How to Obtain a Good Stereo Sound Stage in Cars

Size: px
Start display at page:

Download "How to Obtain a Good Stereo Sound Stage in Cars"

Transcription

1 Page 1 How to Obtain a Good Stereo Sound Stage in Cars Author: Lars-Johan Brännmark, Chief Scientist, Dirac Research First Published: November 2017 Latest Update: November 2017 Designing a sound system for a car has a different success formula than designing a sound system for a living room. In a car, neither the loudspeakers or the people listening to them can be placed precisely according to the standard. Consequently, when listening to a recording, the stereo information is likely to be lost or, at least, severely distorted. Here we will discuss the motivation and basic principles behind a Dirac technology called Dirac Virtual Center, which was developed to solve one of the classic problems in automotive sound system tuning: the near-side bias problem. First we will take a look at the basic theory, along with a classical solution known from audio literature. We will then explore some practical limitations of the classical approach, and give an outline of what Dirac Virtual Center can do to make things work better.

2 Page 2 Stereo reproduction and the near-side bias problem For a stereo recording to be perceived as intended, it needs to be played back over a sound system that correctly reproduces the spatial information encoded in the stereo signal. In short, stereo recordings rely on a psychoacoustic principle called summing localization. This means that, when superimposed at the entrance of our ear canals, sound emitted by two loudspeakers can be perceived as coming from points in space where no actual sound source is located (so-called phantom sources). In particular, a mono signal which is equal in the left and right loudspeaker channels will be perceived as coming from a point in the center, directly in front of the listener. This is often referred to as the phantom center effect. In order for summing localization to work properly, it is required that the listener is located somewhere along a center axis between two identical loudspeakers with equal distance to both, as shown in Fig. 1. This requirement poses a problem in automotive sound system design since, in a car, neither the listeners or the loudspeakers can be placed exactly as dictated by the standard. Consequently, when a recording is listened to in a car, the stereo information will be lost or, at least, severely distorted. Figure 1: A listener located along a center axis between two identical loudspeakers with equal distance to both.

3 Page 3 For example, if a listener sits closer to left loudspeaker, the sound from the left loudspeaker will arrive at the listener slightly before the sound from the right loudspeaker. The resulting time difference between the left and right loudspeakers causes the perceived direction of sound to be heavily biased towards the left loudspeaker (see Fig. 2). Consequently, the mono component of the stereo signal will not be perceived as coming from straight in front of the listener, but almost solely from the left speaker. This collapse of the stereo panorama into the loudspeaker closest to the listener is often referred to as near-side bias. Figure 2: A listener sitting closer to the left loudspeaker, resulting in the sound from the left loudspeaker arriving at the listener slightly before the sound from the right loudspeaker. In an automobile, the listener is sitting either to the left or the right of the center axis. A simplified view of this case is shown in Fig. 3, where Listener 1 sits closer to the left loudspeaker, and Listener 2 sits closer to the right loudspeaker. In this example, a sound intended to be reproduced as coming from a point straight ahead of the listener will be experienced by Listener 1 as coming from the left side, and by Listener 2 as coming from the right side.

4 Page 4 Figure 3: Two listeners in an automobile, sitting to the left and the right of the center axis. In the case of a single listener located off from the center axis, the near-side bias problem can be solved by simply adding a delay to the signal path of the loudspeaker closest to the listener, so that the left and right signals arrive at the listener with equal delay. However, whenever there are two or more listeners, and the listeners are spread out relative to the center axis, adding a delay to one channel cannot solve the near-side bias problem for all listeners simultaneously. For example, if listeners are located according to Fig. 3, then adding a delay in the left channel may solve the near-side bias problem for the left listener. However, the right listener will then experience an even worse bias to the right side. Thus, it seems that the near-side bias problem has no solution in a multiple-listener scenario; that true stereo reproduction can be delivered, at most, to one listener at a time. Fortunately, it turns out that this is not true: A quite effective solution can actually be found, at least in theory, if we look at the problem in the frequency domain.

5 Page 5 Delay difference along the frequency axis: The IDP How does a delay between two signals manifest itself along the frequency axis? The delay difference between two channels of an audio system, experienced at a spatial position, can be described in the frequency domain by a phase difference function which is called the inter-loudspeaker differential phase (IDP), taking values between -180 and +180 degrees. An example of an IDP is shown in Fig. 4. The black line represents the IDP of a constant time delay that results in a position where the listener is 35.6 cm closer to the left loudspeaker than the right loudspeaker. A sound wave from the right loudspeaker then arrives with a delay of milliseconds, compared to if the same sound wave were emitted from the left loudspeaker. Figure 4: An example of Inter-loudspeaker Differential Phase (IDP). In order to understand why the IDP in Fig. 4 looks as it does, one needs to understand the concepts of phase and frequency, as explained by the following argument: At a single frequency, sound is by definition a sine wave and its location in

6 Page 6 time is determined by the phase lag in degrees, where 360 degrees corresponds to one full cycle of the wave. In Fig. 5, the thick blue curve illustrates a 440 Hz sine wave. The red curve has zero-degree phase lag relative to the blue curve (although its amplitude is half of that of the blue curve). The red and blue curves are therefore said to be in-phase. The green curve (which has the same amplitude as the blue) has a 180-degree phase lag relative to the blue curve, which also means they are the exact opposites of one another and are said to be out-of-phase. Finally, the black curve in Fig. 5 has a phase lag of 90 degrees, which is exactly between the phase lags of the red and green curves. It is thus neither fully in-phase or fully out-of-phase with the blue curve. Two sine waves can be said to be either predominantly in-phase or predominantly out-of-phase, if their relative phase lag is either within or outside the +/- 90 degree interval. Figure 5: Illustration of phase lag: The red, black and green curves have phase lags of 0, 90 and 180 degrees, respectively, relative to the blue curve. The frequency of a sinusoidal wave is the number of completed cycles per second, and for a 440 Hz sine wave it takes 1/440 s = 2.3 ms to complete one full cycle. A time delay of 2.3 ms is therefore equal to a phase lag of 360 degrees at 440 Hz. At 880 Hz, however, a 2.3 ms delay corresponds to two full cycles which implies a phase lag of 720 degrees. By the same argument, a 2.3 ms delay is equal to a phase lag of only 180 degrees if the frequency is 220 Hz.

7 Page 7 Thus, a constant time delay corresponds to a phase lag that is linearly proportional to frequency. Moreover, since a phase lag of 181 degrees is indistinguishable from a phase lag of 179 degrees, it can always be specified as a value between 180 and +180 degrees. A linearly increasing phase lag therefore contains jumps of 360 degrees with regular intervals. The above argument explains the behavior of the IDP in Fig. 4: The constant delay of ms between the left and right channels corresponds to an IDP that increases linearly with frequency, and every time it reaches +180 degrees it jumps down to -180 degrees. The IDP for two listeners in a car Let us now look again at the situation illustrated by Fig. 3, where two listeners are sitting in a car at each side of the center axis. Both listeners will experience a time delay between the loudspeaker channels, but in opposite order: Sound from the right channel reaches Listener 1 with a delay of ms relative to the sound from the left channel, and vice versa for Listener 2. The IDPs that describe this situation are shown in Fig. 6, where the black line is the IDP for Listener 1 and the gray line is the IDP for Listener 2. Figure 6: The IDPs for two listeners sitting in a car on either side of the center axis.

8 Page 8 The two IDP curves in Fig. 6 illustrate an interesting behavior: In some frequency intervals, for example Hz, the IDP stays inside +90 degrees for both listeners simultaneously (i.e., the sound waves are predominantly in-phase). In other intervals, the IDP is outside +90 degrees for both listeners simultaneously (i.e., the sound waves are predominantly out-of-phase). Manipulating the IDP: From out-of-phase to in-phase In an ideal listening situation, such as that of Fig. 1, the IDP is strictly zero and the loudspeaker channels are 100% in-phase at all frequencies. Of course, a similar all-zero IDP would also be desired in the automobile case, but for reasons given above this can never be fulfilled for two listeners at the same time. Nevertheless, an interesting compromise can be obtained if we can get rid of the out-of-phase intervals in Fig. 6, so that the IDP stays within +90 degrees (i.e., the left and right channels become predominantly in-phase) at all frequencies for both listeners. This can be realized by applying artificial phase-shifts to the left and right channels, using so-called all-pass filters. The task of these filters is to add a phase difference of 180 degrees between the channels in the out-of-phase intervals and to do nothing in the intervals where the channels are already predominantly in-phase. This could, for example, be accomplished by a pair of filters whose phase response are as illustrated in Fig. 7: If we shift the phase by +90 degrees in one channel (black line) and by -90 degrees in the other channel, the IDP between the channels will be shifted by 180 degrees. Figure 7: Phase responses accomplished by a pair of all-pass filters. The thick black curve is the phase response of the filter applied to the left channel, and the thin gray line is the phase response of the filter applied to the right channel.

9 Page 9 Applying the filters of Fig. 7 to the left and right channels results in IDPs that stay within +90 degrees at all frequencies, as shown in Fig. 8. We have thereby managed to create a loudspeaker pair that is predominantly in-phase at all frequencies for two listeners simultaneously, and this turns out to be good enough for eliminating the near-side bias problem; the out-of-phase relations between the channels have been removed so that a mono sound from the left and right speakers adds up coherently at both listener positions. Figure 8: Applying the filters of Fig. 7 to the left and right channels results in IDPs that stay within +90 degrees at all frequencies Theory vs. practice Based on the discussion so far, it seems that the near-side bias problem can be solved very easily, simply by adding phase-shifting filters (like those in Fig. 7) to the left and right channels. However, the analysis that led us to this classical solution is based on some quite unrealistic assumptions that deserve further examination. One assumption is that the sound from the opposite-side loudspeaker is simply a delayed copy of the sound wave from the same-side loudspeaker. Since the acoustic environment in a real car is extremely complex and not at all as symmetric as the simple sketch in Fig. 3 suggests, it turns out that this assumption does

10 Page 10 not hold in practice. The neat and tidy IDP curves of Fig. 6 do not represent anything that would be encountered in reality; if one computes the IDP based on measurements in a real car, the curves will rather look like in Fig. 9. Given these measured IDPs, it is no longer obvious if and how the situation can be improved with all-pass filters. Moreover, what should be done in the cases when there are three or four listeners, and thus three or four IDP curves to consider, instead of only two? Figure 9: The IDP based on measurements in a real car Another practical aspect to consider is the side effects that may result from introducing filters with such dramatic phase shifts, as those in Fig. 7. A drawback of defining filters in the frequency domain is that we then only define how the filters respond to single stationary sinusoids, while the response to transient signals such as, e.g., a drum beat, is neglected. In fact, filters such as those in Fig. 7 generally introduce quite severe time-smearing artifacts, both backwards and forwards in time, that would be immediately audible when listening to drums or other transient sounds. In order to be of relevance to the practicing audio engineer, we must take such real-world aspects into account. This has been the ambition behind the development of Dirac Virtual Center.

11 Page 11 Dirac Virtual Center So, what is Dirac Virtual Center and what makes it different from the classical solution described above? First of all, the reason why we call this filtering algorithm Dirac Virtual Center is that it has the perceptual effect of filling in a hole in the middle of the sound stage, creating a continuous stage that covers the whole space between the left and right loudspeakers, as if an invisible extra loudspeaker were placed at the center of the dashboard of the car. Just like the classical solution, the Dirac Virtual Center algorithm treats the near-side bias problem by applying phase-shifting filters to a pair of audio channels. However, the design steps, performance criteria, and the scope of application differ considerably from the classical approach. The primary features of Dirac Virtual Center are as follows: Instead of deriving the IDPs based solely on distances between loudspeakers and listeners, Dirac Virtual Center is based on measurements in the real acoustic environment. Dirac Virtual Center filters are thus based on real data such as that in Fig. 9.

12 Page 12 The measurement-based approach allows adaptation to very complex acoustic circumstances, accommodating for asymmetric environments and different loudspeaker configurations. Virtual Center has no formal restriction on the number of listeners; filters are designed to produce the smallest possible IDP on average, for any number of listeners. Spatial robustness: The measurement positions can be selected so as to accommodate for listeners head movements, thereby preventing the over-fitting of filters to a predetermined positioning of listeners. The frequency range of operation can be selected by the tuning engineer. Cautious filters: Overly aggressive filters are avoided through constraints that limit the time-smearing artifacts to a perceptually acceptable level. Filter pre-echoes are not allowed. Flexible implementation: Dirac Virtual Center finds the best solution under given complexity constraints. It can be implemented using either low-complexity biquad filters or high-order FIR filters. In cases where computational resources are very limited, a constraint can be put on the maximum allowed number of biquad filters. The Dirac Virtual Center algorithm is currently available to customers in the automotive field. To learn more, visit dirac.com/dirac-virtual-center/

THE DIGITAL DELAY ADVANTAGE A guide to using Digital Delays. Synchronize loudspeakers Eliminate comb filter distortion Align acoustic image.

THE DIGITAL DELAY ADVANTAGE A guide to using Digital Delays. Synchronize loudspeakers Eliminate comb filter distortion Align acoustic image. THE DIGITAL DELAY ADVANTAGE A guide to using Digital Delays Synchronize loudspeakers Eliminate comb filter distortion Align acoustic image Contents THE DIGITAL DELAY ADVANTAGE...1 - Why Digital Delays?...

More information

Hugo Technology. An introduction into Rob Watts' technology

Hugo Technology. An introduction into Rob Watts' technology Hugo Technology An introduction into Rob Watts' technology Copyright Rob Watts 2014 About Rob Watts Audio chip designer both analogue and digital Consultant to silicon chip manufacturers Designer of Chord

More information

Mixing in the Box A detailed look at some of the myths and legends surrounding Pro Tools' mix bus.

Mixing in the Box A detailed look at some of the myths and legends surrounding Pro Tools' mix bus. From the DigiZine online magazine at www.digidesign.com Tech Talk 4.1.2003 Mixing in the Box A detailed look at some of the myths and legends surrounding Pro Tools' mix bus. By Stan Cotey Introduction

More information

XXXXXX - A new approach to Loudspeakers & room digital correction

XXXXXX - A new approach to Loudspeakers & room digital correction XXXXXX - A new approach to Loudspeakers & room digital correction Background The idea behind XXXXXX came from unsatisfying results from traditional loudspeaker/room equalization methods to get decent sound

More information

The Cocktail Party Effect. Binaural Masking. The Precedence Effect. Music 175: Time and Space

The Cocktail Party Effect. Binaural Masking. The Precedence Effect. Music 175: Time and Space The Cocktail Party Effect Music 175: Time and Space Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) April 20, 2017 Cocktail Party Effect: ability to follow

More information

Linear Time Invariant (LTI) Systems

Linear Time Invariant (LTI) Systems Linear Time Invariant (LTI) Systems Superposition Sound waves add in the air without interacting. Multiple paths in a room from source sum at your ear, only changing change phase and magnitude of particular

More information

Electrical and Electronic Laboratory Faculty of Engineering Chulalongkorn University. Cathode-Ray Oscilloscope (CRO)

Electrical and Electronic Laboratory Faculty of Engineering Chulalongkorn University. Cathode-Ray Oscilloscope (CRO) 2141274 Electrical and Electronic Laboratory Faculty of Engineering Chulalongkorn University Cathode-Ray Oscilloscope (CRO) Objectives You will be able to use an oscilloscope to measure voltage, frequency

More information

Time smear at unexpected places in the audio chain and the relation to the audibility of high-resolution recording improvements

Time smear at unexpected places in the audio chain and the relation to the audibility of high-resolution recording improvements Time smear at unexpected places in the audio chain and the relation to the audibility of high-resolution recording improvements Dr. Hans R.E. van Maanen Temporal Coherence Date of issue: 22 March 2009

More information

LIVE SOUND SUBWOOFER DR. ADAM J. HILL COLLEGE OF ENGINEERING & TECHNOLOGY, UNIVERSITY OF DERBY, UK GAND CONCERT SOUND, CHICAGO, USA 20 OCTOBER 2017

LIVE SOUND SUBWOOFER DR. ADAM J. HILL COLLEGE OF ENGINEERING & TECHNOLOGY, UNIVERSITY OF DERBY, UK GAND CONCERT SOUND, CHICAGO, USA 20 OCTOBER 2017 LIVE SOUND SUBWOOFER SYSTEM DESIGN DR. ADAM J. HILL COLLEGE OF ENGINEERING & TECHNOLOGY, UNIVERSITY OF DERBY, UK GAND CONCERT SOUND, CHICAGO, USA 20 OCTOBER 2017 GOALS + CHALLENGES SINGLE SUBWOOFERS SUBWOOFER

More information

All files should be submitted on a CD-R or DVD or sent to us via AIM or our FTP Site (please contact us for more information).

All files should be submitted on a CD-R or DVD or sent to us via AIM or our FTP Site (please contact us for more information). GRAPHIC GUIDELINES AND TECHNICAL AUDIO SPECIFICATIONS FOR VINYL RECORDS GENERAL GRAPHIC GUIDELINES FOR VINYL RECORDS TO ALLOW US TO PROVIDE YOU WITH THE BEST SERVICE POSSIBLE, PLEASE FOLLOW THE FOLLOWING

More information

Implementation of an 8-Channel Real-Time Spontaneous-Input Time Expander/Compressor

Implementation of an 8-Channel Real-Time Spontaneous-Input Time Expander/Compressor Implementation of an 8-Channel Real-Time Spontaneous-Input Time Expander/Compressor Introduction: The ability to time stretch and compress acoustical sounds without effecting their pitch has been an attractive

More information

Abbey Road TG Mastering Chain User Guide

Abbey Road TG Mastering Chain User Guide Abbey Road TG Mastering Chain User Guide CONTENTS Introduction... 3 About the Abbey Road TG Mastering Chain Plugin... 3 Quick Start... 5 Components... 6 The WaveSystem Toolbar... 6 Interface... 7 Modules

More information

A few white papers on various. Digital Signal Processing algorithms. used in the DAC501 / DAC502 units

A few white papers on various. Digital Signal Processing algorithms. used in the DAC501 / DAC502 units A few white papers on various Digital Signal Processing algorithms used in the DAC501 / DAC502 units Contents: 1) Parametric Equalizer, page 2 2) Room Equalizer, page 5 3) Crosstalk Cancellation (XTC),

More information

1 Introduction to PSQM

1 Introduction to PSQM A Technical White Paper on Sage s PSQM Test Renshou Dai August 7, 2000 1 Introduction to PSQM 1.1 What is PSQM test? PSQM stands for Perceptual Speech Quality Measure. It is an ITU-T P.861 [1] recommended

More information

WAVES Cobalt Saphira. User Guide

WAVES Cobalt Saphira. User Guide WAVES Cobalt Saphira TABLE OF CONTENTS Chapter 1 Introduction... 3 1.1 Welcome... 3 1.2 Product Overview... 3 1.3 Components... 5 Chapter 2 Quick Start Guide... 6 Chapter 3 Interface and Controls... 7

More information

In addition, the choice of crossover frequencies has been expanded to include the range from 40 Hz to 220 Hz in 10 Hz increments.

In addition, the choice of crossover frequencies has been expanded to include the range from 40 Hz to 220 Hz in 10 Hz increments. Theta Digital Casablanca III HD and Casablanca IV The Casablanca platform traditionally had a number or proprietary features that made it unique. Some of them have been replaced. What s gone? What s replaced

More information

PHYSICS OF MUSIC. 1.) Charles Taylor, Exploring Music (Music Library ML3805 T )

PHYSICS OF MUSIC. 1.) Charles Taylor, Exploring Music (Music Library ML3805 T ) REFERENCES: 1.) Charles Taylor, Exploring Music (Music Library ML3805 T225 1992) 2.) Juan Roederer, Physics and Psychophysics of Music (Music Library ML3805 R74 1995) 3.) Physics of Sound, writeup in this

More information

PS User Guide Series Seismic-Data Display

PS User Guide Series Seismic-Data Display PS User Guide Series 2015 Seismic-Data Display Prepared By Choon B. Park, Ph.D. January 2015 Table of Contents Page 1. File 2 2. Data 2 2.1 Resample 3 3. Edit 4 3.1 Export Data 4 3.2 Cut/Append Records

More information

TEPZZ A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H04S 7/00 ( ) H04R 25/00 (2006.

TEPZZ A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H04S 7/00 ( ) H04R 25/00 (2006. (19) TEPZZ 94 98 A_T (11) EP 2 942 982 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 11.11. Bulletin /46 (1) Int Cl.: H04S 7/00 (06.01) H04R /00 (06.01) (21) Application number: 141838.7

More information

Using the new psychoacoustic tonality analyses Tonality (Hearing Model) 1

Using the new psychoacoustic tonality analyses Tonality (Hearing Model) 1 02/18 Using the new psychoacoustic tonality analyses 1 As of ArtemiS SUITE 9.2, a very important new fully psychoacoustic approach to the measurement of tonalities is now available., based on the Hearing

More information

TEPZZ 94 98_A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2015/46

TEPZZ 94 98_A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2015/46 (19) TEPZZ 94 98_A_T (11) EP 2 942 981 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 11.11.1 Bulletin 1/46 (1) Int Cl.: H04S 7/00 (06.01) H04R /00 (06.01) (21) Application number: 1418384.0

More information

METHODS TO ELIMINATE THE BASS CANCELLATION BETWEEN LFE AND MAIN CHANNELS

METHODS TO ELIMINATE THE BASS CANCELLATION BETWEEN LFE AND MAIN CHANNELS METHODS TO ELIMINATE THE BASS CANCELLATION BETWEEN LFE AND MAIN CHANNELS SHINTARO HOSOI 1, MICK M. SAWAGUCHI 2, AND NOBUO KAMEYAMA 3 1 Speaker Engineering Department, Pioneer Corporation, Tokyo, Japan

More information

Using the BHM binaural head microphone

Using the BHM binaural head microphone 11/17 Using the binaural head microphone Introduction 1 Recording with a binaural head microphone 2 Equalization of a recording 2 Individual equalization curves 5 Using the equalization curves 5 Post-processing

More information

FREE TV AUSTRALIA OPERATIONAL PRACTICE OP- 59 Measurement and Management of Loudness in Soundtracks for Television Broadcasting

FREE TV AUSTRALIA OPERATIONAL PRACTICE OP- 59 Measurement and Management of Loudness in Soundtracks for Television Broadcasting Page 1 of 10 1. SCOPE This Operational Practice is recommended by Free TV Australia and refers to the measurement of audio loudness as distinct from audio level. It sets out guidelines for measuring and

More information

Pitch. The perceptual correlate of frequency: the perceptual dimension along which sounds can be ordered from low to high.

Pitch. The perceptual correlate of frequency: the perceptual dimension along which sounds can be ordered from low to high. Pitch The perceptual correlate of frequency: the perceptual dimension along which sounds can be ordered from low to high. 1 The bottom line Pitch perception involves the integration of spectral (place)

More information

CZT vs FFT: Flexibility vs Speed. Abstract

CZT vs FFT: Flexibility vs Speed. Abstract CZT vs FFT: Flexibility vs Speed Abstract Bluestein s Fast Fourier Transform (FFT), commonly called the Chirp-Z Transform (CZT), is a little-known algorithm that offers engineers a high-resolution FFT

More information

Music Source Separation

Music Source Separation Music Source Separation Hao-Wei Tseng Electrical and Engineering System University of Michigan Ann Arbor, Michigan Email: blakesen@umich.edu Abstract In popular music, a cover version or cover song, or

More information

6.UAP Project. FunPlayer: A Real-Time Speed-Adjusting Music Accompaniment System. Daryl Neubieser. May 12, 2016

6.UAP Project. FunPlayer: A Real-Time Speed-Adjusting Music Accompaniment System. Daryl Neubieser. May 12, 2016 6.UAP Project FunPlayer: A Real-Time Speed-Adjusting Music Accompaniment System Daryl Neubieser May 12, 2016 Abstract: This paper describes my implementation of a variable-speed accompaniment system that

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.9 THE FUTURE OF SOUND

More information

Supplemental Material for Gamma-band Synchronization in the Macaque Hippocampus and Memory Formation

Supplemental Material for Gamma-band Synchronization in the Macaque Hippocampus and Memory Formation Supplemental Material for Gamma-band Synchronization in the Macaque Hippocampus and Memory Formation Michael J. Jutras, Pascal Fries, Elizabeth A. Buffalo * *To whom correspondence should be addressed.

More information

Smooth Rhythms as Probes of Entrainment. Music Perception 10 (1993): ABSTRACT

Smooth Rhythms as Probes of Entrainment. Music Perception 10 (1993): ABSTRACT Smooth Rhythms as Probes of Entrainment Music Perception 10 (1993): 503-508 ABSTRACT If one hypothesizes rhythmic perception as a process employing oscillatory circuits in the brain that entrain to low-frequency

More information

Faithful Sound Uniform Loudness Distribution Reproduction. Source. System

Faithful Sound Uniform Loudness Distribution Reproduction. Source. System Faithful Sound Uniform Loudness Distribution Reproduction Lucid ULD III Loudspeakers Althar Audio strives to protect the integrity of sounds. We recognise the delicacy of sound, beginning with its creation

More information

EE-217 Final Project The Hunt for Noise (and All Things Audible)

EE-217 Final Project The Hunt for Noise (and All Things Audible) EE-217 Final Project The Hunt for Noise (and All Things Audible) 5-7-14 Introduction Noise is in everything. All modern communication systems must deal with noise in one way or another. Different types

More information

UNIVERSITY OF DUBLIN TRINITY COLLEGE

UNIVERSITY OF DUBLIN TRINITY COLLEGE UNIVERSITY OF DUBLIN TRINITY COLLEGE FACULTY OF ENGINEERING & SYSTEMS SCIENCES School of Engineering and SCHOOL OF MUSIC Postgraduate Diploma in Music and Media Technologies Hilary Term 31 st January 2005

More information

RECORDING AND REPRODUCING CONCERT HALL ACOUSTICS FOR SUBJECTIVE EVALUATION

RECORDING AND REPRODUCING CONCERT HALL ACOUSTICS FOR SUBJECTIVE EVALUATION RECORDING AND REPRODUCING CONCERT HALL ACOUSTICS FOR SUBJECTIVE EVALUATION Reference PACS: 43.55.Mc, 43.55.Gx, 43.38.Md Lokki, Tapio Aalto University School of Science, Dept. of Media Technology P.O.Box

More information

A Straightforward One-Seat Stereo Tuning Process and Some Notes About Why it Works

A Straightforward One-Seat Stereo Tuning Process and Some Notes About Why it Works A Straightforward One-Seat Stereo Tuning Process and Some Notes About Why it Works The Process Note 1: This process assumes the input to your DSP is confirmed as a flat, two-channel and in phase signal,

More information

CATHODE RAY OSCILLOSCOPE. Basic block diagrams Principle of operation Measurement of voltage, current and frequency

CATHODE RAY OSCILLOSCOPE. Basic block diagrams Principle of operation Measurement of voltage, current and frequency CATHODE RAY OSCILLOSCOPE Basic block diagrams Principle of operation Measurement of voltage, current and frequency 103 INTRODUCTION: The cathode-ray oscilloscope (CRO) is a multipurpose display instrument

More information

PSYCHOACOUSTICS & THE GRAMMAR OF AUDIO (By Steve Donofrio NATF)

PSYCHOACOUSTICS & THE GRAMMAR OF AUDIO (By Steve Donofrio NATF) PSYCHOACOUSTICS & THE GRAMMAR OF AUDIO (By Steve Donofrio NATF) "The reason I got into playing and producing music was its power to travel great distances and have an emotional impact on people" Quincey

More information

Department of Electrical & Electronic Engineering Imperial College of Science, Technology and Medicine. Project: Real-Time Speech Enhancement

Department of Electrical & Electronic Engineering Imperial College of Science, Technology and Medicine. Project: Real-Time Speech Enhancement Department of Electrical & Electronic Engineering Imperial College of Science, Technology and Medicine Project: Real-Time Speech Enhancement Introduction Telephones are increasingly being used in noisy

More information

Adaptive Resampling - Transforming From the Time to the Angle Domain

Adaptive Resampling - Transforming From the Time to the Angle Domain Adaptive Resampling - Transforming From the Time to the Angle Domain Jason R. Blough, Ph.D. Assistant Professor Mechanical Engineering-Engineering Mechanics Department Michigan Technological University

More information

It is increasingly possible either to

It is increasingly possible either to It is increasingly possible either to emulate legacy audio devices and effects or to create new ones using digital signal processing. Often these are implemented as plug-ins to digital audio workstation

More information

Switching Solutions for Multi-Channel High Speed Serial Port Testing

Switching Solutions for Multi-Channel High Speed Serial Port Testing Switching Solutions for Multi-Channel High Speed Serial Port Testing Application Note by Robert Waldeck VP Business Development, ASCOR Switching The instruments used in High Speed Serial Port testing are

More information

POSITIONING SUBWOOFERS

POSITIONING SUBWOOFERS POSITIONING SUBWOOFERS PRINCIPLE CONSIDERATIONS Lynx Pro Audio / Technical documents When you arrive to a venue and see the Front of House you can find different ways how subwoofers are placed. Sometimes

More information

Binaural Measurement, Analysis and Playback

Binaural Measurement, Analysis and Playback 11/17 Introduction 1 Locating sound sources 1 Direction-dependent and direction-independent changes of the sound field 2 Recordings with an artificial head measurement system 3 Equalization of an artificial

More information

Musical Sound: A Mathematical Approach to Timbre

Musical Sound: A Mathematical Approach to Timbre Sacred Heart University DigitalCommons@SHU Writing Across the Curriculum Writing Across the Curriculum (WAC) Fall 2016 Musical Sound: A Mathematical Approach to Timbre Timothy Weiss (Class of 2016) Sacred

More information

By David Acker, Broadcast Pix Hardware Engineering Vice President, and SMPTE Fellow Bob Lamm, Broadcast Pix Product Specialist

By David Acker, Broadcast Pix Hardware Engineering Vice President, and SMPTE Fellow Bob Lamm, Broadcast Pix Product Specialist White Paper Slate HD Video Processing By David Acker, Broadcast Pix Hardware Engineering Vice President, and SMPTE Fellow Bob Lamm, Broadcast Pix Product Specialist High Definition (HD) television is the

More information

Chapter 14 D-A and A-D Conversion

Chapter 14 D-A and A-D Conversion Chapter 14 D-A and A-D Conversion In Chapter 12, we looked at how digital data can be carried over an analog telephone connection. We now want to discuss the opposite how analog signals can be carried

More information

Musical Acoustics Lecture 15 Pitch & Frequency (Psycho-Acoustics)

Musical Acoustics Lecture 15 Pitch & Frequency (Psycho-Acoustics) 1 Musical Acoustics Lecture 15 Pitch & Frequency (Psycho-Acoustics) Pitch Pitch is a subjective characteristic of sound Some listeners even assign pitch differently depending upon whether the sound was

More information

Simple motion control implementation

Simple motion control implementation Simple motion control implementation with Omron PLC SCOPE In todays challenging economical environment and highly competitive global market, manufacturers need to get the most of their automation equipment

More information

A SIMPLE ACOUSTIC ROOM MODEL FOR VIRTUAL PRODUCTION AUDIO. R. Walker. British Broadcasting Corporation, United Kingdom. ABSTRACT

A SIMPLE ACOUSTIC ROOM MODEL FOR VIRTUAL PRODUCTION AUDIO. R. Walker. British Broadcasting Corporation, United Kingdom. ABSTRACT A SIMPLE ACOUSTIC ROOM MODEL FOR VIRTUAL PRODUCTION AUDIO. R. Walker British Broadcasting Corporation, United Kingdom. ABSTRACT The use of television virtual production is becoming commonplace. This paper

More information

Loudness and Sharpness Calculation

Loudness and Sharpness Calculation 10/16 Loudness and Sharpness Calculation Psychoacoustics is the science of the relationship between physical quantities of sound and subjective hearing impressions. To examine these relationships, physical

More information

Edison Revisited. by Scott Cannon. Advisors: Dr. Jonathan Berger and Dr. Julius Smith. Stanford Electrical Engineering 2002 Summer REU Program

Edison Revisited. by Scott Cannon. Advisors: Dr. Jonathan Berger and Dr. Julius Smith. Stanford Electrical Engineering 2002 Summer REU Program by Scott Cannon Advisors: Dr. Jonathan Berger and Dr. Julius Smith Stanford Electrical Engineering 2002 Summer REU Program Background The first phonograph was developed in 1877 as a result of Thomas Edison's

More information

An Introduction to the Spectral Dynamics Rotating Machinery Analysis (RMA) package For PUMA and COUGAR

An Introduction to the Spectral Dynamics Rotating Machinery Analysis (RMA) package For PUMA and COUGAR An Introduction to the Spectral Dynamics Rotating Machinery Analysis (RMA) package For PUMA and COUGAR Introduction: The RMA package is a PC-based system which operates with PUMA and COUGAR hardware to

More information

Lecture 7: Music

Lecture 7: Music Matthew Schwartz Lecture 7: Music Why do notes sound good? In the previous lecture, we saw that if you pluck a string, it will excite various frequencies. The amplitude of each frequency which is excited

More information

The BAT WAVE ANALYZER project

The BAT WAVE ANALYZER project The BAT WAVE ANALYZER project Conditions of Use The Bat Wave Analyzer program is free for personal use and can be redistributed provided it is not changed in any way, and no fee is requested. The Bat Wave

More information

Dither Explained. An explanation and proof of the benefit of dither. for the audio engineer. By Nika Aldrich. April 25, 2002

Dither Explained. An explanation and proof of the benefit of dither. for the audio engineer. By Nika Aldrich. April 25, 2002 Dither Explained An explanation and proof of the benefit of dither for the audio engineer By Nika Aldrich April 25, 2002 Several people have asked me to explain this, and I have to admit it was one of

More information

Quarterly Progress and Status Report. An attempt to predict the masking effect of vowel spectra

Quarterly Progress and Status Report. An attempt to predict the masking effect of vowel spectra Dept. for Speech, Music and Hearing Quarterly Progress and Status Report An attempt to predict the masking effect of vowel spectra Gauffin, J. and Sundberg, J. journal: STL-QPSR volume: 15 number: 4 year:

More information

Machinery Diagnostic Plots Part 1 ORBIT Back-to-Basics: What does the data really tell us?

Machinery Diagnostic Plots Part 1 ORBIT Back-to-Basics: What does the data really tell us? Machinery Diagnostic Plots Part 1 ORBIT Back-to-Basics: What does the data really tell us? Gaston Desimone Latin America Technical Leader Bently Nevada* Machinery Diagnostic Services (MDS) Buenos Aires

More information

Pitch correction on the human voice

Pitch correction on the human voice University of Arkansas, Fayetteville ScholarWorks@UARK Computer Science and Computer Engineering Undergraduate Honors Theses Computer Science and Computer Engineering 5-2008 Pitch correction on the human

More information

Simple Harmonic Motion: What is a Sound Spectrum?

Simple Harmonic Motion: What is a Sound Spectrum? Simple Harmonic Motion: What is a Sound Spectrum? A sound spectrum displays the different frequencies present in a sound. Most sounds are made up of a complicated mixture of vibrations. (There is an introduction

More information

Practical Application of the Phased-Array Technology with Paint-Brush Evaluation for Seamless-Tube Testing

Practical Application of the Phased-Array Technology with Paint-Brush Evaluation for Seamless-Tube Testing ECNDT 2006 - Th.1.1.4 Practical Application of the Phased-Array Technology with Paint-Brush Evaluation for Seamless-Tube Testing R.H. PAWELLETZ, E. EUFRASIO, Vallourec & Mannesmann do Brazil, Belo Horizonte,

More information

BACHELOR THESIS. Placing of Subwoofers. Measurements of common setups with 2-4 subwoofers for an even sound

BACHELOR THESIS. Placing of Subwoofers. Measurements of common setups with 2-4 subwoofers for an even sound BACHELOR THESIS Placing of Subwoofers Measurements of common setups with 2-4 subwoofers for an even sound pressure lever over the audience area and lower level on the stage Linnéa Burman 2013 Bachelor

More information

Digital Audio: Some Myths and Realities

Digital Audio: Some Myths and Realities 1 Digital Audio: Some Myths and Realities By Robert Orban Chief Engineer Orban Inc. November 9, 1999, rev 1 11/30/99 I am going to talk today about some myths and realities regarding digital audio. I have

More information

Spectrum Analyser Basics

Spectrum Analyser Basics Hands-On Learning Spectrum Analyser Basics Peter D. Hiscocks Syscomp Electronic Design Limited Email: phiscock@ee.ryerson.ca June 28, 2014 Introduction Figure 1: GUI Startup Screen In a previous exercise,

More information

Witold MICKIEWICZ, Jakub JELEŃ

Witold MICKIEWICZ, Jakub JELEŃ ARCHIVES OF ACOUSTICS 33, 1, 11 17 (2008) SURROUND MIXING IN PRO TOOLS LE Witold MICKIEWICZ, Jakub JELEŃ Technical University of Szczecin Al. Piastów 17, 70-310 Szczecin, Poland e-mail: witold.mickiewicz@ps.pl

More information

DTS Neural Mono2Stereo

DTS Neural Mono2Stereo WAVES DTS Neural Mono2Stereo USER GUIDE Table of Contents Chapter 1 Introduction... 3 1.1 Welcome... 3 1.2 Product Overview... 3 1.3 Sample Rate Support... 4 Chapter 2 Interface and Controls... 5 2.1 Interface...

More information

Figure 1: Feature Vector Sequence Generator block diagram.

Figure 1: Feature Vector Sequence Generator block diagram. 1 Introduction Figure 1: Feature Vector Sequence Generator block diagram. We propose designing a simple isolated word speech recognition system in Verilog. Our design is naturally divided into two modules.

More information

CM3106 Solutions. Do not turn this page over until instructed to do so by the Senior Invigilator.

CM3106 Solutions. Do not turn this page over until instructed to do so by the Senior Invigilator. CARDIFF UNIVERSITY EXAMINATION PAPER Academic Year: 2013/2014 Examination Period: Examination Paper Number: Examination Paper Title: Duration: Autumn CM3106 Solutions Multimedia 2 hours Do not turn this

More information

White Paper JBL s LSR Principle, RMC (Room Mode Correction) and the Monitoring Environment by John Eargle. Introduction and Background:

White Paper JBL s LSR Principle, RMC (Room Mode Correction) and the Monitoring Environment by John Eargle. Introduction and Background: White Paper JBL s LSR Principle, RMC (Room Mode Correction) and the Monitoring Environment by John Eargle Introduction and Background: Although a loudspeaker may measure flat on-axis under anechoic conditions,

More information

Precision testing methods of Event Timer A032-ET

Precision testing methods of Event Timer A032-ET Precision testing methods of Event Timer A032-ET Event Timer A032-ET provides extreme precision. Therefore exact determination of its characteristics in commonly accepted way is impossible or, at least,

More information

Experiment 9A: Magnetism/The Oscilloscope

Experiment 9A: Magnetism/The Oscilloscope Experiment 9A: Magnetism/The Oscilloscope (This lab s "write up" is integrated into the answer sheet. You don't need to attach a separate one.) Part I: Magnetism and Coils A. Obtain a neodymium magnet

More information

Removal of Decaying DC Component in Current Signal Using a ovel Estimation Algorithm

Removal of Decaying DC Component in Current Signal Using a ovel Estimation Algorithm Removal of Decaying DC Component in Current Signal Using a ovel Estimation Algorithm Majid Aghasi*, and Alireza Jalilian** *Department of Electrical Engineering, Iran University of Science and Technology,

More information

Precedence-based speech segregation in a virtual auditory environment

Precedence-based speech segregation in a virtual auditory environment Precedence-based speech segregation in a virtual auditory environment Douglas S. Brungart a and Brian D. Simpson Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 Richard L. Freyman University

More information

BBN ANG 141 Foundations of phonology Phonetics 3: Acoustic phonetics 1

BBN ANG 141 Foundations of phonology Phonetics 3: Acoustic phonetics 1 BBN ANG 141 Foundations of phonology Phonetics 3: Acoustic phonetics 1 Zoltán Kiss Dept. of English Linguistics, ELTE z. kiss (elte/delg) intro phono 3/acoustics 1 / 49 Introduction z. kiss (elte/delg)

More information

The Effect of Time-Domain Interpolation on Response Spectral Calculations. David M. Boore

The Effect of Time-Domain Interpolation on Response Spectral Calculations. David M. Boore The Effect of Time-Domain Interpolation on Response Spectral Calculations David M. Boore This note confirms Norm Abrahamson s finding that the straight line interpolation between sampled points used in

More information

PCM ENCODING PREPARATION... 2 PCM the PCM ENCODER module... 4

PCM ENCODING PREPARATION... 2 PCM the PCM ENCODER module... 4 PCM ENCODING PREPARATION... 2 PCM... 2 PCM encoding... 2 the PCM ENCODER module... 4 front panel features... 4 the TIMS PCM time frame... 5 pre-calculations... 5 EXPERIMENT... 5 patching up... 6 quantizing

More information

Psychoacoustics. lecturer:

Psychoacoustics. lecturer: Psychoacoustics lecturer: stephan.werner@tu-ilmenau.de Block Diagram of a Perceptual Audio Encoder loudness critical bands masking: frequency domain time domain binaural cues (overview) Source: Brandenburg,

More information

Recommended Operations

Recommended Operations Category LMS Test.Lab Access Level End User Topic Rotating Machinery Publish Date 1-Aug-2016 Question: How to 'correctly' integrate time data within Time Domain Integration? Answer: While the most accurate

More information

White Paper. Uniform Luminance Technology. What s inside? What is non-uniformity and noise in LCDs? Why is it a problem? How is it solved?

White Paper. Uniform Luminance Technology. What s inside? What is non-uniformity and noise in LCDs? Why is it a problem? How is it solved? White Paper Uniform Luminance Technology What s inside? What is non-uniformity and noise in LCDs? Why is it a problem? How is it solved? Tom Kimpe Manager Technology & Innovation Group Barco Medical Imaging

More information

Heart Rate Variability Preparing Data for Analysis Using AcqKnowledge

Heart Rate Variability Preparing Data for Analysis Using AcqKnowledge APPLICATION NOTE 42 Aero Camino, Goleta, CA 93117 Tel (805) 685-0066 Fax (805) 685-0067 info@biopac.com www.biopac.com 01.06.2016 Application Note 233 Heart Rate Variability Preparing Data for Analysis

More information

Instrument Recognition in Polyphonic Mixtures Using Spectral Envelopes

Instrument Recognition in Polyphonic Mixtures Using Spectral Envelopes Instrument Recognition in Polyphonic Mixtures Using Spectral Envelopes hello Jay Biernat Third author University of Rochester University of Rochester Affiliation3 words jbiernat@ur.rochester.edu author3@ismir.edu

More information

Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003

Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003 1 Introduction Long and Fast Up/Down Counters Pushpinder Kaur CHOUHAN 6 th Jan, 2003 Circuits for counting both forward and backward events are frequently used in computers and other digital systems. Digital

More information

456 SOLID STATE ANALOGUE TAPE + A80 RECORDER MODELS

456 SOLID STATE ANALOGUE TAPE + A80 RECORDER MODELS 456 SOLID STATE ANALOGUE TAPE + A80 RECORDER MODELS 456 STEREO HALF RACK 456 MONO The 456 range in essence is an All Analogue Solid State Tape Recorder the Output of which can be recorded by conventional

More information

Home Theater / September 2004

Home Theater / September 2004 Room Correction, Volume One The next frontier of system tweaking, in gear almost everyone can relate to. by Chris Lewis Audio truth number one: You can spend all the money in the world on equipment, but

More information

SPL Analog Code Plug-ins Manual Classic & Dual-Band De-Essers

SPL Analog Code Plug-ins Manual Classic & Dual-Band De-Essers SPL Analog Code Plug-ins Manual Classic & Dual-Band De-Essers Sibilance Removal Manual Classic &Dual-Band De-Essers, Analog Code Plug-ins Model # 1230 Manual version 1.0 3/2012 This user s guide contains

More information

Pre-processing of revolution speed data in ArtemiS SUITE 1

Pre-processing of revolution speed data in ArtemiS SUITE 1 03/18 in ArtemiS SUITE 1 Introduction 1 TTL logic 2 Sources of error in pulse data acquisition 3 Processing of trigger signals 5 Revolution speed acquisition with complex pulse patterns 7 Introduction

More information

Virtual instruments and introduction to LabView

Virtual instruments and introduction to LabView Introduction Virtual instruments and introduction to LabView (BME-MIT, updated: 26/08/2014 Tamás Krébesz krebesz@mit.bme.hu) The purpose of the measurement is to present and apply the concept of virtual

More information

Computer Coordination With Popular Music: A New Research Agenda 1

Computer Coordination With Popular Music: A New Research Agenda 1 Computer Coordination With Popular Music: A New Research Agenda 1 Roger B. Dannenberg roger.dannenberg@cs.cmu.edu http://www.cs.cmu.edu/~rbd School of Computer Science Carnegie Mellon University Pittsburgh,

More information

Spatial-frequency masking with briefly pulsed patterns

Spatial-frequency masking with briefly pulsed patterns Perception, 1978, volume 7, pages 161-166 Spatial-frequency masking with briefly pulsed patterns Gordon E Legge Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA Michael

More information

Four Head dtape Echo & Looper

Four Head dtape Echo & Looper Four Head dtape Echo & Looper QUICK START GUIDE Magneto is a tape-voiced multi-head delay designed for maximum musicality and flexibility. Please download the complete user manual for a full description

More information

EBU Digital AV Sync and Operational Test Pattern

EBU Digital AV Sync and Operational Test Pattern www.lynx-technik.com EBU Digital AV Sync and Operational Test Pattern Date: Feb 2008 Revision : 1.3 Disclaimer. This pattern is not standardized or recognized by the EBU. This derivative has been developed

More information

Whitepaper: Driver Time Alignment

Whitepaper: Driver Time Alignment Whitepaper: Driver Time Alignment definiteaudio GmbH Peter-Vischer-Str.2 D-91056 Erlangen Tel: 09131 758691 Fax: 09131 758691 e-mail: info@definiteaudio.de Web: http://www.definiteaudio.de Umsatzsteueridentnummer:

More information

CHARACTERIZATION OF END-TO-END DELAYS IN HEAD-MOUNTED DISPLAY SYSTEMS

CHARACTERIZATION OF END-TO-END DELAYS IN HEAD-MOUNTED DISPLAY SYSTEMS CHARACTERIZATION OF END-TO-END S IN HEAD-MOUNTED DISPLAY SYSTEMS Mark R. Mine University of North Carolina at Chapel Hill 3/23/93 1. 0 INTRODUCTION This technical report presents the results of measurements

More information

Torsional vibration analysis in ArtemiS SUITE 1

Torsional vibration analysis in ArtemiS SUITE 1 02/18 in ArtemiS SUITE 1 Introduction 1 Revolution speed information as a separate analog channel 1 Revolution speed information as a digital pulse channel 2 Proceeding and general notes 3 Application

More information

Colour Matching Technology

Colour Matching Technology Colour Matching Technology For BVM-L Master Monitors www.sonybiz.net/monitors Colour Matching Technology BVM-L420/BVM-L230 LCD Master Monitors LCD Displays have come a long way from when they were first

More information

COSC3213W04 Exercise Set 2 - Solutions

COSC3213W04 Exercise Set 2 - Solutions COSC313W04 Exercise Set - Solutions Encoding 1. Encode the bit-pattern 1010000101 using the following digital encoding schemes. Be sure to write down any assumptions you need to make: a. NRZ-I Need to

More information

Auditory Illusions. Diana Deutsch. The sounds we perceive do not always correspond to those that are

Auditory Illusions. Diana Deutsch. The sounds we perceive do not always correspond to those that are In: E. Bruce Goldstein (Ed) Encyclopedia of Perception, Volume 1, Sage, 2009, pp 160-164. Auditory Illusions Diana Deutsch The sounds we perceive do not always correspond to those that are presented. When

More information

(Refer Slide Time 1:58)

(Refer Slide Time 1:58) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 1 Introduction to Digital Circuits This course is on digital circuits

More information

Doubletalk Detection

Doubletalk Detection ELEN-E4810 Digital Signal Processing Fall 2004 Doubletalk Detection Adam Dolin David Klaver Abstract: When processing a particular voice signal it is often assumed that the signal contains only one speaker,

More information

New recording techniques for solo double bass

New recording techniques for solo double bass New recording techniques for solo double bass Cato Langnes NOTAM, Sandakerveien 24 D, Bygg F3, 0473 Oslo catola@notam02.no, www.notam02.no Abstract This paper summarizes techniques utilized in the process

More information