Calibration of photomultiplier tubes for the large-angle beamstrahlung detector at CESR

Size: px
Start display at page:

Download "Calibration of photomultiplier tubes for the large-angle beamstrahlung detector at CESR"

Transcription

1 WSU-REU2002/West Calibration of photomultiplier tubes for the large-angle beamstrahlung detector at CESR M. West Wayne State University, Detroit, MI ABSTRACT This project is to prepare for the upcoming installation of a large-angle beamstrahlung detector at the Cornell Electron Storage Ring (CESR). The goal is to thoroughly characterize a set of sixteen photomultiplier tubes (PMTs) that will be used in the final detector. The detector will provide a wealth of information about various parameters of beam collisions. I. INTRODUCTION Beamstrahlung is the electromagentic radiation produced when electron and positron beams are bent at the interaction point. [1] This radiation can be detected directly using photomultiplier tubes without the need for scintillators. By carefully observing this radiation, researchers are able to closely monitor the beam conditions and diagnose beam pathologies that lead to wasted luminosity due to incomplete overlap, as illustrated in Fig. 1. The characterization process involves looking at noise level and photoelectron count rate as a function of high voltage input, discriminator threshold, and temperature, as well as recording the Gaussian single-photon spectra for all sixteen tubes. Proper calibration of the PMTs will allow superior precision once the final detector is constructed. II. EQUIPMENT USED Apparatus involved in the calibration included sixteen Hamamatsu photomultiplier tubes, eight of model R6095 (visible range) and eight of model R (infrared range). These were mounted on a set of plates provided by the Wayne State machine shop, along with a set of Hamamatsu 14-pin voltage dividers. This array was placed inside a black-painted aluminum box nine inches tall by nine inches wide by 42 inches long to shield it from ambient light. Two light sources were provided at the end of the box opposite the phototubes: a 1-16 inch hole with a paper diffuser to admit ambient light, and a breadboard with red, yellow, and green LEDs mounted to provide an internal light source that can be powered by a pulse generator. A negative high voltage power source was needed to power the tubes, and a wide range of NIM electronics and two oscilloscopes were used to analyze the PMT output. We also prepared two sets of long signal cables: one 10 feet in length for use in the lab, and one 85 feet in length to interface with the CESR controls if time allowed. Finally, we made provisions to chill the tubes, since the infrared models are intended to be operated at up to -30 Celsius. An insulating box was quickly fashioned from polystyrene and chilled with liquid nitrogen. Temperatures inside the box were monitored with a Fluke digital temperature probe. The specific models of electronics modules used are listed in Table I, while Table II lists the phototubes according to the arbitrary numbering (1 through 8) that occurred during installation in our test apparatus. III. ELECTRONICS MODULE SCHEMES Several electronics schemes were attempted, with varying results. The first successful arrangement is illustrated in Fig. 5. It puts the analog PMT output signal through a discriminator to convert it to a logic signal and then sends it to a scalar which displays the count rate in counts per second, 0.1 second, or per 10 seconds. The ten second setting was typically used to minimize the effect of small time fluctuations. This scheme may be operated either with the pulsed LED as pictured or with a point light source created by admitting ambient light through a pinhole. (A pinhole proved difficult with our aluminum box, so a 1/16 inch hole was drilled and covered with layers of paper to provide a sufficiently low intensity so that the scalar would not count beyond its capacity.) Since the amount of light the phototube sees is in no way taken into account in this scheme, it is necessary to take two sets of data for each run, one with the light source, and on without, so that counts due to background radiation may be subtracted. A NIM-to-TTL converter, not pictured, was also employed because our scalar required a TTL input signal, and all discriminator thresholds were set at 50 millivolts. The second working scheme is illustrated in Fig. 6. It adds a strobed coincidence module, which serves to correlate PMT output with the pulse rate of the LED light source, and in so doing rejects most of the counts due to background, so that the awkward and time-consuming subtraction process need not be employed. (Some noise counts are still counted, but this number turns out to be a fraction of a percent of the total count rate under most circumstances.) The gate signal for the coincidence is provided by the crate pulse generator, which ensures that the gate is firing at the same rate as the LED, and also

2 2 allows the user to delay the gate signal to compensate for delay in the PMT output with respect to the original firing of the trigger signal. Since the crate generator s output is analog, and additional discriminator had to be placed between it and the gate input in the coincidence. IV. TESTING The very first step of the testing process was to use a single tube and divider, boxed and wrapped in aluminum foil, to observe a noise signal similar to that shown in Fig. 2. This verified two things: one, that at least one of our tubes was working as expected, and two, that the voltage divider scheme copied from the Hamamatsu catalog was appropriate to power the dynode scheme properly. A 50 Ω termination was required to observe the PMT signals on the oscilloscope. In subsequent trials we took advantage of the 2430A s internal 50 Ω termination. One important factor with the visible tubes turned out to be their extreme instability when waiting time between switching on or adjusting the high voltage and taking data. The first plateau attempts had revealed a very large standard deviation, ranging from 16 to 30 percent, for each set of 15 readings that were averaged to produce the data points. A number of trials revealed a one-percent stability level when using a wait time of about 75 minutes; a 90-minute wait time was used from then on in the visible trials at room temperature. TABLE II: Correlation between numerical labels and Hamamatsu serial numbers. Model PMT No. Serial No. R6095 Visible 1 CA2945 R6095 Visible 2 CA3560 R6095 Visible 3 RA3966 R6095 Visible 4 RB0286 R6095 Visible 5 RB0270 R6095 Visible 6 RB0268 R6095 Visible 7 RB0273 R6095 Visible 8 RB0278 R Infrared 1 GA3758 R Infrared 2 GA3756 R Infrared 3 GA3760 R Infrared 4 GA3727 R Infrared 5 GA3733 R Infrared 6 GA3753 R Infrared 7 GA3754 R Infrared 8 GA3724 Model R6095: Visible phototubes. Model R316-02: Infrared phototubes. V. ACKNOWLEDGEMENTS I wish to thank Professor Giovanni Bonvicini and postdoc Mikhail Dubrovin of Wayne State University for their extensive help and advice on this project. The staff of Wilson Laboratory for Nuclear Studies at Cornell were also of considerable assistance. TABLE I: Electronics modules used for PMT calibration. Manufacturer Model Function BNC BH-1 Tail pulse generator Global Specialties 4001 External pulse generator Hewlett-Packard 6516A DC power supply LeCroy/LRS 222 Dual Gate Generator LeCroy/LRS 334 Quad Amplifier LeCroy/LRS 370 Strobed coincidence LeCroy/LRS 621AL Quad discriminator LeCroy/LRS 621BL Quad Discriminator LeCroy/LRS 3001 qvt multichannel analyzer ORTEC 474 Timing Filter Amplifier ORTEC 935 Quad discriminator Tektronix 466 Analog storage oscilloscope Tektronix 2430A Digitial oscilloscope Tenellec TC 453 CF Discriminator Failed to work properly FIG. 1: Illustration of beam-beam pathologies, taken from Ref. [1]. The ellipses represent the electron and positron beams as viewed on end; incomplete overlap is said to waste luminosity since not all of the beam particles have the opportunity to collide and annihilate to produce interesting events. APPENDIX A I worked closely with WSU postdoc Mikhail Dubrovin and professor Giovanni Bonvicini for the extent of my project. When work started this summer the task at hand was clear, but we needed to acquire equipment to make it work. What we did have was a set of sixteen PMTs and caps from Hamamatsu and a set of drilled plates from the Wayne machine shop designed to hold

3 3 FIG. 2: A typical PMT noise signal. These were observed with the tubes powered to a nominal high voltage and with a 50 Ohm termination at the oscilloscope. FIG. 3: A single-photon multichannel analyzer peak for infrared PMT number 1. the tubes during testing. What we lacked was voltage dividers to properly power the tubes, a power supply, a dark box to shut out ambient light, a light source, and electronic equipment necessary to analyze the PMT output. 1. A lesson in elementary electronics Before attempting any tests, it was necessary to acquire voltage dividers so that the tubes diode structure could be held at the proper potential levels. Since a set of Hamamatsu dividers that were on order had yet to arrive, we elected to attempt the production of the necessary dividers ourselves, using the bare caps supplied with the tubes. This posed a challenge to me, since I had no previous experience with electronics, but after a few attempts (and purchasing a good text on introductory electronics) I was able to construct a divider that provided the needed potential differences across the various terminals. The very first trial, aimed at discovering whether we were able to observe the proper noise signal, was conducted with a single visible photomultiplier placed inside its original packaging and wrapped with aluminum foil to shield it from ambient light. A small Tektronix digital oscilloscope was used to observe a satisfactory noise signal from this first PMT (later labelled as number 1) using one of our homemade voltage dividers. This test that the tube was working, and also that the divider scheme taken from the Hamamatsu catalog was appropriate to power the tube in an acceptable manner. With this initial test completed, Dubrovin gave the goahead to produce the remaining fifteen dividers. Three more days were spent purchasing and soldering resistors, until I learned that we had received a shipment of dividers from Hamamatsu, and so the production of dividers was abandoned. 2. Optical insulation Dubrovin and I then turned to the task of mounting all eight visible photomultipliers in a dark box, using a set of drilled plates from the Wayne State machine shop. Our first discovery was that the voltage dividers could not be mounted on the plates because the holes were too big. Therefore, I obtained some aluminum bar stock and produced a set of bars that could be screwed to the back plate, and the dividers then screwed to the bars. The question of a dark box was settled with about 16 ft 2 of 1/32 sheet aluminum, which was formed into a 9x9x42 box, sealed with liquid rubber and foam weatherstripping, and painted at black inside and out to minimize the ambient light level surrounding the phototube array. 3. NIM electronics Finally, it was necessary to accumulate the needed electronics to allow meaningful readouts of the PMT signals, but we were much plagued with difficulties in this quest. The small oscilloscope we had used previously was no longer available, and a two-channel analog oscilloscope lent to us by the electronics shop proved difficult to live with under constantly changing test conditions, so we borrowed an additional digital oscilloscope with only one working channel to ease general signal analysis tasks. The need for a discriminator, which converts the ana-log signal from the tubes to a logic signal, caused us to turn to an old NIM crate that was present on our bench. However, this proved a major source of frustration, since neither the LeCroy 621BL four-channel discriminator nor the coincidence module already mounted showed no signs of life, and sorting through a large pile of older discriminators proved a major source of frustration until we realized the crate was not in working order. With the old crate in the electronics shop, we resumed work with a working crate that Bonvinicini brought from Wayne State. We were finally able to locate a handful of discriminator modules that worked intermittently, and in the meantime, we obtained a two-channel scalar (pulse

4 4 counter) in the CHESS cabinet (after first trying four other scalars that didn t work) that would display the number of counts collected in a period of 0.1s, 1s, or 10s. The 10s setting was used exclusively for my data runs to minimize the effect of small fluctuations in counting rate. 4. Getting started With some working electronics in hand, we were finally able to begin work on taking high voltage plateaus of the photomultiplier tubes. The plateaus are simply plots of scalar count rate vs. high voltage; Fig. 7 represents my first attempt at taking a plateau, as well as the bestlooking plateau produced. However, at this stage, the more responsible experimental procedure of taking multiple readings for each data point revealed a very large standard deviation ( 30 percent) over the data set for each point. An extra plot made from the next data collection run using 1σ error bars revealed enormous uncertainty in the actual slope of the plot. Possible sources of error were hypothesized at this point to include variations in the high voltage supply and instability in the tubes themselves, since this dynode structure is known to fire considerably on its own immediately after changes in its high voltage input. Therefore, an important question at this point was how long we needed to wait for the tubes to stabilize. I conducted a series of tests in which I powered the tubes to 1450V and took readings after 20 minutes, and again after 8 hours (other intervals would have been ideal, but I was away at a picnic during this time). The initial reading, with fifteen readings for each data point, revealed an average standard deviation of about 16 percent, while the latter showed an average deviation of one percent. Later trials revealed the ideal waiting time to be between 60 and 90 minutes, and so the 90 minute wait time was used from then on. [1] G. Bonvicini, et al., Beam-beam collision monitoring for CESR: A Large Angle Beamstrahlung Monitor [2] N. Detgen, et al., CBN-99-26, 1999 [3] G. Bonvicini, D. Cinabro, and E. Luckwald, Phys. Rev. E 59: 4584, 1999 [4] G. Bonvicini and M. Dubrovin, personal communication

5 5 FIG. 4: View of eight PMTs as installed in the dark box, which is in turn resting inside our polystyrene cold-box. The light source was placed at the far end of the box, as was the liquid nitrogen for cooling. FIG. 5: Electronics scheme without coincidence module. Data were taken first with light source on, then off, and then subtracted. The crate pulse generator was used to trigger the external pulse generator because of its superior adjustability. Only two PMTs are shown because we had only two scalar channels. A small multiplex box was also employed to permit easy tube selection without mixing up or damaging the signal cables.

6 6 FIG. 6: Electronics scheme with coincidence module. An additional signal was taken from the crate generator to provide a reference pulse to the coincidence. FIG. 7: First attempt at taking a PMT plateau, using visible PMT number 1. This was the best-looking plateau produced.

Hamamatsu R1584 PMT Modifications

Hamamatsu R1584 PMT Modifications Hamamatsu R1584 PMT Modifications Wenliang Li, Garth Huber, Keith Wolbaum University of Regina, Regina, SK, S4S-0A2 Canada October 31, 2013 Abstract Four Hamamatsu H6528 Photomultiplier Tube (PMT) assemblies

More information

CESR BPM System Calibration

CESR BPM System Calibration CESR BPM System Calibration Joseph Burrell Mechanical Engineering, WSU, Detroit, MI, 48202 (Dated: August 11, 2006) The Cornell Electron Storage Ring(CESR) uses beam position monitors (BPM) to determine

More information

Photo Multipliers Tubes characterization for WA105 experiment. Chiara Lastoria TAE Benasque 07/09/2016

Photo Multipliers Tubes characterization for WA105 experiment. Chiara Lastoria TAE Benasque 07/09/2016 Photo Multipliers Tubes characterization for WA105 experiment Chiara Lastoria TAE Benasque 07/09/2016 Outline WA105 experiment Dual Phase technology and TPC photon detection Photo Multipliers Tubes working

More information

Software Tools for the Analysis of the Photocathode Response of Photomultiplier Vacuum Tubes

Software Tools for the Analysis of the Photocathode Response of Photomultiplier Vacuum Tubes Forschungszentrum Jülich Internal Report No. FZJ_2013_02988 Software Tools for the Analysis of the Photocathode Response of Photomultiplier Vacuum Tubes Riccardo Fabbri a arxiv:1307.1426v1 [physics.ins-det]

More information

3 EXPERIMENTAL INVESTIGATIONS Caroline Robson. 3.1 Aims and Objectives. 3.2 Experimental Method Set Up of the Test Stand

3 EXPERIMENTAL INVESTIGATIONS Caroline Robson. 3.1 Aims and Objectives. 3.2 Experimental Method Set Up of the Test Stand 3 EXPERIMENTAL INVESTIGATIONS Caroline Robson 3.1 Aims and Objectives The aims of the initial experimental work were to become accustomed to the methods employed in scintillation detectors and to obtain

More information

Large photocathode 20-inch PMT testing methods for the JUNO experiment

Large photocathode 20-inch PMT testing methods for the JUNO experiment Large photocathode 20-inch PMT testing methods for the JUNO experiment N. Anfimov a on behalf of the JUNO collaboration. a Joint Institute for Nuclear Research, 141980, 6 Joliot-Curie, Dubna, Russian Federation

More information

Development of an Abort Gap Monitor for High-Energy Proton Rings *

Development of an Abort Gap Monitor for High-Energy Proton Rings * Development of an Abort Gap Monitor for High-Energy Proton Rings * J.-F. Beche, J. Byrd, S. De Santis, P. Denes, M. Placidi, W. Turner, M. Zolotorev Lawrence Berkeley National Laboratory, Berkeley, USA

More information

Digital Delay / Pulse Generator DG535 Digital delay and pulse generator (4-channel)

Digital Delay / Pulse Generator DG535 Digital delay and pulse generator (4-channel) Digital Delay / Pulse Generator Digital delay and pulse generator (4-channel) Digital Delay/Pulse Generator Four independent delay channels Two fully defined pulse channels 5 ps delay resolution 50 ps

More information

Mounting a Scintillation Detector

Mounting a Scintillation Detector Mounting a Scintillation Detector Dietrech Z. Washington Some general remarks: (1) Be careful when handling the photomultiplier and the plastic scintillator. Handling the plastic scintillator with bare

More information

THE TIMING COUNTER OF THE MEG EXPERIMENT: DESIGN AND COMMISSIONING (OR HOW TO BUILD YOUR OWN HIGH TIMING RESOLUTION DETECTOR )

THE TIMING COUNTER OF THE MEG EXPERIMENT: DESIGN AND COMMISSIONING (OR HOW TO BUILD YOUR OWN HIGH TIMING RESOLUTION DETECTOR ) THE TIMING COUNTER OF THE MEG EXPERIMENT: DESIGN AND COMMISSIONING (OR HOW TO BUILD YOUR OWN HIGH TIMING RESOLUTION DETECTOR ) S. DUSSONI FRONTIER DETECTOR FOR FRONTIER PHYSICS - LA BIODOLA 2009 Fastest

More information

An extreme high resolution Timing Counter for the MEG Upgrade

An extreme high resolution Timing Counter for the MEG Upgrade An extreme high resolution Timing Counter for the MEG Upgrade M. De Gerone INFN Genova on behalf of the MEG collaboration 13th Topical Seminar on Innovative Particle and Radiation Detectors Siena, Oct.

More information

RF Testing of A Single FPIX1 for BTeV

RF Testing of A Single FPIX1 for BTeV RF Testing of A Single FPIX1 for BTeV James Price Wayne State University 08/24/2004 Performed at Fermi National Accelerator Laboratory This summer I spent two and a half months working at the Fermi National

More information

Spectroscopy Module. Vescent Photonics, Inc E. 41 st Ave Denver, CO Phone: (303) Fax: (303)

Spectroscopy Module. Vescent Photonics, Inc E. 41 st Ave Denver, CO Phone: (303) Fax: (303) Spectroscopy Module Vescent Photonics, Inc. www.vescentphotonics.com 4865 E. 41 st Ave Denver, CO 80216 Phone: (303)-296-6766 Fax: (303)-296-6783 General Warnings and Cautions The following general warnings

More information

Advanced Test Equipment Rentals ATEC (2832)

Advanced Test Equipment Rentals ATEC (2832) E stablished 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz The Giga-tronics Model 8003 Precision Scalar

More information

CAEN Tools for Discovery

CAEN Tools for Discovery Viareggio March 28, 2011 Introduction: what is the SiPM? The Silicon PhotoMultiplier (SiPM) consists of a high density (up to ~10 3 /mm 2 ) matrix of diodes connected in parallel on a common Si substrate.

More information

... A COMPUTER SYSTEM FOR MULTIPARAMETER PULSE HEIGHT ANALYSIS AND CONTROL*

... A COMPUTER SYSTEM FOR MULTIPARAMETER PULSE HEIGHT ANALYSIS AND CONTROL* I... A COMPUTER SYSTEM FOR MULTIPARAMETER PULSE HEIGHT ANALYSIS AND CONTROL* R. G. Friday and K. D. Mauro Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 SLAC-PUB-995

More information

Silicon PhotoMultiplier Kits

Silicon PhotoMultiplier Kits Silicon PhotoMultiplier Kits Silicon PhotoMultipliers (SiPM) consist of a high density (up to ~ 10 3 /mm 2 ) matrix of photodiodes with a common output. Each diode is operated in a limited Geiger- Müller

More information

Photodetector Testing Facilities at Nevis Labs & Barnard College. Reshmi Mukherjee Barnard College, Columbia University

Photodetector Testing Facilities at Nevis Labs & Barnard College. Reshmi Mukherjee Barnard College, Columbia University Photodetector Testing Facilities at Nevis Labs & Barnard College Reshmi Mukherjee Barnard College, Columbia University First AGIS Collaboration Meeting, UCLA, June 26-27, 2008 M64 MAPMT Testing for Double

More information

LUDLUM MODEL ALPHA-BETA SAMPLE COUNTER SERIAL NUMBER PR AND SUCCEEDING SERIAL NUMBERS. February 2016

LUDLUM MODEL ALPHA-BETA SAMPLE COUNTER SERIAL NUMBER PR AND SUCCEEDING SERIAL NUMBERS. February 2016 LUDLUM MODEL 43-78-2 ALPHA-BETA SAMPLE COUNTER SERIAL NUMBER PR162230 AND SUCCEEDING SERIAL NUMBERS February 2016 LUDLUM MODEL 43-78-2 ALPHA-BETA SAMPLE COUNTER SERIAL NUMBER PR162230 AND SUCCEEDING SERIAL

More information

Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector

Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector William Nalti, Ken Suzuki, Stefan-Meyer-Institut, ÖAW on behalf of the PANDA/Barrel-TOF(SciTil) group 12.06.2018, ICASiPM2018 1

More information

4830A Accelerometer simulator Instruction manual. IM4830A, Revision E1

4830A Accelerometer simulator Instruction manual. IM4830A, Revision E1 4830A Accelerometer simulator Instruction manual IM4830A, Revision E1 IM4830, Page 2 The ENDEVCO Model 4830A is a battery operated instrument that is used to electronically simulate a variety of outputs

More information

SPE analysis of high efficiency PMTs for the DEAP-3600 dark matter detector

SPE analysis of high efficiency PMTs for the DEAP-3600 dark matter detector Journal of Physics: Conference Series SPE analysis of high efficiency PMTs for the DEAP-36 dark matter detector To cite this article: Kevin Olsen et al 211 J. Phys.: Conf. Ser. 312 7215 View the article

More information

Coincidence Detection using the Broadcom AFBR-S4N44P163 4 x 4 SiPM Array and the Vertilon SIB916 Sensor Interface Board Application Note

Coincidence Detection using the Broadcom AFBR-S4N44P163 4 x 4 SiPM Array and the Vertilon SIB916 Sensor Interface Board Application Note Overview The Broadcom AFBR-S4N44P163 4 x 4 element silicon photomultiplier array and Vertilon SIB916 sensor interface board are an ideal combination for use in coincidence detection applications such as

More information

TORCH a large-area detector for high resolution time-of-flight

TORCH a large-area detector for high resolution time-of-flight TORCH a large-area detector for high resolution time-of-flight Roger Forty (CERN) on behalf of the TORCH collaboration 1. TORCH concept 2. Application in LHCb 3. R&D project 4. Test-beam studies TIPP 2017,

More information

University of Illinois at Urbana-Champaign

University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign Digital Electronics Laboratory Physics Department Physics 40 Laboratory Experiment 3: CMOS Digital Logic. Introduction The purpose of this lab is to continue

More information

Tests of Timing Properties of Silicon Photomultipliers

Tests of Timing Properties of Silicon Photomultipliers FERMILAB-PUB-10-052-PPD SLAC-PUB-14599 Tests of Timing Properties of Silicon Photomultipliers A. Ronzhin a, M. Albrow a, K. Byrum b, M. Demarteau a, S. Los a, E. May b, E. Ramberg a, J. Va vra d, A. Zatserklyaniy

More information

Status of the CUORE Electronics and the LHCb RICH Upgrade photodetector chain

Status of the CUORE Electronics and the LHCb RICH Upgrade photodetector chain Status of the CUORE Electronics and the LHCb RICH Upgrade photodetector chain Lorenzo Cassina - XXIX cycle MiB - Midterm Graduate School Seminar Day Outline Activity on LHCb MaPTM qualification RICH Upgrade

More information

Results on 0.7% X0 thick Pixel Modules for the ATLAS Detector.

Results on 0.7% X0 thick Pixel Modules for the ATLAS Detector. Results on 0.7% X0 thick Pixel Modules for the ATLAS Detector. INFN Genova: R.Beccherle, G.Darbo, G.Gagliardi, C.Gemme, P.Netchaeva, P.Oppizzi, L.Rossi, E.Ruscino, F.Vernocchi Lawrence Berkeley National

More information

arxiv: v1 [physics.ins-det] 1 Nov 2015

arxiv: v1 [physics.ins-det] 1 Nov 2015 DPF2015-288 November 3, 2015 The CMS Beam Halo Monitor Detector System arxiv:1511.00264v1 [physics.ins-det] 1 Nov 2015 Kelly Stifter On behalf of the CMS collaboration University of Minnesota, Minneapolis,

More information

Specifications. Mechanical Information. Mass (grams) Dimensions (mm) 15 x 75 Housing. Anodised Aluminium Isolated Body

Specifications. Mechanical Information. Mass (grams) Dimensions (mm) 15 x 75 Housing. Anodised Aluminium Isolated Body Beta TX Datasheet Beta-TX The Beta-TX is a complete self contained laser diode system which can operate in both CW and modulation modes. The Beta- TX features high speed modulation with a bandwidth of

More information

MCP Upgrade: Transmission Line and Pore Importance

MCP Upgrade: Transmission Line and Pore Importance MCP Upgrade: Transmission Line and Pore Importance Tyler Natoli For the PSEC Timing Project Advisor: Henry Frisch June 3, 2009 Abstract In order to take advantage of all of the benefits of Multi-Channel

More information

4.9 BEAM BLANKING AND PULSING OPTIONS

4.9 BEAM BLANKING AND PULSING OPTIONS 4.9 BEAM BLANKING AND PULSING OPTIONS Beam Blanker BNC DESCRIPTION OF BLANKER CONTROLS Beam Blanker assembly Electron Gun Controls Blanker BNC: An input BNC on one of the 1⅓ CF flanges on the Flange Multiplexer

More information

COMPOSITE VIDEO LUMINANCE METER MODEL VLM-40 LUMINANCE MODEL VLM-40 NTSC TECHNICAL INSTRUCTION MANUAL

COMPOSITE VIDEO LUMINANCE METER MODEL VLM-40 LUMINANCE MODEL VLM-40 NTSC TECHNICAL INSTRUCTION MANUAL COMPOSITE VIDEO METER MODEL VLM- COMPOSITE VIDEO METER MODEL VLM- NTSC TECHNICAL INSTRUCTION MANUAL VLM- NTSC TECHNICAL INSTRUCTION MANUAL INTRODUCTION EASY-TO-USE VIDEO LEVEL METER... SIMULTANEOUS DISPLAY...

More information

SPECIAL SPECIFICATION 6911 Fiber Optic Video Data Transmission Equipment

SPECIAL SPECIFICATION 6911 Fiber Optic Video Data Transmission Equipment 2004 Specifications CSJ 3256-02-079 & 3256-03-082 SPECIAL SPECIFICATION 6911 Fiber Optic Video Data Transmission Equipment 1. Description. Furnish and install Fiber Optic Video Data Transmission Equipment

More information

Solid State Photon-Counters

Solid State Photon-Counters Solid State Photon-Counters GMAPD (Geiger Mode Avalanche PhotoDiode) SiPM (Silicon Photo-Multiplier) Single element Photon Counter Multi Pixel Photon Counter 1-cell n-cells charge = k charge = nk Giovanni

More information

INTRODUCTION This procedure should only be performed if the instrument fails to meet the Performance Check tests for Output Zero or Offset Accuracy

INTRODUCTION This procedure should only be performed if the instrument fails to meet the Performance Check tests for Output Zero or Offset Accuracy INTRODUCTION This procedure should only be performed if the instrument fails to meet the Performance Check tests for Output Zero or Offset Accuracy (steps A and B). Gain, which affects DC Accuracy, cannot

More information

WINTER 15 EXAMINATION Model Answer

WINTER 15 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Spatial Response of Photon Detectors used in the Focusing DIRC prototype

Spatial Response of Photon Detectors used in the Focusing DIRC prototype Spatial Response of Photon Detectors used in the Focusing DIRC prototype C. Field, T. Hadig, David W.G.S. Leith, G. Mazaheri, B. Ratcliff, J. Schwiening, J. Uher, J. Va vra SLAC 11/26/04 Presented by J.

More information

The hybrid photon detectors for the LHCb-RICH counters

The hybrid photon detectors for the LHCb-RICH counters 7 th International Conference on Advanced Technology and Particle Physics The hybrid photon detectors for the LHCb-RICH counters Maria Girone, CERN and Imperial College on behalf of the LHCb-RICH group

More information

ABORT DIAGNOSTICS AND ANALYSIS DURING KEKB OPERATION

ABORT DIAGNOSTICS AND ANALYSIS DURING KEKB OPERATION ABORT DIAGNOSTICS AND ANALYSIS DURING KEKB OPERATION H. Ikeda*, J. W. Flanagan, T. Furuya, M. Tobiyama, KEK, Tsukuba, Japan M. Tanaka, MELCO SC,Tsukuba, Japan Abstract KEKB has stopped since June 2010

More information

GA A26497 SOLID-STATE HIGH-VOLTAGE CROWBAR UTILIZING SERIES-CONNECTED THYRISTORS

GA A26497 SOLID-STATE HIGH-VOLTAGE CROWBAR UTILIZING SERIES-CONNECTED THYRISTORS GA A26497 SOLID-STATE HIGH-VOLTAGE CROWBAR by J.F. Tooker, P. Huynh, and R.W. Street JUNE 2009 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

More information

A MISSILE INSTRUMENTATION ENCODER

A MISSILE INSTRUMENTATION ENCODER A MISSILE INSTRUMENTATION ENCODER Item Type text; Proceedings Authors CONN, RAYMOND; BREEDLOVE, PHILLIP Publisher International Foundation for Telemetering Journal International Telemetering Conference

More information

MCP Signal Extraction and Timing Studies. Kurtis Nishimura University of Hawaii LAPPD Collaboration Meeting June 11, 2010

MCP Signal Extraction and Timing Studies. Kurtis Nishimura University of Hawaii LAPPD Collaboration Meeting June 11, 2010 MCP Signal Extraction and Timing Studies Kurtis Nishimura University of Hawaii LAPPD Collaboration Meeting June 11, 2010 Outline Studying algorithms to process pulses from MCP devices. With the goal of

More information

PulseCounter Neutron & Gamma Spectrometry Software Manual

PulseCounter Neutron & Gamma Spectrometry Software Manual PulseCounter Neutron & Gamma Spectrometry Software Manual MAXIMUS ENERGY CORPORATION Written by Dr. Max I. Fomitchev-Zamilov Web: maximus.energy TABLE OF CONTENTS 0. GENERAL INFORMATION 1. DEFAULT SCREEN

More information

Model 579 Fast-Filter Amplifier Operating and Service Manual

Model 579 Fast-Filter Amplifier Operating and Service Manual Model 579 Fast-Filter Amplifier Operating and Service Manual Printed in U.S.A. ORTEC Part No. 733530 1202 Manual Revision C Advanced Measurement Technology, Inc. a/k/a/ ORTEC, a subsidiary of AMETEK, Inc.

More information

DVM-3000 Series 12 Bit DIGITAL VIDEO, AUDIO and 8 CHANNEL BI-DIRECTIONAL DATA FIBER OPTIC MULTIPLEXER for SURVEILLANCE and TRANSPORTATION

DVM-3000 Series 12 Bit DIGITAL VIDEO, AUDIO and 8 CHANNEL BI-DIRECTIONAL DATA FIBER OPTIC MULTIPLEXER for SURVEILLANCE and TRANSPORTATION DVM-3000 Series 12 Bit DIGITAL VIDEO, AUDIO and 8 CHANNEL BI-DIRECTIONAL FIBER OPTIC MULTIPLEXER for SURVEILLANCE and TRANSPORTATION Exceeds RS-250C Short-haul and Broadcast Video specifications. 12 Bit

More information

"shell" digital storage oscilloscope (Beta)

shell digital storage oscilloscope (Beta) "shell" digital storage oscilloscope (Beta) 1. Main board: solder the element as the picture shows: 2. 1) Check the main board is normal or not Supply 9V power supply through the connector J7 (Note: The

More information

1995 Metric CSJ SPECIAL SPECIFICATION ITEM 6031 SINGLE MODE FIBER OPTIC VIDEO TRANSMISSION EQUIPMENT

1995 Metric CSJ SPECIAL SPECIFICATION ITEM 6031 SINGLE MODE FIBER OPTIC VIDEO TRANSMISSION EQUIPMENT 1995 Metric CSJ 0508-01-258 SPECIAL SPECIFICATION ITEM 6031 SINGLE MODE FIBER OPTIC VIDEO TRANSMISSION EQUIPMENT 1.0 Description This Item shall govern for the furnishing and installation of color Single

More information

S op o e p C on o t n rol o s L arni n n i g n g O bj b e j ctiv i e v s

S op o e p C on o t n rol o s L arni n n i g n g O bj b e j ctiv i e v s ET 150 Scope Controls Learning Objectives In this lesson you will: learn the location and function of oscilloscope controls. see block diagrams of analog and digital oscilloscopes. see how different input

More information

LUDLUM MODEL 43-5 ALPHA SCINTILLATOR. March 2011

LUDLUM MODEL 43-5 ALPHA SCINTILLATOR. March 2011 LUDLUM MODEL 43-5 ALPHA SCINTILLATOR LUDLUM MODEL 43-5 ALPHA SCINTILLATOR STATEMENT OF WARRANTY Ludlum Measurements, Inc. warrants the products covered in this manual to be free of defects due to workmanship,

More information

Diamond detectors in the CMS BCM1F

Diamond detectors in the CMS BCM1F Diamond detectors in the CMS BCM1F DESY (Zeuthen) CARAT 2010 GSI, 13-15 December 2010 On behalf of the DESY BCM and CMS BRM groups 1 Outline: 1. Introduction to the CMS BRM 2. BCM1F: - Back-End Hardware

More information

Agilent 87075C Multiport Test Set Product Overview

Agilent 87075C Multiport Test Set Product Overview Agilent 87075C Multiport Test Set Product Overview A complete 75 ohm system for cable TV device manufacturers Now, focus on testing, not reconnecting! For use with the Agilent 8711 C-Series of network

More information

Laboratory 10. Required Components: Objectives. Introduction. Digital Circuits - Logic and Latching (modified from lab text by Alciatore)

Laboratory 10. Required Components: Objectives. Introduction. Digital Circuits - Logic and Latching (modified from lab text by Alciatore) Laboratory 10 Digital Circuits - Logic and Latching (modified from lab text by Alciatore) Required Components: 1x 330 resistor 4x 1k resistor 2x 0.F capacitor 1x 2N3904 small signal transistor 1x LED 1x

More information

SPECIAL SPECIFICATION 1291 Fiber Optic Video Data Transmission Equipment

SPECIAL SPECIFICATION 1291 Fiber Optic Video Data Transmission Equipment 1993 Specifications CSJ 0500-01-117 SPECIAL SPECIFICATION 1291 Fiber Optic Video Data Transmission Equipment 1. Description. This Item shall govern for the furnishing and installation of Fiber Optic Video

More information

SINAMICS G130. dv/dt filter plus Voltage Peak Limiter. Operating Instructions 03/2013 SINAMICS

SINAMICS G130. dv/dt filter plus Voltage Peak Limiter. Operating Instructions 03/2013 SINAMICS SINAMICS G130 Operating Instructions 03/2013 SINAMICS s dv/dt filter plus Voltage Peak Limiter Safety information 1 General 2 SINAMICS SINAMICS G130 Operating Instructions Mechanical installation 3 Electrical

More information

SPECIAL SPECIFICATION 1987 Single Mode Fiber Optic Video Transmission Equipment

SPECIAL SPECIFICATION 1987 Single Mode Fiber Optic Video Transmission Equipment 1993 Specifications CSJ 0027-12-086, etc. SPECIAL SPECIFICATION 1987 Single Mode Fiber Optic Video Transmission Equipment 1. Description. This Item shall govern for the furnishing and installation of color

More information

BER MEASUREMENT IN THE NOISY CHANNEL

BER MEASUREMENT IN THE NOISY CHANNEL BER MEASUREMENT IN THE NOISY CHANNEL PREPARATION... 2 overview... 2 the basic system... 3 a more detailed description... 4 theoretical predictions... 5 EXPERIMENT... 6 the ERROR COUNTING UTILITIES module...

More information

A 400MHz Direct Digital Synthesizer with the AD9912

A 400MHz Direct Digital Synthesizer with the AD9912 A MHz Direct Digital Synthesizer with the AD991 Daniel Da Costa danieljdacosta@gmail.com Brendan Mulholland firemulholland@gmail.com Project Sponser: Dr. Kirk W. Madison Project 11 Engineering Physics

More information

PoS(PhotoDet 2012)018

PoS(PhotoDet 2012)018 Development of a scintillation counter with MPPC readout for the internal tagging system Hiroki KANDA, Yuma KASAI, Kazushige MAEDA, Takashi NISHIZAWA, and Fumiya YAMAMOTO Department of Physics, Tohoku

More information

SciFi A Large Scintillating Fibre Tracker for LHCb

SciFi A Large Scintillating Fibre Tracker for LHCb SciFi A Large Scintillating Fibre Tracker for LHCb Roman Greim on behalf of the LHCb-SciFi-Collaboration 14th Topical Seminar on Innovative Particle Radiation Detectors, Siena 5th October 2016 I. Physikalisches

More information

COHERENCE ONE PREAMPLIFIER

COHERENCE ONE PREAMPLIFIER COHERENCE ONE PREAMPLIFIER OWNER S MANUAL TABLE OF CONTENTS Introduction Features Unpacking Instructions Installation Phono Cartridge Loading Basic Troubleshooting Technical Specifications Introduction

More information

AI-1616L-LPE. Features. High-precision Analog input board (Low Profile size) for PCI Express AI-1616L-LPE 1. Ver.1.02 Ver.1.01

AI-1616L-LPE. Features. High-precision Analog input board (Low Profile size) for PCI Express AI-1616L-LPE 1. Ver.1.02 Ver.1.01 High-precision Analog input board (Low Profile size) for PCI Express AI-1616L-LPE This product is a multi-function, PCI Express bus-compliant interface board that incorporates high-precision 16-bit analog

More information

Study of Timing and Efficiency Properties of Multi-Anode Photomultipliers

Study of Timing and Efficiency Properties of Multi-Anode Photomultipliers Study of Timing and Efficiency Properties of Multi-Anode Photomultipliers T. Hadig, C.R. Field, D.W.G.S. Leith, G. Mazaheri, B.N. Ratcliff, J. Schwiening, J. Uher, J. Va vra Stanford Linear Accelerator

More information

1Chapter INTRODUCTION. This chapter describes the CST-5000 C-Band satellite terminal, referred to in this manual as the CST-5000 (Figure 1-1).

1Chapter INTRODUCTION. This chapter describes the CST-5000 C-Band satellite terminal, referred to in this manual as the CST-5000 (Figure 1-1). 1Chapter 1. INTRODUCTION This chapter describes the CST-5000 C-Band satellite terminal, referred to in this manual as the CST-5000 (Figure 1-1). Figure 1-1. CST-5000 Single Thread System Rev. 9 1 1 1.1

More information

Lab 1 Introduction to the Software Development Environment and Signal Sampling

Lab 1 Introduction to the Software Development Environment and Signal Sampling ECEn 487 Digital Signal Processing Laboratory Lab 1 Introduction to the Software Development Environment and Signal Sampling Due Dates This is a three week lab. All TA check off must be completed before

More information

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN CALIBRATION PROCEDURE FOR AUTOMATIC VIDEO CORRECTOR TEKTRONIX, MODEL 1440 (NSN )

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN CALIBRATION PROCEDURE FOR AUTOMATIC VIDEO CORRECTOR TEKTRONIX, MODEL 1440 (NSN ) DEPARTMENT OF THE ARMY TECHNICAL BULLETIN TB 11-5820-861-35 CALIBRATION PROCEDURE FOR AUTOMATIC VIDEO CORRECTOR TEKTRONIX, MODEL 1440 (NSN 5820-00-570-1978) Headquarters, Department of the Army, Washington,

More information

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM

MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MODULAR DIGITAL ELECTRONICS TRAINING SYSTEM MDETS UCTECH's Modular Digital Electronics Training System is a modular course covering the fundamentals, concepts, theory and applications of digital electronics.

More information

DPD80 Infrared Datasheet

DPD80 Infrared Datasheet Data Sheet v1.4 DPD8 Infrared DPD8 Infrared Datasheet Resolved Inc. www.resolvedinstruments.com info@resolvedinstruments.com 217 Resolved Inc. All rights reserved. DPD8 Infrared General Description The

More information

OPTICAL POWER METER WITH SMART DETECTOR HEAD

OPTICAL POWER METER WITH SMART DETECTOR HEAD OPTICAL POWER METER WITH SMART DETECTOR HEAD Features Fast response (over 1000 readouts/s) Wavelengths: 440 to 900 nm for visible (VIS) and 800 to 1700 nm for infrared (IR) NIST traceable Built-in attenuator

More information

CCD 143A 2048-Element High Speed Linear Image Sensor

CCD 143A 2048-Element High Speed Linear Image Sensor A CCD 143A 2048-Element High Speed Linear Image Sensor FEATURES 2048 x 1 photosite array 13µm x 13µm photosites on 13µm pitch High speed = up to 20MHz data rates Enhanced spectral response Low dark signal

More information

Cable Quality Matters

Cable Quality Matters PCB007 QuietPower columns Cable Quality Matters Istvan Novak, Oracle, September 2013 In a recent column we looked at the importance of properly terminating cables connecting a measuring instrument to our

More information

HP 71910A and 71910P Wide Bandwidth Receiver Technical Specifications

HP 71910A and 71910P Wide Bandwidth Receiver Technical Specifications HP 71910A and 71910P Wide Bandwidth Receiver Technical Specifications 100 Hz to 26.5 GHz The HP 71910A/P is a receiver for monitoring signals from 100 Hz to 26.5 GHz. It provides a cost effective combination

More information

Data Acquisition System for Segmented Reactor Antineutrino Detector

Data Acquisition System for Segmented Reactor Antineutrino Detector Data Acquisition System for Segmented Reactor Antineutrino Detector Z. Hons a,b,*, J. Vlášek a,c,d a Joint Institute for Nuclear Research, Moscow Region, Dubna, Russian Federation b NPI Nuclear Physics

More information

LAB 1: Plotting a GM Plateau and Introduction to Statistical Distribution. A. Plotting a GM Plateau. This lab will have two sections, A and B.

LAB 1: Plotting a GM Plateau and Introduction to Statistical Distribution. A. Plotting a GM Plateau. This lab will have two sections, A and B. LAB 1: Plotting a GM Plateau and Introduction to Statistical Distribution This lab will have two sections, A and B. Students are supposed to write separate lab reports on section A and B, and submit the

More information

DSP EC 50 and DSP EC 502. Advanced, Digital Signal Processing Based Gamma-Ray Spectrometers

DSP EC 50 and DSP EC 502. Advanced, Digital Signal Processing Based Gamma-Ray Spectrometers Advanced, Digital Signal Processing Based Gamma-Ray Spectrometers Hardware Features Single MCA (DSPEC 50) and dual MCA (DSPEC 502) versions. Highly stable against variations in count rate and temperature.

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I Tasks marked by an asterisk (*) may be carried out before coming to the lab. The Light Emitting Diode: The light emitting

More information

FREQUENCY COUNTERS TO 18 GHZ USING THE DATUM FREQUENCY STANDARD

FREQUENCY COUNTERS TO 18 GHZ USING THE DATUM FREQUENCY STANDARD TECHNICAL MANUAL AF-166 INSTRUMENT CALIBRATION FREQUENCY COUNTERS TO 18 GHZ USING THE DATUM 9390-6000-34 FREQUENCY STANDARD THIS PUBLICATION SUPERSEDES NAVAIR 17-20AF-166 DATED 1 FEBRUARY 2005 DISTRIBUTION

More information

A new Scintillating Fibre Tracker for LHCb experiment

A new Scintillating Fibre Tracker for LHCb experiment A new Scintillating Fibre Tracker for LHCb experiment Alexander Malinin, NRC Kurchatov Institute on behalf of the LHCb-SciFi-Collaboration Instrumentation for Colliding Beam Physics BINP, Novosibirsk,

More information

VERIFICATION TEST PLAN

VERIFICATION TEST PLAN VERIFICATION TEST PLAN : System Dynamics Filtering Laboratory Release Date: January 22, 2013 Revision: A PURPOSE The purpose of this document is to outline testing procedures to be used in order to properly

More information

Commissioning the TAMUTRAP RFQ cooler/buncher. E. Bennett, R. Burch, B. Fenker, M. Mehlman, D. Melconian, and P.D. Shidling

Commissioning the TAMUTRAP RFQ cooler/buncher. E. Bennett, R. Burch, B. Fenker, M. Mehlman, D. Melconian, and P.D. Shidling Commissioning the TAMUTRAP RFQ cooler/buncher E. Bennett, R. Burch, B. Fenker, M. Mehlman, D. Melconian, and P.D. Shidling In order to efficiently load ions into a Penning trap, the ion beam should be

More information

The Scintillating Fibre Tracker for the LHCb Upgrade. DESY Joint Instrumentation Seminar

The Scintillating Fibre Tracker for the LHCb Upgrade. DESY Joint Instrumentation Seminar The Scintillating Fibre Tracker for the LHCb Upgrade DESY Joint Instrumentation Seminar Presented by Blake D. Leverington University of Heidelberg, DE on behalf of the LHCb SciFi Tracker group 1/45 Outline

More information

INTEGRATED CIRCUITS DATA SHEET. TDA4510 PAL decoder. Product specification File under Integrated Circuits, IC02

INTEGRATED CIRCUITS DATA SHEET. TDA4510 PAL decoder. Product specification File under Integrated Circuits, IC02 INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC02 March 1986 GENERAL DESCRIPTION The is a colour decoder for the PAL standard, which is pin sequent compatible with multistandard decoder

More information

Light Emitting Diodes and Digital Circuits I

Light Emitting Diodes and Digital Circuits I LED s and Digital Circuits I. p. 1 Light Emitting Diodes and Digital Circuits I Tasks marked by an asterisk (*) may be carried out before coming to the lab. The Light Emitting Diode: The light emitting

More information

Time Resolution Improvement of an Electromagnetic Calorimeter Based on Lead Tungstate Crystals

Time Resolution Improvement of an Electromagnetic Calorimeter Based on Lead Tungstate Crystals Time Resolution Improvement of an Electromagnetic Calorimeter Based on Lead Tungstate Crystals M. Ippolitov 1 NRC Kurchatov Institute and NRNU MEPhI Kurchatov sq.1, 123182, Moscow, Russian Federation E-mail:

More information

MAP Optical Power Meter Module (mopm-b1)

MAP Optical Power Meter Module (mopm-b1) COMMUNICATIONS TEST & MEASUREMENT SOLUTIONS MAP Optical Power Meter Module (mopm-b1) Key Features Panel mount or remote head configuration Single, dual, or quad channel configurations available 250 khz

More information

Switching Solutions for Multi-Channel High Speed Serial Port Testing

Switching Solutions for Multi-Channel High Speed Serial Port Testing Switching Solutions for Multi-Channel High Speed Serial Port Testing Application Note by Robert Waldeck VP Business Development, ASCOR Switching The instruments used in High Speed Serial Port testing are

More information

Experiment 7: Bit Error Rate (BER) Measurement in the Noisy Channel

Experiment 7: Bit Error Rate (BER) Measurement in the Noisy Channel Experiment 7: Bit Error Rate (BER) Measurement in the Noisy Channel Modified Dr Peter Vial March 2011 from Emona TIMS experiment ACHIEVEMENTS: ability to set up a digital communications system over a noisy,

More information

Quick Report on Silicon G-APDs (a.k.a. Si-PM) studies. XIV SuperB General Meeting LNF - Frascati

Quick Report on Silicon G-APDs (a.k.a. Si-PM) studies. XIV SuperB General Meeting LNF - Frascati Quick Report on Silicon G-APDs (a.k.a. Si-PM) studies XIV SuperB General Meeting LNF - Frascati Report of the work done in Padova Dal Corso F., E.F., Simi G., Stroili R. University & INFN Padova Outline

More information

Guidelines for Specification of LED Lighting Products 2010

Guidelines for Specification of LED Lighting Products 2010 Guidelines for Specification of LED Lighting Products 2010 September 2010 Introduction With LED s emerging as a new functional light source there is a need to ensure performance claims are made in a consistent

More information

Highly Accelerated Stress Screening of the Atlas Liquid Argon Calorimeter Front End Boards

Highly Accelerated Stress Screening of the Atlas Liquid Argon Calorimeter Front End Boards Highly Accelerated Stress Screening of the Atlas Liquid Argon Calorimeter Front End Boards K. Benslama, G. Brooijmans, C.-Y. Chi, D. Dannheim, I. Katsanos, J. Parsons, S. Simion Nevis Labs, Columbia University

More information

A HIGHLY INTERACTIVE SYSTEM FOR PROCESSING LARGE VOLUMES OF ULTRASONIC TESTING DATA. H. L. Grothues, R. H. Peterson, D. R. Hamlin, K. s.

A HIGHLY INTERACTIVE SYSTEM FOR PROCESSING LARGE VOLUMES OF ULTRASONIC TESTING DATA. H. L. Grothues, R. H. Peterson, D. R. Hamlin, K. s. A HIGHLY INTERACTIVE SYSTEM FOR PROCESSING LARGE VOLUMES OF ULTRASONIC TESTING DATA H. L. Grothues, R. H. Peterson, D. R. Hamlin, K. s. Pickens Southwest Research Institute San Antonio, Texas INTRODUCTION

More information

Large Area, High Speed Photo-detectors Readout

Large Area, High Speed Photo-detectors Readout Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun Tang +, Gary Varner ++, and Henry Frisch + + University

More information

Updates on the Central TOF System for the CLAS12 detector

Updates on the Central TOF System for the CLAS12 detector Updates on the Central TOF System for the CLAS1 detector First measurements of the timing resolution of fine-mesh Hamamatsu R7761-70 photomultipliers Wooyoung Kim, Slava Kuznetsov, Andrey Ni, and the Nuclear

More information

Solutions to Embedded System Design Challenges Part II

Solutions to Embedded System Design Challenges Part II Solutions to Embedded System Design Challenges Part II Time-Saving Tips to Improve Productivity In Embedded System Design, Validation and Debug Hi, my name is Mike Juliana. Welcome to today s elearning.

More information

( stored on ) also accessible from

( stored on   ) also accessible from ( stored on http://www.stealthskater.com/articles/walkietalkie.doc ) also accessible from http://www.stealthskater.com/articles.htm ) Two walkie-talkies can be put to good use on a camping trip by keeping

More information

MAXTECH, Inc. BRC-1000 Series. C-Band Redundant LNB Systems. Technology for Communications. System Block Diagrams

MAXTECH, Inc. BRC-1000 Series. C-Band Redundant LNB Systems. Technology for Communications. System Block Diagrams MAXTECH, Inc. Technology for Communications BRC-1000 Series C-Band Redundant LNB Systems Introduction Redundant LNB systems minimize system downtime due to LNB failure by providing a spare LNB and an automatic

More information

TPC R&D at Cornell and Purdue

TPC R&D at Cornell and Purdue TPC R&D at Cornell and Purdue Cornell University Purdue University T. Anous K. Arndt R. S. Galik G. Bolla D. P. Peterson I. P. J. Shipsey J. Ledoux Further information available at the web sites: http://www.lepp.cornell.edu/~dpp/linear_collider/large_prototype.html

More information

Novel Digital Pileup Inspection Circuit for a Gamma Ray Spectroscopy System

Novel Digital Pileup Inspection Circuit for a Gamma Ray Spectroscopy System Journal of Nuclear and Particle Physics 2014, 4(2): 58-64 DOI: 10.5923/j.jnpp.20140402.02 Novel Digital Pileup Inspection Circuit for a Gamma Ray Spectroscopy System Onyemaechi N. Ofodile 1,*, Matthew

More information

Durham Magneto Optics Ltd. NanoMOKE 3 Wafer Mapper. Specifications

Durham Magneto Optics Ltd. NanoMOKE 3 Wafer Mapper. Specifications Durham Magneto Optics Ltd NanoMOKE 3 Wafer Mapper Specifications Overview The NanoMOKE 3 Wafer Mapper is an ultrahigh sensitivity Kerr effect magnetometer specially configured for measuring magnetic hysteresis

More information

BEMC electronics operation

BEMC electronics operation Appendix A BEMC electronics operation The tower phototubes are powered by CockroftWalton (CW) bases that are able to keep the high voltage up to a high precision. The bases are programmed through the serial

More information