1.5 GHz to 4.5 GHz, GaAs, MMIC, Double Balanced Mixer HMC213BMS8E

Size: px
Start display at page:

Download "1.5 GHz to 4.5 GHz, GaAs, MMIC, Double Balanced Mixer HMC213BMS8E"

Transcription

1 FEATURES Passive: no dc bias required Conversion loss: 1 db typical Input IP3: 21 dbm typical RoHS compliant, ultraminiature package: 8-lead MSOP APPLICATIONS Base stations Personal Computer Memory Card International Association (PCMCIA) transceivers Wireless local loops 1. GHz to 4. GHz, GaAs, MMIC, Double Balanced Mixer FUNCTIONAL BLOCK DIAGRAM GND 1 LO 2 GND 3 NIC 4 8 GND 7 RF 6 GND IF NOTES 1. NIC = NOT INTERNALLY CONNECTED. THESE PINS CAN BE CONNECTED TO RF/DC GROUND. PERFORMANCE IS NOT AFFECTED. Figure GENERAL DESCRIPTION The is an ultraminiature double balanced mixer in a plastic, 8-lead mini small outline package (MSOP). This passive monolithic microwave integrated circuit (MMIC) mixer is constructed of gallium arsenide (GaAs) Schottky diodes and novel planar transformer baluns on the chip. The device can be used as an upconverter, downconverter, biphase demodulator or modulator, or phase comparator. The consistent MMIC performance improves system operation and ensures regulatory compliance. Rev. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 916, Norwood, MA , U.S.A. Tel: Analog Devices, Inc. All rights reserved. Technical Support

2 TABLE OF CONTENTS Features... 1 Applications... 1 Functional Block Diagram... 1 General Description... 1 Revision History... 2 Specifications... 3 Absolute Maximum Ratings... 4 Thermal Resistance... 4 ESD Caution... 4 Pin Configuration and Function Descriptions... Interface Schematics... Typical Performance Characteristics... 6 Data Sheet Downconverter Performance...6 Upconverter Performance... 1 Isolation and Return Loss IF Bandwidth Downconverter Spurious and Harmonics Performance Theory of Operation Applications Information... 2 Typical Application Circuit... 2 Evaluation PCB Information... 2 Outline Dimensions Ordering Guide REVISION HISTORY 2/218 Revision : Initial Version Rev. Page 2 of 21

3 SPECIFICATIONS Ambient temperature (TA) = 2 C, IF = 1 MHz,, upper sideband. All measurements performed as a downconverter on the evaluation printed circuit board (PCB), unless otherwise noted. Table 1. Parameter Symbol Min Typ Max Unit Test Conditions/Comments FREQUENCY RANGE RF RF GHz LO Input LO GHz IF IF DC 1. GHz LO AMPLITUDE 9 13 dbm 1. GHz TO 4. GHz PERFORMANCE Downconverter IFOUT Conversion Loss 1 11 db Input Third-Order Intercept IP dbm Input 1 db Compression Point P1dB 11 dbm Upconverter IFIN IFIN = 1 MHz Conversion Loss 1 db Input Third-Order Intercept IP3 17 dbm Input 1 db Compression Point P1dB 8 dbm Isolation RF to IF 8 13 db LO to RF db LO to IF 23 3 db 1.7 GHz TO 3.6 GHz PERFORMANCE LO = 1 dbm Downconverter IFOUT Conversion Loss 1. db Input Third-Order Intercept IP3 19 dbm Input 1 db Compression Point P1dB 1. dbm Upconverter IFIN IFIN = 1 MHz Conversion Loss 9 db Input Third-Order Intercept IP3 12 dbm Input 1 db Compression Point P1dB 6 dbm Isolation RF to IF 13 db LO to RF 31 db LO to IF 27 db Rev. Page 3 of 21

4 ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Rating RF Input Power 13 dbm LO Input Power 27 dbm IF Input Power 13 dbm IF Source/Sink Current 9 ma Reflow Temperature 26 C Continuous Power Dissipation, PDISS W (TA = 8 C, Derate.9 mw/ C Above 8 C) Maximum Junction Temperature 17 C Operating Temperature Range 4 C to +8 C Storage Temperature Range 6 C to + C Lead Temperature Range 6 C to + C Electrostatic Discharge (ESD) Sensitivity Human Body Model 2 V Field Induced Charged Device Model 12 V Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Data Sheet THERMAL RESISTANCE Thermal performance is directly linked to PCB design and operating environment. Careful attention to PCB thermal design is required. θja is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θjc is the junction to case thermal resistance. Table 3. Thermal Resistance Package Type θja θjc Unit RM C/W 1 See JEDEC standard JESD1-2 for additional information on optimizing the thermal impedance (PCB with 3 3 vias). ESD CAUTION Rev. Page 4 of 21

5 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS GND 1 8 GND LO GND 2 3 TOP VIEW (Not to Scale) 7 6 RF GND NIC 4 IF NOTES 1. NIC = NOT INTERNALLY CONNECTED. THESE PINS CAN BE CONNECTED TO RF/DC GROUND. PERFORMANCE IS NOT AFFECTED Figure 2. Pin Configuration Table 4. Pin Function Descriptions Pin No. Mnemonic Description 1, 3, 6, 8 GND Ground. Connect these pins to RF/dc ground. 2 LO Local Oscillator (LO) Port. This pin is ac-coupled and matched to Ω. 4 NIC Not Internally Connected. These pins can be connected to RF/dc ground. Performance is not affected. IF Intermediate Frequency (IF) Port. This pin is dc-coupled. For applications not requiring operation to dc, dc block this port externally using a series capacitor of a value chosen to pass the necessary IF frequency range. For operation to dc, this pin must not source or sink more than 9 ma of current or die malfunction and possible die failure can result. See Figure for the interface schematic. 7 RF Radio Frequency (RF) Port. This pin is ac-coupled and matched to Ω. INTERFACE SCHEMATICS GND Figure 3. GND Interface Schematic IF Figure. IF Interface Schematic LO RF Figure 4. LO Interface Schematic Figure 6. RF Interface Schematic Rev. Page of 21

6 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS DOWNCONVERTER PERFORMANCE IF OUT = 1 MHz, Upper Sideband 1 +8 C +2 C 4 C 1 LO = dbm Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures, Figure 1. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C LO = dbm Figure 8. Input IP3 vs. RF Frequency at Various Temperatures, Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C 2 LO = dbm INPUT P1dB (dbm) 1 INPUT P1dB (dbm) Figure 9. Input P1dB vs. RF Frequency at Various Temperatures, Figure 12. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 6 of 21

7 IF OUT = 1 MHz, Lower Sideband 1 +8 C +2 C 4 C 1 LO = dbm Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures, Figure. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C 3 2 LO = dbm Figure 14. Input IP3 vs. RF Frequency at Various Temperatures, Figure 16. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 7 of 21

8 Data Sheet IF OUT = MHz, Upper Sideband 1 +8 C +2 C 4 C 1 LO = dbm Figure 17. Conversion Gain vs. RF Frequency at Various Temperatures, Figure 2. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C 3 2 LO = dbm Figure 18. Input IP3 vs. RF Frequency at Various Temperatures, Figure 21. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C 2 INPUT P1dB (dbm) 1 INPUT P1dB (dbm) Figure 19. Input P1dB vs. RF Frequency at Various Temperatures, LO = dbm Figure 22. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 8 of 21

9 IF OUT = MHz, Lower Sideband 1 +8 C +2 C 4 C 1 LO = dbm Figure 23. Conversion Gain vs. RF Frequency at Various Temperatures, Figure 2. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C LO = dbm Figure 24. Input IP3 vs. RF Frequency at Various Temperatures, Figure 26. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 9 of 21

10 Data Sheet UPCONVERTER PERFORMANCE IF IN = 1 MHz, Upper Sideband 1 +8 C +2 C 4 C 1 LO = dbm Figure 27. Conversion Gain vs. RF Frequency at Various Temperatures, Figure 3. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C 3 2 LO = dbm Figure 28. Input IP3 vs. RF Frequency at Various Temperatures, Figure 31. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C LO = dbm INPUT P1dB (dbm) 1 INPUT P1dB (dbm) Figure 29. Input P1dB vs. RF Frequency at Various Temperatures, Figure 32. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 1 of 21

11 IF IN = 1 MHz, Lower Sideband 1 +8 C +2 C 4 C 1 LO = dbm Figure 33. Conversion Gain vs. RF Frequency at Various Temperatures, Figure 3. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C 3 2 LO = dbm Figure 34. Input IP3 vs. RF Frequency at Various Temperatures, Figure 36. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 11 of 21

12 Data Sheet IF IN = MHz, Upper Sideband 1 +8 C +2 C 4 C 1 LO = dbm Figure 37. Conversion Gain vs. RF Frequency at Various Temperatures, Figure 4. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C 3 2 LO = dbm Figure 38. Input IP3 vs. RF Frequency at Various Temperatures, Figure 41. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C 2 LO = dbm INPUT P1dB (dbm) 1 INPUT P1dB (dbm) Figure 39. Input P1dB vs. RF Frequency at Various Temperatures, Figure 42. Input P1dB vs. RF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 12 of 21

13 IF IN = MHz, Lower Sideband 1 +8 C +2 C 4 C 1 LO = dbm Figure 43. Conversion Gain vs. RF Frequency at Various Temperatures, Figure 4. Conversion Gain vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C Figure 44. Input IP3 vs. RF Frequency at Various Temperatures, LO = dbm Figure 46. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 13 of 21

14 ISOLATION AND RETURN LOSS LO TO RF ISOLATION (db) C +2 C 4 C Figure 47. LO to RF Isolation vs. RF Frequency at Various Temperatures, LO TO IF ISOLATION (db) C +2 C 4 C Figure 48. LO to IF Isolation vs. RF Frequency at Various Temperatures, LO TO RF ISOLATION (db) Data Sheet 1 LO = dbm Figure. LO to RF Isolation vs. RF Frequency at Various LO Power levels, TA = 2 C LO TO IF ISOLATION (db) LO = dbm Figure 1. LO to IF Isolation vs. RF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C 2 2 RF TO IF ISOLATION (db) Figure 49. RF to IF Isolation vs. RF Frequency at Various Temperatures, RF TO IF ISOLATION (db) 1 LO = dbm Figure 2. RF to IF Isolation vs. RF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 14 of 21

15 LO = 1dBm LO RETURN LOSS (db) Figure 3. LO Return Loss vs. RF Frequency, TA = 2 C, LO = 1 dbm and 13 dbm IF RETURN LOSS (db) LO = dbm Figure. IF Return Loss vs. RF Frequency at Various LO Power Levels, LO at 2. GHz, TA = 2 C RF RETURN LOSS (db) LO = dbm Figure 4. RF Return Loss vs. RF Frequency at Various LO Power Levels, LO at 2. GHz, TA = 2 C Rev. Page of 21

16 Data Sheet IF BANDWIDTH DOWNCONVERTER LO = 1.8 GHz Upper sideband (low-side LO) C +2 C 4 C 1 LO = dbm IF FREQUENCY (GHz) Figure 6. Conversion Gain vs. IF Frequency at Various Temperatures, IF FREQUENCY (GHz) Figure 8. Conversion Gain vs. IF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C 3 2 LO = dbm IF FREQUENCY (GHz) Figure 7. Input IP3 vs. IF Frequency at Various Temperatures, IF FREQUENCY (GHz) Figure 9. Input IP3 vs. IF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 16 of 21

17 LO = 4.4 GHz Lower sideband (high-side LO) C +2 C 4 C 1 LO = dbm IF FREQUENCY (GHz) Figure 6. Conversion Gain vs. IF Frequency at Various Temperatures, IF FREQUENCY (GHz) Figure 62. Conversion Gain vs. IF Frequency at Various LO Power Levels, TA = 2 C C +2 C 4 C IF FREQUENCY (GHz) Figure 61. Input IP3 at vs. IF Frequency at Various Temperatures, LO = dbm IF FREQUENCY (GHz) Figure 63. Input IP3 vs. IF Frequency at Various LO Power Levels, TA = 2 C Rev. Page 17 of 21

18 SPURIOUS AND HARMONICS PERFORMANCE Mixer spurious products are measured in dbc from either the RF pin or the IF pin output power level. N/A means not applicable. LO Harmonics, and all values in dbc below input LO level and measured at RF port. N/A means not applicable. Table. LO Harmonics at RF N LO Spur at RF Port (dbc) LO Frequency (GHz) Downconverter M N Spurious Outputs Spur values are (M RF) (N LO). RF = 3. GHz at 1 dbm, LO = 3.6 GHz at 13 dbm. Data Sheet N LO N/A M RF Upconverter M N Spurious Outputs Spur values are (M IFIN) + (N LO). IFIN = 1 MHz at 1 dbm, LO = 3.6 GHz at 13 dbm. M IF N LO N/A Rev. Page 18 of 21

19 THEORY OF OPERATION The is an ultraminiature, double balanced mixer that can be used as an upconverter or a downconverter from 1. GHz to 4. GHz. When used as a downconverter, the downconverts RF values between 1. GHz and 4. GHz to IF values between dc and 1. GHz. When used as an upconverter, the mixer upconverts IF values between dc and 1. GHz to RF between 1. GHz and 4. GHz Rev. Page 19 of 21

20 APPLICATIONS INFORMATION TYPICAL APPLICATION CIRCUIT Figure 64 shows the typical application circuit for the. The is a passive device and does not require any external components. The LO and RF pins are internally ac-coupled. The IF pin is internally dc-coupled. When IF operation to dc is not required, use of an external series capacitor of a value chosen to pass the necessary IF frequency range is recommended. When IF operation to dc is required, do not exceed the IF source and sink current rating specified in the Absolute Maximum Ratings section. LO HMC213B GND GND Figure 64. Typical Application Circuit RF IF Data Sheet EVALUATION PCB INFORMATION Use RF circuit design techniques for the PCB. Ensure that signal lines have Ω impedance. Connect the package ground leads directly to the ground plane (see Figure 6). Use a sufficient number of via holes to connect the top and bottom ground planes. The evaluation circuit board shown in Figure 6 is available from Analog Devices, Inc., upon request. Table 6. Bill of Materials Item Description J1, J2, J3 PCB mount SMA RF connectors U1 PCB evaluation board on Rogers is the raw bare PCB identifier. Reference EV1HMC213BMS8 when ordering the complete evaluation PCB. Figure 6. Evaluation PCB Top Layer Rev. Page 2 of 21

21 OUTLINE DIMENSIONS PIN 1 IDENTIFIER COPLANARITY.1.6 BSC MAX 6 MAX.23.9 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters ORDERING GUIDE Model 1 Temperature Range Moisture Sensitivity Level (MSL) Rating Package Description Package Option 4 C to +8 C MSL1 8-Lead Mini Small Outline Package [MSOP] RM-8 TR 4 C to +8 C MSL1 8-Lead Mini Small Outline Package [MSOP] RM-8 EV1HMC213BMS8 Evaluation PCB 1 The and TR are RoHS compliant parts. 1 The peak reflow temperature is 26 C. See Table 2 in the Absolute Maximum Ratings section B 218 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D /18() Rev. Page 21 of 21

10 GHz to 26 GHz, GaAs, MMIC, Double Balanced Mixer HMC260ALC3B

10 GHz to 26 GHz, GaAs, MMIC, Double Balanced Mixer HMC260ALC3B Data Sheet FEATURES Passive; no dc bias required Conversion loss 8 db typical for 1 GHz to 18 GHz 9 db typical for 18 GHz to 26 GHz LO to RF isolation: 4 db Input IP3: 19 dbm typical for 18 GHz to 26 GHz

More information

6 GHz to 26 GHz, GaAs MMIC Fundamental Mixer HMC773A

6 GHz to 26 GHz, GaAs MMIC Fundamental Mixer HMC773A FEATURES Conversion loss: 9 db typical Local oscillator (LO) to radio frequency (RF) isolation: 37 db typical LO to intermediate frequency (IF) isolation: 37 db typical RF to IF isolation: db typical Input

More information

GaAs, MMIC Fundamental Mixer, 2.5 GHz to 7.0 GHz HMC557A

GaAs, MMIC Fundamental Mixer, 2.5 GHz to 7.0 GHz HMC557A FEATURES Conversion loss: db LO to RF isolation: db LO to IF isolation: 3 db Input third-order intercept (IP3): 1 dbm Input second-order intercept (IP2): dbm LO port return loss: dbm RF port return loss:

More information

HMC412BMS8GE MIXER - SINGLE & DOUBLE BALANCED - SMT. Typical Applications. Features. Functional Diagram. General Description

HMC412BMS8GE MIXER - SINGLE & DOUBLE BALANCED - SMT. Typical Applications. Features. Functional Diagram. General Description HMCBMSGE v1.1 Typical Applications The HMCBMSGE is ideal for: Long Haul Radio Platforms Microwave Radio VSAT Functional Diagram Features Conversion Loss: db Noise Figure: db LO to RF Isolation: db LO to

More information

Features OBSOLETE. = +25 C, As a Function of LO Drive. LO = +10 dbm. IF = 70 MHz

Features OBSOLETE. = +25 C, As a Function of LO Drive. LO = +10 dbm. IF = 70 MHz v1.112 HMC27AS8 / 27AS8E BALANCED MIXER,.7-2. GHz Typical Applications The HMC27AS8 / HMC27AS8E is ideal for: Base Stations Cable Modems Portable Wireless Functional Diagram Features Conversion Loss: 9

More information

Features. Parameter Min. Typ. Max. Units

Features. Parameter Min. Typ. Max. Units HMCBLPE v.. -. GHz Typical Applications The HMCBLPE is ideal for: Point-to-Point and Point-to-Multi-Point Radios Military Radar, EW & ELINT Satellite Communications Features Conversion Gain: db Image Rejection:

More information

= +25 C, IF= 100 MHz, LO = +15 dbm*

= +25 C, IF= 100 MHz, LO = +15 dbm* v4.514 HMC62LC4 Typical Applications The HMC62LC4 is ideal for: Point-to-Point Point-to-Multi-Point Radio WiMAX & Fixed Wireless VSAT Functional Diagram Features General Description Electrical Specifications,

More information

Features OBSOLETE. = +25 C, As a Function of LO Drive. LO = +13 dbm IF = 70 MHz

Features OBSOLETE. = +25 C, As a Function of LO Drive. LO = +13 dbm IF = 70 MHz Typical Applications Functional Diagram The HMC28AMS8 / HMC28AMS8E is ideal for: Base Stations PCMCIA Transceivers Cable Modems Portable Wireless Features Ultra Small Package: MSOP8 Conversion Loss: db

More information

Features. Parameter Min. Typ. Max. Units

Features. Parameter Min. Typ. Max. Units Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radios Military Radar, EW & ELINT Satellite Communications Features Conversion Gain: db Image Rejection: dbc Input Third-Order

More information

Features. Parameter Min. Typ. Max. Min. Typ. Max. Units

Features. Parameter Min. Typ. Max. Min. Typ. Max. Units v. DOWNCONVERTER, - GHz Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radios Military Radar, EW & ELINT Satellite Communications Maritime & Mobile Radios Features Conversion

More information

Features. = +25 C, IF = 0.5 GHz, LO = +15 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units

Features. = +25 C, IF = 0.5 GHz, LO = +15 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units v1.514 Typical Applications The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use Functional Diagram Features Passive: No DC Bias Required

More information

Features OBSOLETE. = +25 C, IF = 1.45 GHz, LO = +13 dbm [1]

Features OBSOLETE. = +25 C, IF = 1.45 GHz, LO = +13 dbm [1] v2.614 Typical Applications The HMC412AMS8G / HMC412AMS8GE is ideal for: Long Haul Radio Platforms Microwave Radio VSAT Functional Diagram Features General Description Parameter Min. Typ. Max. Units Frequency

More information

HMC219AMS8 / 219AMS8E. Features OBSOLETE. = +25 C, As a Function of LO Drive. LO = +13 dbm IF = 100 MHz

HMC219AMS8 / 219AMS8E. Features OBSOLETE. = +25 C, As a Function of LO Drive. LO = +13 dbm IF = 100 MHz Typical Applications The HMC219AMS8 / HMC219AMS8E is ideal for: UNII & HiperLAN ISM Microwave Radios Functional Diagram Features Ultra Small Package: MSOP8 Conversion Loss: 8.5 db LO / RF Isolation: 25

More information

Features. = +25 C, Vdd = +7V, Idd = 820 ma [1]

Features. = +25 C, Vdd = +7V, Idd = 820 ma [1] Typical Applications The is ideal for use as a power amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment & Sensors Military End-Use Space Functional Diagram Features Saturated

More information

= +25 C, IF= 100 MHz, LO = +17 dbm*

= +25 C, IF= 100 MHz, LO = +17 dbm* v3.514 Typical Applications Features The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use Functional Diagram Wide IF Bandwidth: DC - 3.5

More information

Features OBSOLETE. = +25 C, As a Function of LO Drive. LO = +13 dbm IF = 100 MHz

Features OBSOLETE. = +25 C, As a Function of LO Drive. LO = +13 dbm IF = 100 MHz v.211 HMC22AMS8 / 22AMS8E Typical Applications Features The HMC22AMS8 / HMC22AMS8E is ideal for: Microwave Radios VSAT Functional Diagram Ultra Small Package: MSOP8 Conversion Loss: 8.5 db Wideband IF:

More information

Features. = +25 C, Vs = 5V, Vpd = 5V

Features. = +25 C, Vs = 5V, Vpd = 5V v1.117 HMC326MS8G / 326MS8GE AMPLIFIER, 3. - 4. GHz Typical Applications The HMC326MS8G / HMC326MS8GE is ideal for: Microwave Radios Broadband Radio Systems Wireless Local Loop Driver Amplifier Functional

More information

Features. = +25 C, As a Function of LO Drive

Features. = +25 C, As a Function of LO Drive Typical Applications v.411 The is ideal for: Basestations, Repeaters & Access Points WiMAX, WiBro & Fixed Wireless Portables & Subscribers PLMR, Public Safety & Telematics Functional Diagram Features Passive

More information

= +25 C, IF= 100 MHz, LO = +15 dbm*

= +25 C, IF= 100 MHz, LO = +15 dbm* v3.514 Typical Applications Features The is ideal for: Point-to-Point and Point-to-Multi-Point Radio Digital Radio VSAT Functional Diagram Wide IF Bandwidth: DC - 3.5 GHz Image Rejection: 35 db LO to RF

More information

= +25 C, IF= 100 MHz, LO = +15 dbm*

= +25 C, IF= 100 MHz, LO = +15 dbm* v3.514 HMC52LC4 6-1 GHz Typical Applications Features The HMC52LC4 is ideal for: Point-to-Point and Point-to-Multi-Point Radio Digital Radio VSAT Functional Diagram Wide IF Bandwidth: DC - 3.5 GHz Image

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v.511 Typical Applications Features

More information

Features OBSOLETE. LO = +19 dbm, IF = 100 MHz Parameter

Features OBSOLETE. LO = +19 dbm, IF = 100 MHz Parameter Typical Applications The HMC351S8 / HMC351S8E is ideal for: Cellular Basestations Cable Modems Fixed Wireless Access Systems Functional Diagram Electrical Specifications, T A = +25 C Features Conversion

More information

Parameter Min. Typ. Max. Min. Typ. Max. Units

Parameter Min. Typ. Max. Min. Typ. Max. Units v1.214 HMC163LP3E Typical Applications The HMC163LP3E is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Sensors Functional Diagram Features

More information

OBSOLETE HMC215LP4 / 215LP4E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram

OBSOLETE HMC215LP4 / 215LP4E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram v1.111 LO AMPLIFIER, 1.7-4. GHz Typical Applications The HMC215LP4 / HMC215LP4E is ideal for Wireless Infrastructure Applications: PCS / 3G Infrastructure Base Stations & Repeaters WiMAX & WiBro ISM &

More information

OBSOLETE HMC422MS8 / 422MS8E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram

OBSOLETE HMC422MS8 / 422MS8E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram v4.712 Typical Applications The HMC422MS8 / HMC422MS8E is ideal for: MMDS & ISM Wireless Local Loop WirelessLAN Cellular Infrastructure Functional Diagram Electrical Specifications, T A = +2 C Features

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v2.514 MIXER, 2.5-7. GHz Typical

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com HMC148* Product Page Quick Links Last Content Update: 11/1/216 Comparable

More information

OBSOLETE HMC423MS8 / 423MS8E MIXERS - DBL-BAL - SMT. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications.

OBSOLETE HMC423MS8 / 423MS8E MIXERS - DBL-BAL - SMT. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Typical Applications The HMC423MS8 / HMC423MS8E is ideal for: Base Stations Portable Wireless CATV/DBS ISM Functional Diagram Electrical Specifications, T A = +25 C Features Integrated LO Amplifi er w/

More information

CMD255C GHz High IP3 Fundamental Mixer. Features. Functional Block Diagram. Description

CMD255C GHz High IP3 Fundamental Mixer. Features. Functional Block Diagram. Description Features Functional Block Diagram Low conversion loss High IP3 High isolation Wide IF bandwidth Pb-free RoHs compliant 3x3 mm SMT package Description The CMD255C3 is a general purpose double balanced mixer

More information

Features. = +25 C, IF= 100 MHz, LO= +15 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units

Features. = +25 C, IF= 100 MHz, LO= +15 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units v3.514 MIXER, 5.5-14. GHz Typical Applications The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment & Sensors Military End-Use Functional Diagram Features Passive Double Balanced

More information

CMD178C GHz Fundamental Mixer. Features. Functional Block Diagram. Description

CMD178C GHz Fundamental Mixer. Features. Functional Block Diagram. Description Features Functional Block Diagram Low conversion loss High isolation Wide IF bandwidth Passive double balanced topology Pb-free RoHs compliant 3x3 mm SMT package Description The CMD178C3 is a general purpose

More information

CMD179C GHz Fundamental Mixer. Features. Functional Block Diagram. Description

CMD179C GHz Fundamental Mixer. Features. Functional Block Diagram. Description Features Functional Block Diagram Low conversion loss High isolation Wide IF bandwidth Passive double balanced topology Pb-free RoHs compliant 3x3 mm SMT package Description The CMD179C3 is a general purpose

More information

CMD180C GHz Fundamental Mixer. Features. Functional Block Diagram. Description

CMD180C GHz Fundamental Mixer. Features. Functional Block Diagram. Description CMD18C3 2-32 GHz Fundamental Mixer Features Functional Block Diagram Low conversion loss High isolation Wide IF bandwidth Passive double balanced topology Pb-free RoHs compliant 3x3 mm SMT package Description

More information

Features. = +25 C, As a Function of LO Drive & Vdd. IF = 1 GHz LO = -4 dbm & Vdd = +4V

Features. = +25 C, As a Function of LO Drive & Vdd. IF = 1 GHz LO = -4 dbm & Vdd = +4V v4.414 Typical Applications Features The is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use Functional Diagram Integrated LO Amplifier: -4

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v3.514 MIXER, 5.5-14. GHz Typical

More information

CMD257C GHz High IP3 I/Q Mixer. Features. Functional Block Diagram. Description

CMD257C GHz High IP3 I/Q Mixer. Features. Functional Block Diagram. Description Features Functional Block Diagram Low conversion loss High IP3 Image rejection: 3 db Wide IF bandwidth Pb-free RoHs compliant 4x4 mm SMT package Description The is a high IP3 I/Q mixer in a leadless surface

More information

Features. = +25 C, As a Function of LO Drive. LO = +10 dbm IF = 100 MHz

Features. = +25 C, As a Function of LO Drive. LO = +10 dbm IF = 100 MHz v4.6 HMC218MS8 / 218MS8E Typical Applications The HMC218MS8 / HMC218MS8E is ideal for: Basestations, Repeaters & Access Points WiMAX, WiBro & Fixed Wireless Portables & Subscribers PLMR, Public Safety

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v4.414 Typical Applications Features

More information

HMC485MS8G / 485MS8GE. Features OBSOLETE. = +25 C, LO = 0 dbm, IF = 200 MHz*, Vdd= 5V

HMC485MS8G / 485MS8GE. Features OBSOLETE. = +25 C, LO = 0 dbm, IF = 200 MHz*, Vdd= 5V Typical Applications High Dynamic Range Infrastructure: GSM, GPRS & EDGE CDMA & W-CDMA Cable Modem Termination Systems Functional Diagram Features +34 dbm Input IP3 Conversion Loss: db Low LO Drive: -2

More information

HMC412MS8G / 412MS8GE

HMC412MS8G / 412MS8GE v.91 HMC4MS8G / 4MS8GE MIXER, 9. - 15. GHz Typical Applications The HMC4MS8G / HMC4MS8GE is ideal for: Long Haul Radio Platforms Microwave Radio VSAT Features Conversion Loss: 8. db Noise Figure: 8. db

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK Typical Applications The is ideal

More information

Features. = +25 C, IF= 100 MHz, LO = +17 dbm*

Features. = +25 C, IF= 100 MHz, LO = +17 dbm* v2.31 HMC-C44 1-23 GHz Typical Applications The HMC-C44 is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios & VSAT Test Equipment & Sensors Military End-Use Functional Diagram Features Wide

More information

CMD183C GHz I/Q Mixer. Features. Functional Block Diagram. Description

CMD183C GHz I/Q Mixer. Features. Functional Block Diagram. Description Features Functional Block Diagram Low conversion loss High isolation Image rejection: 26 db Wide IF bandwidth Pb-free RoHs compliant 4x4 mm SMT package Description The CMD183C4 is a compact I/Q mixer in

More information

OBSOLETE HMC908LC5 MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT. GaAs MMIC I/Q DOWNCONVERTER 9-12 GHz. Typical Applications. Functional Diagram

OBSOLETE HMC908LC5 MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT. GaAs MMIC I/Q DOWNCONVERTER 9-12 GHz. Typical Applications. Functional Diagram v3.1 HMC98LC Typical Applications The HMC98LC is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Maritime & Mobile Radio Functional Diagram

More information

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V *

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V * Typical Applications The is Ideal for: Cellular/3G & LTE/WiMAX/4G Basestations & Repeaters GSM, CDMA & OFDM Transmitters and Receivers Features High Input IP3: +38 dbm 8 db Conversion Loss @ 0 dbm LO Optimized

More information

Features. = +25 C, IF = 100 MHz, LO = 0 dbm, Vcc1, 2, 3, = +5V, G_Bias = +3.5V*

Features. = +25 C, IF = 100 MHz, LO = 0 dbm, Vcc1, 2, 3, = +5V, G_Bias = +3.5V* v3.1 LO AMPLIFIER, 7 - MHz Typical Applications The HMC684LP4(E) is Ideal for: Cellular/3G & LTE/WiMAX/4G Basestations & Repeaters GSM, CDMA & OFDM Transmitters and Receivers Features High Input IP3: +32

More information

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V *

Features. = +25 C, LO = 0 dbm, Vcc = Vcc1, 2, 3 = +5V, G_Bias = +2.5V * Typical Applications The is Ideal for: Cellular/3G & LTE/WiMAX/4G Basestations & Repeaters GSM, CDMA & OFDM Transmitters and Receivers Features High Input IP3: +38 dbm 8 db Conversion Loss @ 0 dbm LO Optimized

More information

Parameter Min. Typ. Max. Min. Typ. Max. Units

Parameter Min. Typ. Max. Min. Typ. Max. Units Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Functional Diagram Features db Conversion Gain Image Rejection:

More information

HMC581LP6 / 581LP6E MIXERS - SMT. HIGH IP3 RFIC DUAL DOWNCONVERTER, MHz. Typical Applications. Features. Functional Diagram

HMC581LP6 / 581LP6E MIXERS - SMT. HIGH IP3 RFIC DUAL DOWNCONVERTER, MHz. Typical Applications. Features. Functional Diagram Typical Applications The HMC1LP6 / HMC1LP6E is ideal for Wireless Infrastructure Applications: GSM, GPRS & EDGE CDMA & W-CDMA Cellular / 3G Infrastructure Functional Diagram Features +26 dbm Input IP3

More information

Features. = +25 C, IF= 100 MHz, LO= +13 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units

Features. = +25 C, IF= 100 MHz, LO= +13 dbm* Parameter Min. Typ. Max. Min. Typ. Max. Units Features Passive Double Balanced Topology High LO/RF Isolation: 48 db Low Conversion Loss: 7 db Wide IF Bandwidth: DC - GHz Robust 1,000V esd, Class 1C Typical Applications The is ideal for: Point-to-Point

More information

HMC187AMS8 / 187AMS8E. Features OBSOLETE. = +25 C, As a Function of Drive Level

HMC187AMS8 / 187AMS8E. Features OBSOLETE. = +25 C, As a Function of Drive Level v.41 DOUBLER,.8-2. GHz INPUT Typical Applications Features The HMC187AMS8(E) is ideal for: Wireless Local Loop LMDS, VSAT, and Point-to-Point Radios UNII & HiperLAN Test Equipment Functional Diagram *

More information

50~100MHz. 100~210MHz C2 1nF. Operating Case Temperature -40 to +85 Storage Temperature -55 to +155 Junction Temperature +126 Operating Voltage

50~100MHz. 100~210MHz C2 1nF. Operating Case Temperature -40 to +85 Storage Temperature -55 to +155 Junction Temperature +126 Operating Voltage 0.7~1.4GHz High IIP3 GaAs MMIC with Integrated LO AMP Device Features +31.7 dbm Input IP3 8.8dB Conversion Loss Integrated LO Driver -2 to +2dBm LO drive level Available 3.3V to 5V single voltage MSL 1,

More information

The Hmc869LC5 is ideal for: Point-to-Point and Point-to-Multi-Point Radio. Parameter Min. Typ. Max. Units

The Hmc869LC5 is ideal for: Point-to-Point and Point-to-Multi-Point Radio. Parameter Min. Typ. Max. Units Typical Applications The Hmc86LC is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Functional Diagram Features Electrical Specifications, T

More information

Features. = +25 C, IF = 1 GHz, LO = +13 dbm*

Features. = +25 C, IF = 1 GHz, LO = +13 dbm* v.5 HMC56LM3 SMT MIXER, 24-4 GHz Typical Applications Features The HMC56LM3 is ideal for: Test Equipment & Sensors Point-to-Point Radios Point-to-Multi-Point Radios Military & Space Functional Diagram

More information

Features. = +25 C, 50 Ohm System

Features. = +25 C, 50 Ohm System v1.111 47 Analog Phase Shifter, Typical Applications The is ideal for: EW Receivers Military Radar Test Equipment Satellite Communications Beam Forming Modules Features Wide Bandwidth: 47 Phase Shift Low

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v1.55 Typical Applications The is

More information

* Notices. Operating Case Temperature -40 to +85 Storage Temperature -55 to +155 Junction Temperature +126 Operating Voltage.

* Notices. Operating Case Temperature -40 to +85 Storage Temperature -55 to +155 Junction Temperature +126 Operating Voltage. 1.7~2.7GHz High IIP3 GaAs MMIC with Integrated LO AMP Device Features +33.9 dbm Input IP3 8.3dB Conversion Loss Integrated LO Driver -2 to +4dBm LO drive level Available 3.3V to 5V single voltage MSL 1,

More information

CMD GHz Fundamental Mixer

CMD GHz Fundamental Mixer Features Low conversion loss High isolation Wide IF bandwidth Passive double balanced topology Small die size Functional Block Diagram LO RF 1 2 Description The CMD177 is a general purpose double balanced

More information

Features. = +25 C, IF= 1 GHz, LO= +13 dbm* Parameter Min. Typ. Max. Units

Features. = +25 C, IF= 1 GHz, LO= +13 dbm* Parameter Min. Typ. Max. Units Features Passive: No DC Bias Required Input IP3: +2 dbm LO/RF Isolation: 3 db Wide IF Bandwidth: DC - 8 GHz Typical Applications The is ideal for: Telecom Infrastructure Military Radio, Radar & ECM Space

More information

FMMX9002 DATA SHEET. Field Replaceable SMA IQ Mixer From 8.5 GHz to 13.5 GHz With an IF Range From DC to 2 GHz And LO Power of +19 dbm.

FMMX9002 DATA SHEET. Field Replaceable SMA IQ Mixer From 8.5 GHz to 13.5 GHz With an IF Range From DC to 2 GHz And LO Power of +19 dbm. FMMX92 Field Replaceable SMA IQ Mixer From 8.5 GHz to 13.5 GHz With an IF Range From DC to 2 GHz And LO Power of +19 dbm FMMX92 is an I/Q double balanced millimeter-wave mixer module that operates across

More information

MH1A. Product Features. Product Description. Functional Diagram. Applications. Specifications (1) Absolute Maximum Rating. Ordering Information

MH1A. Product Features. Product Description. Functional Diagram. Applications. Specifications (1) Absolute Maximum Rating. Ordering Information Product Features +3 dbm IIP3 RF: 1 2 MHz LO: 1 1 MHz IF: 2 MHz +1 dbm Drive Level Lead-free/green/RoHS-compliant SOIC- SMT package No External Bias Required Applications 2.G and 3G GSM/CDMA/wCDMA Optimized

More information

Features. = +25 C, IF= 1 GHz, LO= +13 dbm* Parameter Min. Typ. Max. Units

Features. = +25 C, IF= 1 GHz, LO= +13 dbm* Parameter Min. Typ. Max. Units Typical Applications The is ideal for: Telecom Infrastructure Military Radio, Radar & ECM Space Systems Test Instrumentation Functional Diagram Features Wide IF Bandwidth: DC - 13 GHz Passive: No DC Bias

More information

Features. = +25 C, 50 Ohm System

Features. = +25 C, 50 Ohm System v.211 18 Analog Phase Shifter, 2-2 GHz Typical Applications The is ideal for: EW Receivers Military Radar Test Equipment Satellite Communications Beam Forming Modules Features Wide Bandwidth: 2-2 GHz 18

More information

FMMX9004 DATA SHEET. Field Replaceable SMA IQ Mixer From 15 GHz to 23 GHz With an IF Range From DC to 3.5 GHz And LO Power of +17 dbm.

FMMX9004 DATA SHEET. Field Replaceable SMA IQ Mixer From 15 GHz to 23 GHz With an IF Range From DC to 3.5 GHz And LO Power of +17 dbm. FMMX94 Field Replaceable SMA IQ Mixer From 15 GHz to 23 GHz With an IF Range From DC to 3.5 GHz And LO Power of +17 dbm FMMX94 is an I/Q double balanced millimeter-wave mixer module that operates across

More information

CMD197C GHz Distributed Driver Amplifier

CMD197C GHz Distributed Driver Amplifier Features Functional Block Diagram Wide bandwidth High linearity Single positive supply voltage On chip bias choke Pb-free RoHs compliant 4x4 mm SMT package Description The CMD197C4 is a wideband GaAs MMIC

More information

Power Amplifier 0.5 W 2.4 GHz AM TR Features. Functional Schematic. Description. Pin Configuration 1. Ordering Information

Power Amplifier 0.5 W 2.4 GHz AM TR Features. Functional Schematic. Description. Pin Configuration 1. Ordering Information Features Ideal for 802.11b ISM Applications Single Positive Supply Output Power 27.5 dbm 57% Typical Power Added Efficiency Downset MSOP-8 Package Description M/A-COM s is a 0.5 W, GaAs MMIC, power amplifier

More information

Parameter Min Typ Max Units Frequency Range, RF

Parameter Min Typ Max Units Frequency Range, RF Features Low conversion loss High isolation Ultra wide IF bandwidth Passive double balanced topology Small die size Description The is a general purpose double balanced mixer die with ultra wide IF bandwidth

More information

GaAs MMIC High Dynamic Range Mixer

GaAs MMIC High Dynamic Range Mixer Page 1 The is a triple balanced passive diode mixer offering high dynamic range, low conversion loss, and excellent repeatability. As with all T3 mixers, this mixer offers unparalleled nonlinear performance

More information

HMC576LC3B MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications

HMC576LC3B MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications v2.514 Typical Applications The is suitable for: Clock Generation Applications: SONET OC-192 & SDH STM-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Functional Diagram Features

More information

HMC613LC4B POWER DETECTORS - SMT. SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), GHz

HMC613LC4B POWER DETECTORS - SMT. SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), GHz v.54 HMC6LC4B AMPLIFIER (SDLVA),. - GHz Typical Applications The HMC6LC4B is ideal for: EW, ELINT & IFM Receivers DF Radar Systems ECM Systems Broadband Test & Measurement Power Measurement & Control Circuits

More information

Features. = +25 C, Vdd = +4.5V, +4 dbm Drive Level

Features. = +25 C, Vdd = +4.5V, +4 dbm Drive Level Typical Applications The is ideal for: Clock Generation Applications: SONET OC-192 & SDH stm-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Sensors Features High Output Power: +21

More information

Features. = +25 C, IF = 1GHz, LO = +13 dbm*

Features. = +25 C, IF = 1GHz, LO = +13 dbm* v2.312 HMC6 MIXER, 24-4 GHz Typical Applications Features The HMC6 is ideal for: Test Equipment & Sensors Microwave Point-to-Point Radios Point-to-Multi-Point Radios Military & Space Functional Diagram

More information

TGA2218-SM GHz 12 W GaN Power Amplifier

TGA2218-SM GHz 12 W GaN Power Amplifier Applications Satellite Communications Data Link Radar Product Features Functional Block Diagram Frequency Range: 13.4 16.5 GHz PSAT: > 41 dbm (PIN = 18 dbm) PAE: > 29% (PIN = 18 dbm) Large Signal Gain:

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v2.17 HMC55 MIXER, 11-2 GHz Typical

More information

Parameter Min. Typ. Max. Min. Typ. Max. Units

Parameter Min. Typ. Max. Min. Typ. Max. Units v2.89 Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Functional Diagram Features Conversion Gain: 8 db Image Rejection:

More information

HMC814LC3B FREQ. MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications

HMC814LC3B FREQ. MULTIPLIERS - ACTIVE - SMT. SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications Typical Applications The is ideal for: Clock Generation Applications: SONET OC-192 & SDH STM-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Sensors Functional Diagram Features High

More information

Features OBSOLETE. = +25 C, As an IRM. IF = MHz. Frequency Range, RF GHz. Frequency Range, LO

Features OBSOLETE. = +25 C, As an IRM. IF = MHz. Frequency Range, RF GHz. Frequency Range, LO v.17 Typical Applications The is ideal for: Microwave Radio & VSAT Test Instrumentation Military Radios Radar & ECM Space Functional Diagram Electrical Specifications, T A = +25 C, As an IRM Parameter

More information

FMMX9000 DATA SHEET. Field Replaceable SMA IQ Mixer From 4 GHz to 8.5 GHz With an IF Range From DC to 3.5 GHz And LO Power of +15 dbm.

FMMX9000 DATA SHEET. Field Replaceable SMA IQ Mixer From 4 GHz to 8.5 GHz With an IF Range From DC to 3.5 GHz And LO Power of +15 dbm. FMMX9 Field Replaceable SMA IQ Mixer From 4 GHz to 8.5 GHz With an IF Range From DC to 3.5 GHz And LO Power of +15 dbm FMMX9 is an I/Q double balanced millimeter-wave mixer module that operates across

More information

DATASHEET ISL Features. Applications. Ordering Information. Typical Application Circuit. MMIC Silicon Bipolar Broadband Amplifier

DATASHEET ISL Features. Applications. Ordering Information. Typical Application Circuit. MMIC Silicon Bipolar Broadband Amplifier DATASHEET ISL008 NOT RECOMMENDED FOR NEW DESIGNS RECOMMENDED REPLACEMENT PART ISL01 Data Sheet MMIC Silicon Bipolar Broadband Amplifier FN21 Rev 0.00 The ISL00, ISL007, ISL008 and ISL009, ISL0, ISL011

More information

HMC958LC5 HIGH SPEED LOGIC - SMT. Typical Applications. Features. Functional Diagram. General Description

HMC958LC5 HIGH SPEED LOGIC - SMT. Typical Applications. Features. Functional Diagram. General Description Typical Applications Features The HMC958LC5 is ideal for: SONET OC-192 and 1 GbE 16G Fiber Channel 4:1 Multiplexer Built-In Test Broadband Test & Measurement Functional Diagram Supports High Data Rates:

More information

Parameter LO RF IF Min Typ Max Diode Option (GHz) (GHz) (GHz) LO drive level (dbm)

Parameter LO RF IF Min Typ Max Diode Option (GHz) (GHz) (GHz) LO drive level (dbm) Page MMIQHSM The MMIQHSM is a miniaturized, surface-mount multi-octave.7. GHz IQ mixer. It features matched double balanced mixers connected with an integrated LO hybrid and power divider. It can be used

More information

Parameter LO RF IF Min Typ Max Diode Option (GHz) (GHz) (GHz) LO drive level (dbm)

Parameter LO RF IF Min Typ Max Diode Option (GHz) (GHz) (GHz) LO drive level (dbm) MM-726HSM The MM-726HSM is a passive GaAs double balanced MMIC mixer suitable for both up and down-conversion applications. As with all Marki Microwave mixers, it features excellent conversion loss, isolation

More information

GaAs MMIC Double Balanced Mixer

GaAs MMIC Double Balanced Mixer Page 1 The is a highly linear passive GaAs double balanced MMIC mixer suitable for both up and down-conversion applications. As with all Marki Microwave mixers, it features excellent conversion loss, isolation

More information

GaAs MMIC Double Balanced Mixer

GaAs MMIC Double Balanced Mixer Page 1 The is a passive GaAs double balanced MMIC mixer suitable for both up and down-conversion applications. As with all Marki Microwave mixers, it features excellent conversion loss, isolation and spurious

More information

Monolithic Amplifier GVA-60+ Flat Gain, High IP to 5 GHz. The Big Deal

Monolithic Amplifier GVA-60+ Flat Gain, High IP to 5 GHz. The Big Deal Flat Gain, High IP3 Monolithic Amplifier 50Ω 0.01 to 5 GHz The Big Deal Excellent Gain Flatness and Return Loss over 50-1000 MHz High IP3 vs. DC Power consumption Broadband High Dynamic Range without external

More information

GaAs MMIC High Dynamic Range Mixer

GaAs MMIC High Dynamic Range Mixer Page 1 MT3-113HCQG The MT3-113HCQG is a triple balanced passive diode GaAs MMIC mixer offering high dynamic range, low conversion loss, and excellent repeatability. As with all T3 mixers, this mixer offers

More information

GaAs MMIC Double Balanced Mixer

GaAs MMIC Double Balanced Mixer Page 1 The is a passive double balanced MMIC mixer. It features excellent conversion loss, superior isolations and spurious performance across a broad bandwidth, in a highly miniaturized form factor. Low

More information

GaAs DOUBLE-BALANCED MIXER

GaAs DOUBLE-BALANCED MIXER MM1-185H The MM1-185H is a passive double balanced MMIC mixer. It features excellent conversion loss, superior isolations and spurious performance across a broad bandwidth, in a highly miniaturized form

More information

Parameter Min. Typ. Max. Min. Typ. Max. Units

Parameter Min. Typ. Max. Min. Typ. Max. Units Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Functional Diagram Features Conversion Gain: 11 db Image Rejection:

More information

CMD176P GHz 4-Bit Digital Phase Shifter. Features. Functional Block Diagram. Description

CMD176P GHz 4-Bit Digital Phase Shifter. Features. Functional Block Diagram. Description Features Functional Block Diagram Low phase error Low insertion loss 36 phase shift, LSB = 22.5 Single bit positive logic Pb-free RoHs compliant 4x4 QFN package Description The CMD176P4 is a GaAs MMIC

More information

GaAs DOUBLE-BALANCED MIXER

GaAs DOUBLE-BALANCED MIXER MM167LS The MM167LS is a passive GaAs double balanced MMIC mixer suitable for both up and down-conversion applications. As with all Marki Microwave mixers, it features excellent conversion loss, isolation

More information

GaAs DOUBLE-BALANCED MIXER

GaAs DOUBLE-BALANCED MIXER MM1-124S The MM1-124S is a passive double balanced MMIC mixer. It features excellent conversion loss, superior isolations and spurious performance across a broad bandwidth, in a highly miniaturized form

More information

TGL2209 SM 8 12 GHz 50 Watt VPIN Limiter

TGL2209 SM 8 12 GHz 50 Watt VPIN Limiter Product Overview The Qorvo is a high power, X-band GaAs VPIN limiter capable of protecting sensitive receive channel components against high power incident signals. The does not require DC bias, and achieves

More information

MAMX Sub-Harmonic Pumped Mixer GHz Rev. V1. Functional Schematic. Features. Description. Pin Configuration 1

MAMX Sub-Harmonic Pumped Mixer GHz Rev. V1. Functional Schematic. Features. Description. Pin Configuration 1 MAMX-119 Features Up or Down Frequency Mixer Low Conversion Loss: 11 db 2xLO & 3xLO Rejection: db RF Frequency: 14 - LO Frequency: 4-2 GHz IF Frequency: DC - 7 GHz Lead-Free 1.x1.2 mm 6-lead TDFN Package

More information

GaAs DOUBLE-BALANCED MIXER

GaAs DOUBLE-BALANCED MIXER MM1-3H The MM1-3H is a passive double balanced MMIC mixer. It features excellent conversion loss, superior isolations and spurious performance across a broad bandwidth, in a highly miniaturized form factor.

More information

DATASHEET ISL Features. Ordering Information. Applications. Typical Application Circuit. MMIC Silicon Bipolar Broadband Amplifier

DATASHEET ISL Features. Ordering Information. Applications. Typical Application Circuit. MMIC Silicon Bipolar Broadband Amplifier DATASHEET ISL551 MMIC Silicon Bipolar Broadband Amplifier NOT RECOMMENDED FOR NEW DESIGNS RECOMMENDED REPLACEMENT PART ISL551 FN28 Rev. The ISL551 is a high performance gain block featuring a Darlington

More information

TGL2210-SM_EVB GHz 100 Watt VPIN Limiter. Product Overview. Key Features. Applications. Functional Block Diagram. Ordering Information

TGL2210-SM_EVB GHz 100 Watt VPIN Limiter. Product Overview. Key Features. Applications. Functional Block Diagram. Ordering Information .5 6 GHz Watt VPIN Limiter Product Overview The Qorvo is a high-power receive protection circuit (limiter) operating from.5-6ghz. Capable of withstanding up to W incident power levels, the allows < dbm

More information

GaAs MMIC Double Balanced Mixer

GaAs MMIC Double Balanced Mixer Page 1 The is a passive double balanced MMIC mixer. It features excellent conversion loss, superior isolations and spurious performance across a broad bandwidth, in a highly miniaturized form factor. Low

More information

QPL GHz GaN LNA

QPL GHz GaN LNA General Description The is a wideband cascode low noise amplifier fabricated on Qorvo s 0.25um GaN on SiC production process. This cascode LNA is robust to 5W of input power with 17dB typical gain and

More information

GaAs MMIC Triple Balanced Mixer

GaAs MMIC Triple Balanced Mixer Page 1 The is a passive MMIC triple balanced mixer. It features a broadband IF port that spans from 2 to 20 GHz, and has excellent spurious suppression. GaAs MMIC technology improves upon the previous

More information