CMS Tracker Synchronization

Size: px
Start display at page:

Download "CMS Tracker Synchronization"

Transcription

1 CMS Tracker Synchronization K. Gill CERN EP/CME B. Trocme, L. Mirabito Institut de Physique Nucleaire de Lyon

2 Outline Timing issues in CMS Tracker Synchronization method Relative synchronization Synchronization of readout chain across all channels in system Absolute synchronization Synchronization with LHC collisions and rest of CMS. Monitoring synchronization LECC 23 CMS Tracker Synchronization

3 CMS Silicon Strip Tracker Unprecedented use of microstrip technology. Enormous system. 21m 2 silicon 1 million channels ~25 m 3 Must be very well synchronized to be able to detect, reconstruct and measure particle tracks with expected precision karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

4 CMS Tracker readout and control parts Detector CLK Tx/Rx Tx/Rx T1 I2C Control module digital optical link TTCrx µp PLL Front End Controller APV Front End Module TTCrx DCU 256:1 APV MUX ADC Optical transmitter analogue optical link FPGA FPGA RAM Front End Driver 25k sensors, 17k modules 3km fibres 75k APVs 17k AOHs Not only large amount of silicon. Rest of system also large and complex. All parts now defined and in production Starting to look in detail at final system aspects calibration and synchronization 32 mfecs 44 FEDs LECC 23 CMS Tracker Synchronization

5 timing issues: components TTCrx Digital optical control link DOH Front-end T1, RST, CAL FEC TTC control ring LHC CK FED Analogue optical readout link FEH TPLL APV TTCrx AOH Back-end LECC 23 CMS Tracker Synchronization

6 timing issues: cable delays (rough estimates) T1, RST, CAL ~5ns TTCrx FEC variable length ~2-3ns DOH ~2ns ~2ns Front-end ~2ns ~2ns ~2ns TTC ~2ns ~2ns LHC CK ~5ns FED variable length ~2-3ns FEH TPLL APV ~2ns ~2ns TTCrx AOH Back-end LECC 23 CMS Tracker Synchronization

7 Tracker timing issues - front-end APVs TTC Slow ctl Goal is to synchronize all APVs in Tracker relative to LHC collisions DOH (a) APV output in peak mode ADC counts time [nsec] pre-rad 1 Mrads 4 Mrads 1 Mrads 2 Mrads 2+anneal Signal is broad, synchronization to ~25ns OK 2 24 (b) deconvolution mode at high luminosity data FEH TPLL APV AOH adjustable timing skew ADC counts time [nsec] pre-rad 1 Mrads 4 Mrads 1 Mrads 2 Mrads 2+anneal Peak now narrow, require few ns synchr. ( Also, APV latency must be set correctly to read data from correct pipeline location) 2 24 karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

8 Timing issues: back-end (FEDs) (a) APV signals at FED after trigger 5 Digital header 4 ADC Counts x128 analog samples Time (μs) 5. APV ticks 6. FEDs must also be well synchronized (b) Zoom on ticks Amplitude (ADC counts) Time (ns) Optimum sampling point 5 75 Delay FPGA before front-end FPGA Coarse clock skew (25ns steps) to analyse same APV sample across whole set of 12 inputs Fine clock skew (1ns steps) to allow enough settling time (readout b/w<1mhz) Need to set to be ~2ns after start of signal pulse karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

9 CMS Tracker synch requirements summary Synchronization requirement APV trigger latency setting APV frame finding at back-end FED APV sampling of detector signals Optical link sampling at FED Low luminosity running Correct bunch crossing (25ns) Same clock cycle (25ns) Coarse (25ns) (peak mode) Fine (3ns) High luminosity running Correct bunch crossing (25ns) Same clock cycle (25ns) Fine (3ns) (deconvolution) Fine (3ns) LECC 23 CMS Tracker Synchronization

10 Tracker relative synchronization procedure Method proposed after experience in 25ns test-beam in 2 Based on measurement of time of arrival of APV ticks at FED Idea now well thought-out Procedure implemented in basic form using XDAQ Tested in recent beam/system-tests >1 control ring >1 prototype FED Standalone operation for procedure envisaged in final system Local trigger Local DAQ - FED spy channel/vme Idea is that this functionality is available during integration/commissioning karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

11 APV tick-marks APV output 11 received at APV tick tick 11 clock cycles 7 (4MHz) clock cycles 1.75μs APVs tick every 7 clock cycles starting at a fixed time after re-synch (11) signal received at APV Tick transmitted over analogue optical link to FED Measure arrival time at FED (trigger with APV frame OFF) Knowing analogue optical link lengths (from database) know time when the ticks left the APVs therefore use ticks for precise probe of timing skew between APVs time karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

12 TK front-end relative synchronization At level of 1 control ring/fed relative delays due to position of APV around the control ring analogue link fibre length Build up detailed picture of ticks by sweeping front-end TPLL delay at front-end in 1ns steps APV tick signals transmitted to FED 11 sent from FEC Different arrival times of ticks at FED - fibre lengths - APV position in control ring Knowing analogue fibre lengths then synchronize APVs using the programmable skew on TPLL XDAQ implementation for beam and system tests L. Mirabito, B. Trocme previously N. Marinelli Time Expand method to cover different control rings in partition by comparing signals on different FEDs Only ~1 channel/fed needed since inside rings, all APVs already synchronized Length of TTC cables to FED must also be known! karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

13 TK back-end (FED) synchronization - 1 (a) APV signals at FED Optimum sampling point 4 36 Amplitude (ADC counts) Time (ns) 5 75 Delay FPGAs Front-end FPGAs Can use APV ticks also to set-up delay FPGAs to synchronize FEDs Fine skew setting optimizes analogue signal settling & S/N Coarse skew setting signals from same APV pipeline locations processed e.g. pedestal subtraction.. Do at same time as synchronizing front-end APVs using ticks karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

14 TK back-end (FED) synchronization - 2 FED e.g. CMS/TOB tests at CERN J. Valls et al, this workshop FED 1 FED 2 ADC Counts Time (μs) Alignment of ticks at FED ensures that APV analogue signals aligned in time for the FED front-end FPGA karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

15 TK relative synchronization summary TTCrx DOH T1, RST, CAL FEC 5 ADC counts pre-rad 1 Mrads 4 Mrads 1 Mrads 2 Mrads 2+anneal LHC CK TTC set timing on delay FPGA at FED ADC Counts FED TTCrx 1. Amplitude (ADC counts) Time (μs) Time (ns) 75 AOH PLL APV time [nsec] 2 Compensate delays at front-end PLLs around ring All fibre lengths to FEDs including TTC fibre must be known Fibre lengths to/from FEC and cables around ring good to know but not critical 24 karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

16 Absolute synchronization of CMS Tracker Relative synchronization to set up the Tracker ADC counts time [nsec] pre-rad 1 Mrads 4 Mrads 1 Mrads 2 Mrads 2+anneal Peak mode 2 24 Relative synch aligns APVs with respect to one another but not to LHC collisions or rest of CMS Need to align APV sampling to signal generated in silicon strips by passing particles ADC counts pre-rad 1 Mrads 4 Mrads 1 Mrads 2 Mrads 2+anneal Deconvolution Coarse timing adjust latency at APV Fine timing re-adjust PLLs at frontend 2 Absolute synchronization to find the particles time [nsec] 2 24 Same procedure as used in beam-tests. requires: Simple tracking Global TRIDAS karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

17 TK synchronization summary TTCrx DOH T1, RST, CAL FEC LHC CK TTC Amplitude (ADC counts) FED ADC Counts Time (ns) 5 75 PLL APV ADC counts time [nsec] pre-rad 1 Mrads 4 Mrads 1 Mrads 2 Mrads 2+anneal Time (μs) TTCrx AOH Question of how to monitor state of synchronization? karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

18 Checking synchronization TK+ECAL TK+MU Tracker data should be consistent with rest of CMS FED occupancy should match LHC bunch structure FED compares 8-bit APV pipeline address in header on every channel with that sent from APVE 5 4 Coarse timing defects easy to see ADCCounts 3 2 Fine setting problems more difficult Digital header Time (μs) Details of when/how to react to problems to be defined karl.gill@cern.ch LECC 23 CMS Tracker Synchronization

19 Conclusions Timing issues in CMS Tracker well understood confident of ability to synchronize final components and whole system Could be ready and debugged in advance of LHC collisions Relative synchronization procedure based on use of APV tick-marks simple, robust, minimal requirements Already integral part of start-up procedure for analogue readout system Implemented in XDAQ, and tested at level of >1 FEDs/FECs system hardware specs/requirements had synch. procedure in mind e.g. Optical link fibre lengths e.g. FED timing skew provision, scope mode and spy channel Absolute synchronization then done by setting correct latency at APV and adjusting PLL fine delays for maximum S/N as in beam tests Can monitor APVs and FEDs for losses of synchronization during running Next steps: further testing, automation and up-scaling of procedures LECC 23 CMS Tracker Synchronization

CMS Conference Report

CMS Conference Report Available on CMS information server CMS CR 1997/017 CMS Conference Report 22 October 1997 Updated in 30 March 1998 Trigger synchronisation circuits in CMS J. Varela * 1, L. Berger 2, R. Nóbrega 3, A. Pierce

More information

CMS Tracker Optical Control Link Specification. Part 1: System

CMS Tracker Optical Control Link Specification. Part 1: System CMS Tracker Optical Control Link Specification Part 1: System Version 1.2, 7th March, 2003. CERN EP/CME Preliminary 1. INTRODUCTION...2 1.1. GENERAL SYSTEM DESCRIPTION...2 1.2. DOCUMENT STRUCTURE AND CONVENTION...3

More information

CSC Data Rates, Formats and Calibration Methods

CSC Data Rates, Formats and Calibration Methods CSC Data Rates, Formats and Calibration Methods D. Acosta University of Florida With most information collected from the The Ohio State University PRS March Milestones 1. Determination of calibration methods

More information

Compact Muon Solenoid Detector (CMS) & The Token Bit Manager (TBM) Alex Armstrong & Wyatt Behn Mentor: Dr. Andrew Ivanov

Compact Muon Solenoid Detector (CMS) & The Token Bit Manager (TBM) Alex Armstrong & Wyatt Behn Mentor: Dr. Andrew Ivanov Compact Muon Solenoid Detector (CMS) & The Token Bit Manager (TBM) Alex Armstrong & Wyatt Behn Mentor: Dr. Andrew Ivanov Part 1: The TBM and CMS Understanding how the LHC and the CMS detector work as a

More information

Electronics procurements

Electronics procurements Electronics procurements 24 October 2014 Geoff Hall Procurements from CERN There are a wide range of electronics items procured by CERN but we are familiar with only some of them Probably two main categories:

More information

Digital Control Links Status and Plans

Digital Control Links Status and Plans Digital Control Links Status and Plans K. Gill 5/11/03 http://cms-tk-opto.web.cern.ch/cms-tk-opto/control/esr/ Outline Overview of system Functional requirements Specifications Components Power budget

More information

Diamond detectors in the CMS BCM1F

Diamond detectors in the CMS BCM1F Diamond detectors in the CMS BCM1F DESY (Zeuthen) CARAT 2010 GSI, 13-15 December 2010 On behalf of the DESY BCM and CMS BRM groups 1 Outline: 1. Introduction to the CMS BRM 2. BCM1F: - Back-End Hardware

More information

System: status and evolution. Javier Serrano

System: status and evolution. Javier Serrano CERN General Machine Timing System: status and evolution Javier Serrano CERN AB-CO-HT 15 February 2008 Outline Motivation Why timing systems at CERN? Types of CERN timing systems. The General Machine Timing

More information

BABAR IFR TDC Board (ITB): requirements and system description

BABAR IFR TDC Board (ITB): requirements and system description BABAR IFR TDC Board (ITB): requirements and system description Version 1.1 November 1997 G. Crosetti, S. Minutoli, E. Robutti I.N.F.N. Genova 1. Timing measurement with the IFR Accurate track reconstruction

More information

Atlas Pixel Replacement/Upgrade. Measurements on 3D sensors

Atlas Pixel Replacement/Upgrade. Measurements on 3D sensors Atlas Pixel Replacement/Upgrade and Measurements on 3D sensors Forskerskole 2007 by E. Bolle erlend.bolle@fys.uio.no Outline Sensors for Atlas pixel b-layer replacement/upgrade UiO activities CERN 3D test

More information

TTC Interface Module for ATLAS Read-Out Electronics: Final production version based on Xilinx FPGA devices

TTC Interface Module for ATLAS Read-Out Electronics: Final production version based on Xilinx FPGA devices Physics & Astronomy HEP Electronics TTC Interface Module for ATLAS Read-Out Electronics: Final production version based on Xilinx FPGA devices LECC 2004 Matthew Warren warren@hep.ucl.ac.uk Jon Butterworth,

More information

Test Beam Wrap-Up. Darin Acosta

Test Beam Wrap-Up. Darin Acosta Test Beam Wrap-Up Darin Acosta Agenda Darin/UF: General recap of runs taken, tests performed, Track-Finder issues Martin/UCLA: Summary of RAT and RPC tests, and experience with TMB2004 Stan(or Jason or

More information

Klystron Lifetime Management System

Klystron Lifetime Management System Klystron Lifetime Management System Łukasz Butkowski Vladimir Vogel FLASH Seminar Outline 2 Introduction to KLM Protection and measurement functions Installation at Klystron test stand FPGA implementation

More information

Performance of a double-metal n-on-n and a Czochralski silicon strip detector read out at LHC speeds

Performance of a double-metal n-on-n and a Czochralski silicon strip detector read out at LHC speeds Performance of a double-metal n-on-n and a Czochralski silicon strip detector read out at LHC speeds Juan Palacios, On behalf of the LHCb VELO group J.P. Palacios, Liverpool Outline LHCb and VELO performance

More information

A new Scintillating Fibre Tracker for LHCb experiment

A new Scintillating Fibre Tracker for LHCb experiment A new Scintillating Fibre Tracker for LHCb experiment Alexander Malinin, NRC Kurchatov Institute on behalf of the LHCb-SciFi-Collaboration Instrumentation for Colliding Beam Physics BINP, Novosibirsk,

More information

The Read-Out system of the ALICE pixel detector

The Read-Out system of the ALICE pixel detector The Read-Out system of the ALICE pixel detector Kluge, A. for the ALICE SPD collaboration CERN, CH-1211 Geneva 23, Switzerland Abstract The on-detector electronics of the ALICE silicon pixel detector (nearly

More information

arxiv: v1 [physics.ins-det] 1 Nov 2015

arxiv: v1 [physics.ins-det] 1 Nov 2015 DPF2015-288 November 3, 2015 The CMS Beam Halo Monitor Detector System arxiv:1511.00264v1 [physics.ins-det] 1 Nov 2015 Kelly Stifter On behalf of the CMS collaboration University of Minnesota, Minneapolis,

More information

Hardware Verification after Installation. D0 Run IIB L1Cal Technical Readiness Review. Presented by Dan Edmunds August 2005

Hardware Verification after Installation. D0 Run IIB L1Cal Technical Readiness Review. Presented by Dan Edmunds August 2005 Hardware Verification after Installation D0 Run IIB L1Cal Technical Readiness Review Presented by Dan Edmunds 26-27 August 2005 The purpose of this talk is to describe to the committee how various aspects

More information

LHCb and its electronics.

LHCb and its electronics. LHCb and its electronics. J. Christiansen, CERN On behalf of the LHCb collaboration jorgen.christiansen@cern.ch Abstract The general architecture of the electronics systems in the LHCb experiment is described

More information

SciFi A Large Scintillating Fibre Tracker for LHCb

SciFi A Large Scintillating Fibre Tracker for LHCb SciFi A Large Scintillating Fibre Tracker for LHCb Roman Greim on behalf of the LHCb-SciFi-Collaboration 14th Topical Seminar on Innovative Particle Radiation Detectors, Siena 5th October 2016 I. Physikalisches

More information

RF2TTC and QPLL behavior during interruption or switch of the RF-BC source

RF2TTC and QPLL behavior during interruption or switch of the RF-BC source RF2TTC and QPLL behavior during interruption or switch of the RF-BC source Study to adapt the BC source choice in RF2TTC during interruption of the RF timing signals Contents I. INTRODUCTION 2 II. QPLL

More information

Synchronization of the CMS Cathode Strip Chambers

Synchronization of the CMS Cathode Strip Chambers Synchronization of the CMS Cathode Strip Chambers G. Rakness a, J. Hauser a, D. Wang b a) University of California, Los Angeles b) University of Florida Gregory.Rakness@cern.ch Abstract The synchronization

More information

Novel Data Acquisition System for Silicon Tracking Detectors

Novel Data Acquisition System for Silicon Tracking Detectors Novel Data Acquisition System for Silicon Tracking Detectors L. A. Wendland, K. Banzuzi, S. Czellar, A. Heikkinen, J. Härkönen, P. Johansson, V. Karimäki, T. Lampén, P. Luukka, P. Mehtälä, J. Niku, S.

More information

Commissioning and Performance of the ATLAS Transition Radiation Tracker with High Energy Collisions at LHC

Commissioning and Performance of the ATLAS Transition Radiation Tracker with High Energy Collisions at LHC Commissioning and Performance of the ATLAS Transition Radiation Tracker with High Energy Collisions at LHC 1 A L E J A N D R O A L O N S O L U N D U N I V E R S I T Y O N B E H A L F O F T H E A T L A

More information

LHCb and its electronics. J. Christiansen On behalf of the LHCb collaboration

LHCb and its electronics. J. Christiansen On behalf of the LHCb collaboration LHCb and its electronics J. Christiansen On behalf of the LHCb collaboration Physics background CP violation necessary to explain matter dominance B hadron decays good candidate to study CP violation B

More information

Development of beam-collision feedback systems for future lepton colliders. John Adams Institute for Accelerator Science, Oxford University

Development of beam-collision feedback systems for future lepton colliders. John Adams Institute for Accelerator Science, Oxford University Development of beam-collision feedback systems for future lepton colliders P.N. Burrows 1 John Adams Institute for Accelerator Science, Oxford University Denys Wilkinson Building, Keble Rd, Oxford, OX1

More information

The ATLAS Tile Calorimeter, its performance with pp collisions and its upgrades for high luminosity LHC

The ATLAS Tile Calorimeter, its performance with pp collisions and its upgrades for high luminosity LHC The ATLAS Tile Calorimeter, its performance with pp collisions and its upgrades for high luminosity LHC Tomas Davidek (Charles University), on behalf of the ATLAS Collaboration Tile Calorimeter Sampling

More information

TORCH a large-area detector for high resolution time-of-flight

TORCH a large-area detector for high resolution time-of-flight TORCH a large-area detector for high resolution time-of-flight Roger Forty (CERN) on behalf of the TORCH collaboration 1. TORCH concept 2. Application in LHCb 3. R&D project 4. Test-beam studies TIPP 2017,

More information

PEP-II longitudinal feedback and the low groupdelay. Dmitry Teytelman

PEP-II longitudinal feedback and the low groupdelay. Dmitry Teytelman PEP-II longitudinal feedback and the low groupdelay woofer Dmitry Teytelman 1 Outline I. PEP-II longitudinal feedback and the woofer channel II. Low group-delay woofer topology III. Why do we need a separate

More information

Trigger synchronization and phase coherent in high speed multi-channels data acquisition system

Trigger synchronization and phase coherent in high speed multi-channels data acquisition system White Paper Trigger synchronization and phase coherent in high speed multi-channels data acquisition system Synopsis Trigger synchronization and phase coherent acquisition over multiple Data Acquisition

More information

The LHCb Timing and Fast Control system

The LHCb Timing and Fast Control system The LCb Timing and Fast system. Jacobsson, B. Jost CEN, 1211 Geneva 23, Switzerland ichard.jacobsson@cern.ch, Beat.Jost@cern.ch A. Chlopik, Z. Guzik Soltan Institute for Nuclear Studies, Swierk-twock,

More information

FRONT-END AND READ-OUT ELECTRONICS FOR THE NUMEN FPD

FRONT-END AND READ-OUT ELECTRONICS FOR THE NUMEN FPD FRONT-END AND READ-OUT ELECTRONICS FOR THE NUMEN FPD D. LO PRESTI D. BONANNO, F. LONGHITANO, D. BONGIOVANNI, S. REITO INFN- SEZIONE DI CATANIA D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 1 OVERVIEW

More information

SuperB- DCH. Servizio Ele<ronico Laboratori FrascaA

SuperB- DCH. Servizio Ele<ronico Laboratori FrascaA 1 Outline 2 DCH FEE Constraints/Estimate & Main Blocks front- end main blocks Constraints & EsAmate Trigger rate (150 khz) Trigger/DAQ data format I/O BW Trigger Latency Minimum trigger spacing. Chamber

More information

The Readout Architecture of the ATLAS Pixel System

The Readout Architecture of the ATLAS Pixel System The Readout Architecture of the ATLAS Pixel System Roberto Beccherle / INFN - Genova E-mail: Roberto.Beccherle@ge.infn.it Copy of This Talk: http://www.ge.infn.it/atlas/electronics/home.html R. Beccherle

More information

RTPC 12 Simulation. Jixie Zhang Aug 2014

RTPC 12 Simulation. Jixie Zhang Aug 2014 RTPC 12 Simulation Aug 2014 1 Outline Try to answer the following questions: 1) What is the highest luminosity we can realistically achieve (including trigger and DAQ rates), and how big of a problem will

More information

BABAR IFR TDC Board (ITB): system design

BABAR IFR TDC Board (ITB): system design BABAR IFR TDC Board (ITB): system design Version 1.1 12 december 1997 G. Crosetti, S. Minutoli, E. Robutti I.N.F.N. Genova 1. Introduction TDC readout of the IFR will be used during BABAR data taking to

More information

Compact Muon Solenoid (CMS) Front End Driver (FED) Front-End FPGA. Technical Description

Compact Muon Solenoid (CMS) Front End Driver (FED) Front-End FPGA. Technical Description Compact Muon Solenoid (CMS) Front End Driver (FED) Front-End FPGA Technical Description Written by: Bill Gannon Supervisor: Rob Halsall Version: 1.1 Printed: 16:15 11 March 2002 Page 1 of 37 Version 1.1

More information

DE2-115/FGPA README. 1. Running the DE2-115 for basic operation. 2. The code/project files. Project Files

DE2-115/FGPA README. 1. Running the DE2-115 for basic operation. 2. The code/project files. Project Files DE2-115/FGPA README For questions email: jeff.nicholls.63@gmail.com (do not hesitate!) This document serves the purpose of providing additional information to anyone interested in operating the DE2-115

More information

KEK. Belle2Link. Belle2Link 1. S. Nishida. S. Nishida (KEK) Nov.. 26, Aerogel RICH Readout

KEK. Belle2Link. Belle2Link 1. S. Nishida. S. Nishida (KEK) Nov.. 26, Aerogel RICH Readout S. Nishida KEK Nov 26, 2010 1 Introduction (Front end electronics) ASIC (SA) Readout (Digital Part) HAPD (144ch) Preamp Shaper Comparator L1 buffer DAQ group Total ~ 500 HAPDs. ASIC: 36ch per chip (i.e.

More information

HaRDROC performance IN2P3/LAL+IPNL+LLR IN2P3/IPNL LYON. M. BOUCHEL, J. FLEURY, C. de LA TAILLE, G. MARTIN-CHASSARD, N. SEGUIN-MOREAU IN2P3/LAL ORSAY

HaRDROC performance IN2P3/LAL+IPNL+LLR IN2P3/IPNL LYON. M. BOUCHEL, J. FLEURY, C. de LA TAILLE, G. MARTIN-CHASSARD, N. SEGUIN-MOREAU IN2P3/LAL ORSAY HaRDROC performance IN2P3/LAL+IPNL+LLR R. GAGLIONE, I. LAKTINEH, H. MATHEZ IN2P3/IPNL LYON M. BOUCHEL, J. FLEURY, C. de LA TAILLE, G. MARTIN-CHASSARD, N. SEGUIN-MOREAU IN2P3/LAL ORSAY V. BOUDRY, J.C. BRIENT,

More information

Study of the performances of the ALICE muon spectrometer

Study of the performances of the ALICE muon spectrometer Study of the performances of the ALICE muon spectrometer Blanc Aurélien, December 2008 PhD description Study of the performances of the ALICE muon spectrometer instrumentation/detection. Master Physique

More information

Design, Realization and Test of a DAQ chain for ALICE ITS Experiment. S. Antinori, D. Falchieri, A. Gabrielli, E. Gandolfi

Design, Realization and Test of a DAQ chain for ALICE ITS Experiment. S. Antinori, D. Falchieri, A. Gabrielli, E. Gandolfi Design, Realization and Test of a DAQ chain for ALICE ITS Experiment S. Antinori, D. Falchieri, A. Gabrielli, E. Gandolfi Physics Department, Bologna University, Viale Berti Pichat 6/2 40127 Bologna, Italy

More information

The hybrid photon detectors for the LHCb-RICH counters

The hybrid photon detectors for the LHCb-RICH counters 7 th International Conference on Advanced Technology and Particle Physics The hybrid photon detectors for the LHCb-RICH counters Maria Girone, CERN and Imperial College on behalf of the LHCb-RICH group

More information

THE ATLAS Inner Detector [2] is designed for precision

THE ATLAS Inner Detector [2] is designed for precision The ATLAS Pixel Detector Fabian Hügging on behalf of the ATLAS Pixel Collaboration [1] arxiv:physics/412138v1 [physics.ins-det] 21 Dec 4 Abstract The ATLAS Pixel Detector is the innermost layer of the

More information

8 DIGITAL SIGNAL PROCESSOR IN OPTICAL TOMOGRAPHY SYSTEM

8 DIGITAL SIGNAL PROCESSOR IN OPTICAL TOMOGRAPHY SYSTEM Recent Development in Instrumentation System 99 8 DIGITAL SIGNAL PROCESSOR IN OPTICAL TOMOGRAPHY SYSTEM Siti Zarina Mohd Muji Ruzairi Abdul Rahim Chiam Kok Thiam 8.1 INTRODUCTION Optical tomography involves

More information

Dual Link DVI Receiver Implementation

Dual Link DVI Receiver Implementation Dual Link DVI Receiver Implementation This application note describes some features of single link receivers that must be considered when using 2 devices for a dual link application. Specific characteristics

More information

The Readout Architecture of the ATLAS Pixel System. 2 The ATLAS Pixel Detector System

The Readout Architecture of the ATLAS Pixel System. 2 The ATLAS Pixel Detector System The Readout Architecture of the ATLAS Pixel System Roberto Beccherle, on behalf of the ATLAS Pixel Collaboration Istituto Nazionale di Fisica Nucleare, Sez. di Genova Via Dodecaneso 33, I-646 Genova, ITALY

More information

Testing and Characterization of the MPA Pixel Readout ASIC for the Upgrade of the CMS Outer Tracker at the High Luminosity LHC

Testing and Characterization of the MPA Pixel Readout ASIC for the Upgrade of the CMS Outer Tracker at the High Luminosity LHC Testing and Characterization of the MPA Pixel Readout ASIC for the Upgrade of the CMS Outer Tracker at the High Luminosity LHC Dena Giovinazzo University of California, Santa Cruz Supervisors: Davide Ceresa

More information

First LHC Beams in ATLAS. Peter Krieger University of Toronto On behalf of the ATLAS Collaboration

First LHC Beams in ATLAS. Peter Krieger University of Toronto On behalf of the ATLAS Collaboration First LHC Beams in ATLAS Peter Krieger University of Toronto On behalf of the ATLAS Collaboration Cutaway View LHC/ATLAS (Graphic) P. Krieger, University of Toronto Aspen Winter Conference, Feb. 2009 2

More information

Commissioning and Initial Performance of the Belle II itop PID Subdetector

Commissioning and Initial Performance of the Belle II itop PID Subdetector Commissioning and Initial Performance of the Belle II itop PID Subdetector Gary Varner University of Hawaii TIPP 2017 Beijing Upgrading PID Performance - PID (π/κ) detectors - Inside current calorimeter

More information

Global Trigger Trigger meeting 27.Sept 00 A.Taurok

Global Trigger Trigger meeting 27.Sept 00 A.Taurok Global Trigger Trigger meeting 27.Sept 00 A.Taurok Global Trigger Crate GT crate VME 9U Backplane 4 MUONS parallel CLOCK, BC_Reset... READOUT _links PSB 12 PSB 12 24 4 6 GT MU 6 GT MU PSB 12 PSB 12 PSB

More information

BEMC electronics operation

BEMC electronics operation Appendix A BEMC electronics operation The tower phototubes are powered by CockroftWalton (CW) bases that are able to keep the high voltage up to a high precision. The bases are programmed through the serial

More information

TEC Long term test software status

TEC Long term test software status TEC Long term test software status September 2004 1 ''LtStruct related packages '' LtStruct (ls_0_20): Procedure control, DAQ and FEC control Defect Analyzer: Error tagging ( strips, sensor, hybrid). Root

More information

Automatic Projector Tilt Compensation System

Automatic Projector Tilt Compensation System Automatic Projector Tilt Compensation System Ganesh Ajjanagadde James Thomas Shantanu Jain October 30, 2014 1 Introduction Due to the advances in semiconductor technology, today s display projectors can

More information

Logic Analyzer Triggering Techniques to Capture Elusive Problems

Logic Analyzer Triggering Techniques to Capture Elusive Problems Logic Analyzer Triggering Techniques to Capture Elusive Problems Efficient Solutions to Elusive Problems For digital designers who need to verify and debug their product designs, logic analyzers provide

More information

Short summary of ATLAS Japan Group for LHC/ATLAS upgrade review Liquid Argon Calorimeter

Short summary of ATLAS Japan Group for LHC/ATLAS upgrade review Liquid Argon Calorimeter Preprint typeset in JINST style - HYPER VERSION Short summary of ATLAS Japan Group for LHC/ATLAS upgrade review Liquid Argon Calorimeter ATLAS Japan Group E-mail: Yuji.Enari@cern.ch ABSTRACT: Short summary

More information

The TRIGGER/CLOCK/SYNC Distribution for TJNAF 12 GeV Upgrade Experiments

The TRIGGER/CLOCK/SYNC Distribution for TJNAF 12 GeV Upgrade Experiments 1 1 1 1 1 1 1 1 0 1 0 The TRIGGER/CLOCK/SYNC Distribution for TJNAF 1 GeV Upgrade Experiments William GU, et al. DAQ group and Fast Electronics group Thomas Jefferson National Accelerator Facility (TJNAF),

More information

THE WaveDAQ SYSTEM FOR THE MEG II UPGRADE

THE WaveDAQ SYSTEM FOR THE MEG II UPGRADE Stefan Ritt, Paul Scherrer Institute, Switzerland Luca Galli, Fabio Morsani, Donato Nicolò, INFN Pisa, Italy THE WaveDAQ SYSTEM FOR THE MEG II UPGRADE DRS4 Chip 0.2-2 ns Inverter Domino ring chain IN Clock

More information

RX40_V1_0 Measurement Report F.Faccio

RX40_V1_0 Measurement Report F.Faccio RX40_V1_0 Measurement Report F.Faccio This document follows the previous report An 80Mbit/s Optical Receiver for the CMS digital optical link, dating back to January 2000 and concerning the first prototype

More information

INSTRUCTION MANUAL FOR MODEL IOC534 LOW LATENCY FIBER OPTIC TRANSMIT / RECEIVE MODULE

INSTRUCTION MANUAL FOR MODEL IOC534 LOW LATENCY FIBER OPTIC TRANSMIT / RECEIVE MODULE 210 South Third Street North Wales, PA USA 19454 (T) 215-699-2060 (F) 215-699-2061 INSTRUCTION MANUAL FOR LOW LATENCY FIBER OPTIC TRANSMIT / RECEIVE MODULE i TO THE CUSTOMER Thank you for purchasing this

More information

The ALICE on-detector pixel PILOT system - OPS

The ALICE on-detector pixel PILOT system - OPS The ALICE on-detector PILOT system - OPS Kluge, A. 1, Anelli, G. 1, Antinori, F. 2, Ban, J. 3, Burns, M. 1, Campbell, M. 1, Chochula, P. 1, 4, Dinapoli, R. 1, Formenti, F. 1,van Hunen, J.J. 1, Krivda,

More information

THE DIAGNOSTICS BACK END SYSTEM BASED ON THE IN HOUSE DEVELOPED A DA AND A D O BOARDS

THE DIAGNOSTICS BACK END SYSTEM BASED ON THE IN HOUSE DEVELOPED A DA AND A D O BOARDS THE DIAGNOSTICS BACK END SYSTEM BASED ON THE IN HOUSE DEVELOPED A DA AND A D O BOARDS A. O. Borga #, R. De Monte, M. Ferianis, L. Pavlovic, M. Predonzani, ELETTRA, Trieste, Italy Abstract Several diagnostic

More information

TTC machine interface (TTCmi) User Manual

TTC machine interface (TTCmi) User Manual C Rev 1.3 TTC machine interface (TTCmi) User Manual B.G. Taylor Fig. 1 TTCmi minicrate Introduction The RD12 TTCmi provides a standard interface between the LHC machine timing which is broadcast from the

More information

The Alice Silicon Pixel Detector (SPD) Peter Chochula for the Alice Pixel Collaboration

The Alice Silicon Pixel Detector (SPD) Peter Chochula for the Alice Pixel Collaboration The Alice Silicon Pixel Detector (SPD) Peter Chochula for the Alice Pixel Collaboration The Alice Pixel Detector R 1 =3.9 cm R 2 =7.6 cm Main Physics Goal Heavy Flavour Physics D 0 K π+ 15 days Pb-Pb data

More information

Trigger Report. Wesley H. Smith CMS Trigger Project Manager Report to Steering Committee February 23, 2004

Trigger Report. Wesley H. Smith CMS Trigger Project Manager Report to Steering Committee February 23, 2004 Trigger Report Wesley H. Smith CMS Trigger Project Manager Report to Steering Committee February 23, 2004 Outline: Calorimeter Triggers Muon Triggers Global Triggers The pdf file of this talk is available

More information

Front End Electronics

Front End Electronics CLAS12 Ring Imaging Cherenkov (RICH) Detector Mid-term Review Front End Electronics INFN - Ferrara Matteo Turisini 2015 October 13 th Overview Readout requirements Hardware design Electronics boards Integration

More information

Rome group activity since last meeting (4)

Rome group activity since last meeting (4) OLYMPUS Collaboration DESY 30/August/2010 Rome group activity since last meeting (4) DESY 30/August/2010 Olympus Collaboration meeting Salvatore Frullani / INFN-Rome Sanità Group 1 GEM electronics: Outline

More information

US CMS Endcap Muon. Regional CSC Trigger System WBS 3.1.1

US CMS Endcap Muon. Regional CSC Trigger System WBS 3.1.1 WBS Dictionary/Basis of Estimate Documentation US CMS Endcap Muon Regional CSC Trigger System WBS 3.1.1-1- 1. INTRODUCTION 1.1 The CMS Muon Trigger System The CMS trigger and data acquisition system is

More information

SingMai Electronics SM06. Advanced Composite Video Interface: HD-SDI to acvi converter module. User Manual. Revision 0.

SingMai Electronics SM06. Advanced Composite Video Interface: HD-SDI to acvi converter module. User Manual. Revision 0. SM06 Advanced Composite Video Interface: HD-SDI to acvi converter module User Manual Revision 0.4 1 st May 2017 Page 1 of 26 Revision History Date Revisions Version 17-07-2016 First Draft. 0.1 28-08-2016

More information

Accelerator Controls Part2: CERN central timing system

Accelerator Controls Part2: CERN central timing system Accelerator Controls Part2: CERN central timing system CAS 2009@Divonne Hermann Schmickler Outline Part 2 Requested Functionality of the CERN timing system Implementation: Hardware Details Software Details:

More information

The CMS Phase 1 Pixel Detector

The CMS Phase 1 Pixel Detector BPIX FPIX The CMS Phase Pixel Detector Julia Gray University of Kansas On behalf of CMS Tracker Collaboration BPIX supply tube: Module connections Optical links DC-DC conversion Cooling loop FPIX Service

More information

12 Cathode Strip Chamber Track-Finder

12 Cathode Strip Chamber Track-Finder CMS Trigger TDR DRAFT 12 Cathode Strip Chamber Track-Finder 12 Cathode Strip Chamber Track-Finder 12.1 Requirements 12.1.1 Physics Requirements The L1 trigger electronics of the CMS muon system must measure

More information

A pixel chip for tracking in ALICE and particle identification in LHCb

A pixel chip for tracking in ALICE and particle identification in LHCb A pixel chip for tracking in ALICE and particle identification in LHCb K.Wyllie 1), M.Burns 1), M.Campbell 1), E.Cantatore 1), V.Cencelli 2) R.Dinapoli 3), F.Formenti 1), T.Grassi 1), E.Heijne 1), P.Jarron

More information

A Serializer ASIC at 5 Gbps for Detector Front-end Electronics Readout

A Serializer ASIC at 5 Gbps for Detector Front-end Electronics Readout A Serializer ASIC at 5 Gbps for Detector Front-end Electronics Readout Jingbo Ye, on behalf of the ATLAS Liquid Argon Calorimeter Group Department of Physics, Southern Methodist University, Dallas, Texas

More information

Oscilloscopes, logic analyzers ScopeLogicDAQ

Oscilloscopes, logic analyzers ScopeLogicDAQ Oscilloscopes, logic analyzers ScopeLogicDAQ ScopeLogicDAQ 2.0 is a comprehensive measurement system used for data acquisition. The device includes a twochannel digital oscilloscope and a logic analyser

More information

LHC Beam Instrumentation Further Discussion

LHC Beam Instrumentation Further Discussion LHC Beam Instrumentation Further Discussion LHC Machine Advisory Committee 9 th December 2005 Rhodri Jones (CERN AB/BDI) Possible Discussion Topics Open Questions Tune measurement base band tune & 50Hz

More information

Large Area, High Speed Photo-detectors Readout

Large Area, High Speed Photo-detectors Readout Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun Tang +, Gary Varner ++, and Henry Frisch + + University

More information

The CMS Drift Tube Trigger Track Finder

The CMS Drift Tube Trigger Track Finder Preprint typeset in JINST style - HYPER VERSION The CMS Drift Tube Trigger Track Finder J. Erö, Ch. Deldicque, M. Galánthay, H. Bergauer, M. Jeitler, K. Kastner, B. Neuherz, I. Mikulec, M. Padrta, H. Rohringer,

More information

The ATLAS Pixel Detector

The ATLAS Pixel Detector The ATLAS Pixel Detector Fabian Hügging arxiv:physics/0412138v2 [physics.ins-det] 5 Aug 5 Abstract The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly

More information

The Status of the ATLAS Inner Detector

The Status of the ATLAS Inner Detector The Status of the ATLAS Inner Detector Introduction Hans-Günther Moser for the ATLAS Collaboration Outline Tracking in ATLAS ATLAS ID Pixel detector Silicon Tracker Transition Radiation Tracker System

More information

CESR BPM System Calibration

CESR BPM System Calibration CESR BPM System Calibration Joseph Burrell Mechanical Engineering, WSU, Detroit, MI, 48202 (Dated: August 11, 2006) The Cornell Electron Storage Ring(CESR) uses beam position monitors (BPM) to determine

More information

Front end electronics for a TPC at future linear colliders

Front end electronics for a TPC at future linear colliders EUDET-Memo-010-30 EUDET Front end electronics for a TPC at future linear colliders L. Jönsson Lund University, Lund, Sweden on behalf of the LCTPC collaboration 8.11.010 Abstract The actual status of the

More information

The Silicon Pixel Detector (SPD) for the ALICE Experiment

The Silicon Pixel Detector (SPD) for the ALICE Experiment The Silicon Pixel Detector (SPD) for the ALICE Experiment V. Manzari/INFN Bari, Italy for the SPD Project in the ALICE Experiment INFN and Università Bari, Comenius University Bratislava, INFN and Università

More information

Silicon Drift Detectors for the NLC

Silicon Drift Detectors for the NLC Silicon Drift Detectors for the NLC Rene Bellwied (Wayne State University) SD Tracking Meeting September 18th, 2003 Proposed layout for LC tracker Silicon Drift technology hardware progress & plans SVT

More information

Minutes of the ALICE Technical Board, November 14 th, The draft minutes of the October 2013 TF meeting were approved without any changes.

Minutes of the ALICE Technical Board, November 14 th, The draft minutes of the October 2013 TF meeting were approved without any changes. Minutes of the ALICE Technical Board, November 14 th, 2013 ALICE MIN-2013-6 TB-2013 Date 14.11.2013 1. Minutes The draft minutes of the October 2013 TF meeting were approved without any changes. 2. LS1

More information

COGGING & FINE ADJUST OF THE BEAM BEAM PHASE

COGGING & FINE ADJUST OF THE BEAM BEAM PHASE COGGING&FINEADJUST OFTHEBEAM BEAMPHASE HINTSFOROPERATION DEFINITIONS COGGING The Cogging is the choice of the Frev(= Revolution Frequency = orbit) coarse phase of BEAM2 versus BEAM1(by steps of one RF

More information

Description of the Synchronization and Link Board

Description of the Synchronization and Link Board Available on CMS information server CMS IN 2005/007 March 8, 2005 Description of the Synchronization and Link Board ECAL and HCAL Interface to the Regional Calorimeter Trigger Version 3.0 (SLB-S) PMC short

More information

CMS Pixel Detector Performance, Operations,Calibrations & Software Danek Kotlinski/PSI Split, 8/10/2012

CMS Pixel Detector Performance, Operations,Calibrations & Software Danek Kotlinski/PSI Split, 8/10/2012 CMS Pixel Detector Performance, Operations,Calibrations & Software Split, 8/10/2012 Content: 1) Introduction 2) Performance 3) Operations 4) Problems (tomorrow) 5) Pixel DAQ hardware 6) Calibrations 7)

More information

Mass production testing of the front-end ASICs for the ALICE SDD system

Mass production testing of the front-end ASICs for the ALICE SDD system Mass production testing of the front-end ASICs for the ALICE SDD system L. Toscano a, R.Arteche Diaz b,e, S.Di Liberto b, M.I.Martínez a,d, S.Martoiu a, M.Masera c, G.Mazza a, M.A.Mazzoni b, F.Meddi b,

More information

Copyright 2018 Lev S. Kurilenko

Copyright 2018 Lev S. Kurilenko Copyright 2018 Lev S. Kurilenko FPGA Development of an Emulator Framework and a High Speed I/O Core for the ITk Pixel Upgrade Lev S. Kurilenko A thesis submitted in partial fulfillment of the requirements

More information

The Large TPC Prototype: Infrastructure/ Status/ Plans

The Large TPC Prototype: Infrastructure/ Status/ Plans The Large TPC Prototype: Infrastructure/ Status/ Plans Takeshi Matsuda, KEK/ DESY Ties Behnke, DESY For the LC-TPC collaboration Status of the test beam infrastructure Status of the Large Prototype Field

More information

Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector

Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector Scintillation Tile Hodoscope for the PANDA Barrel Time-Of-Flight Detector William Nalti, Ken Suzuki, Stefan-Meyer-Institut, ÖAW on behalf of the PANDA/Barrel-TOF(SciTil) group 12.06.2018, ICASiPM2018 1

More information

THE TIMING COUNTER OF THE MEG EXPERIMENT: DESIGN AND COMMISSIONING (OR HOW TO BUILD YOUR OWN HIGH TIMING RESOLUTION DETECTOR )

THE TIMING COUNTER OF THE MEG EXPERIMENT: DESIGN AND COMMISSIONING (OR HOW TO BUILD YOUR OWN HIGH TIMING RESOLUTION DETECTOR ) THE TIMING COUNTER OF THE MEG EXPERIMENT: DESIGN AND COMMISSIONING (OR HOW TO BUILD YOUR OWN HIGH TIMING RESOLUTION DETECTOR ) S. DUSSONI FRONTIER DETECTOR FOR FRONTIER PHYSICS - LA BIODOLA 2009 Fastest

More information

Logic Analysis Basics

Logic Analysis Basics Logic Analysis Basics September 27, 2006 presented by: Alex Dickson Copyright 2003 Agilent Technologies, Inc. Introduction If you have ever asked yourself these questions: What is a logic analyzer? What

More information

Logic Analysis Basics

Logic Analysis Basics Logic Analysis Basics September 27, 2006 presented by: Alex Dickson Copyright 2003 Agilent Technologies, Inc. Introduction If you have ever asked yourself these questions: What is a logic analyzer? What

More information

BER MEASUREMENT IN THE NOISY CHANNEL

BER MEASUREMENT IN THE NOISY CHANNEL BER MEASUREMENT IN THE NOISY CHANNEL PREPARATION... 2 overview... 2 the basic system... 3 a more detailed description... 4 theoretical predictions... 5 EXPERIMENT... 6 the ERROR COUNTING UTILITIES module...

More information

F. Vasey, G. Cervelli, K. Gill, R. Grabit, M. Hedberg, F. Jensen, A. Zanet. CERN, 1211 Geneva 23, Switzerland

F. Vasey, G. Cervelli, K. Gill, R. Grabit, M. Hedberg, F. Jensen, A. Zanet. CERN, 1211 Geneva 23, Switzerland Project status of the CMS tracker optical links (adapted from the proceedings of the sixth worshop on electronics for the LHC experiments, Cracow, -5 Sept. 2, pp. 289-293) F. Vasey, G. Cervelli, K. Gill,

More information

GREAT 32 channel peak sensing ADC module: User Manual

GREAT 32 channel peak sensing ADC module: User Manual GREAT 32 channel peak sensing ADC module: User Manual Specification: 32 independent timestamped peak sensing, ADC channels. Input range 0 to +8V. Sliding scale correction. Peaking time greater than 1uS.

More information

Evaluation of an Optical Data Transfer System for the LHCb RICH Detectors.

Evaluation of an Optical Data Transfer System for the LHCb RICH Detectors. Evaluation of an Optical Data Transfer System for the LHCb RICH Detectors. N.Smale, M.Adinolfi, J.Bibby, G.Damerell, C.Newby, L.Somerville, N.Harnew, S.Topp-Jorgensen; University of Oxford, UK V.Gibson,

More information

KLM: TARGETX. User-Interface for Testing TARGETX Brief Testing Overview Bronson Edralin 04/06/15

KLM: TARGETX. User-Interface for Testing TARGETX Brief Testing Overview Bronson Edralin 04/06/15 KLM: TARGETX User-Interface for Testing TARGETX Brief Testing Overview Bronson Edralin 1 TARGETX Test Team TARGETX Waveform Sampling/Digitizing ASIC Designer Dr. Gary S. Varner Features 1 GSa/s 16 Channels

More information