ARCHITECTURE BUSES IN COMPUTER ARCHITECTURE The processor, main memory, and I/O devices can be interconnected by means of a common bus whose primary function is to provide a communication path for the transfer of data.

More information

An Adaptive Technique for Reducing Leakage and Dynamic Power in Register Files and Reorder Buffers

An Adaptive Technique for Reducing Leakage and Dynamic Power in Register Files and Reorder Buffers An Adaptive Technique for Reducing Leakage and Dynamic Power in Register Files and Reorder Buffers Shadi T. Khasawneh and Kanad Ghose Department of Computer Science State University of New York, Binghamton,

More information

ECSE-323 Digital System Design. Datapath/Controller Lecture #1

ECSE-323 Digital System Design. Datapath/Controller Lecture #1 1 ECSE-323 Digital System Design Datapath/Controller Lecture #1 2 Synchronous Digital Systems are often designed in a modular hierarchical fashion. The system consists of modular subsystems, each of which

More information

Midterm Exam 15 points total. March 28, 2011

Midterm Exam 15 points total. March 28, 2011 Midterm Exam 15 points total March 28, 2011 Part I Analytical Problems 1. (1.5 points) A. Convert to decimal, compare, and arrange in ascending order the following numbers encoded using various binary

More information

Physics 217A LAB 4 Spring 2016 Shift Registers Tri-State Bus. Part I

Physics 217A LAB 4 Spring 2016 Shift Registers Tri-State Bus. Part I Physics 217A LAB 4 Spring 2016 Shift Registers Tri-State Bus Part I 0. In this part of the lab you investigate the 164 a serial-in, 8-bit-parallel-out, shift register. 1. Press in (near the LEDs) a 164.

More information

Logic Design ( Part 3) Sequential Logic (Chapter 3)

Logic Design ( Part 3) Sequential Logic (Chapter 3) o Far: Combinational Logic Logic esign ( Part ) equential Logic (Chapter ) Based on slides McGraw-Hill Additional material 24/25/26 Lewis/Martin Additional material 28 oth Additional material 2 Taylor

More information

Pipelining. Improve performance by increasing instruction throughput Program execution order. Data access. Instruction. fetch. Data access.

Pipelining. Improve performance by increasing instruction throughput Program execution order. Data access. Instruction. fetch. Data access. Chapter 6 Pipelining Improve performance by increasing instrction throghpt Program eection order Time (in instrctions) lw $, ($) Instrction fetch 2 4 6 8 2 4 6 8 ALU Data access lw $2, 2($) 8 ns Instrction

More information

Memory elements. Topics. Memory element terminology. Variations in memory elements. Clock terminology. Memory element parameters. clock.

Memory elements. Topics. Memory element terminology. Variations in memory elements. Clock terminology. Memory element parameters. clock. Topics! Memory elements.! Basics of sequential machines. Memory elements! Stores a value as controlled by clock.! May have load signal, etc.! In CMOS, memory is created by:! capacitance (dynamic);! feedback

More information

Rensselaer Polytechnic Institute Computer Hardware Design ECSE Report. Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory

Rensselaer Polytechnic Institute Computer Hardware Design ECSE Report. Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory RPI Rensselaer Polytechnic Institute Computer Hardware Design ECSE 4770 Report Lab Three Xilinx Richards Controller and Logic Analyzer Laboratory Name: Walter Dearing Group: Brad Stephenson David Bang

More information