Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization

Size: px
Start display at page:

Download "Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization"

Transcription

1 Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization Huayu Li, Hengshu Zhu #, Yong Ge, Yanjie Fu +,Yuan Ge Computer Science Department, UNC Charlotte # Baidu Research-Big Data Lab + Rutgers University Anhui Polytechnic University 5/1/2015 1

2 Outline Introduction Challenges of TV Recommendation Data Methods Experiments Conclusion 5/1/2015 2

3 Introduction Nowadays, smart TV is very prevalent 5/1/2015 3

4 Introduction However, which TV program should we watch? 5/1/2015 4

5 Introduction TV Recommender System is very important! However, which TV program should we watch? 5/1/2015 5

6 Outline Introduction Challenges of TV Recommendation Data Methods Experiments Conclusion 5/1/2015 6

7 Television Watching Groups TV Program 7

8 Watching group refers to users who have similar preferences for TV programs in front of a television. Television Watching Groups TV Program 8

9 Challenges of TV Recommendation 1. How to infer the preference for different watching group from such a large number of individual watching records? 2. How to handle the implicit feedbacks of users, e.g. watching time? 5/1/2015 9

10 Outline Introduction Challenges of TV Recommendation Data Methods Experiments Conclusion 5/1/

11 Data 1. Each watching record includes: Television ID Program ID Time Information For example : TV ID Program ID Watching Duration Start Time Total Time 2 ba T00:00:00.000Z Each TV program includes: Title Two types of genres: first level genre and sub-genre 5/1/

12 Data 1. Each watching record includes: Television ID Program ID Time Information For example : # Televisions # TV Programs # Watching Records TV ID Program ID Watching Duration Start Time Total Time 230,196 4,289 14,159,678 2 ba T00:00:00.000Z Each TV program includes: Title Two types of genres: first level genre and sub-genre 5/1/

13 Outline Introduction Challenges of TV Recommendation Data Methods Experiments Conclusion 5/1/

14 Methods Basic Framework Step 1: Discover Watching Groups Step 2: Learn Preference of Television 5/1/

15 Methods Basic Framework Step 1: Discover Watching Groups Step 2: Learn Preference of Television 5/1/

16 Methods Discovery of Watching Groups Television Clustering (K-means) Feature: Watching frequency of TV program Estimating Watching Groups (Markov Clustering) Feature: First-level genre Sub-genre Watching time in a day Week day or weekend 5/1/

17 Methods Discovery of Watching Groups TV Group 1 TV Group 2 17

18 Methods Discovery of Watching Groups TV Group 1 TV Group 2 In each TV group, televisions have similar watching groups. 18

19 Methods Discovery of Watching Groups Television Clustering (K-means) Feature: Watching frequency of TV program Estimating Watching Groups (Markov Clustering) Feature: First-level genre Sub-genre Watching time in a day Week day or weekend 5/1/

20 Methods Discovery of Watching Groups Television Clustering (K-means) Feature: Watching frequency of TV program Estimating Watching Groups (Markov Clustering) Feature: First-level genre Sub-genre Watching time in a day Week day or weekend 5/1/

21 Methods Discovery of Watching Groups TV Group 1 TV Group 2 TV Groups The hidden watching group number 21

22 Methods mpmf Basic frame work Step 1: Discover Watching Groups Step 2: Learn Preference of Television Mixture Probabilistic Matrix Factorization (mpmf) 5/1/

23 Methods mpmf Assumption: The preferences of a television for TV programs could be decomposed into a mixture preference of the hidden watching groups. Preference of TV Preferences of Watching Groups Mixture 5/1/

24 Methods mpmf Given: The learned number of watching groups for each television group Television Program R = Television K T K Program V 5/1/

25 Methods mpmf Given: The learned number of watching groups for each television group 1. Draw television-specific latent factor from a mixture of Gaussian distribution 2. The mixture number is the number of watching groups 5/1/

26 Methods mpmf 5/1/

27 Methods mpmf Alternating Least Square for the parameter estimation. 5/1/

28 Outline Introduction Challenges of TV Recommendation Data Methods Experiments Conclusion 5/1/

29 Experiments Show an example of clustering Evaluate the proposed method s performance Prediction Accuracy Ranking Accuracy Top-K Recommendation Compare different data conversion methods 5/1/

30 Experiments An Example of clustering An example of clustering: Left is the clustering result, and Right is the corresponding program names and main genres. 5/1/

31 Experiments Prediction Accuracy Rating Conversion Cumulative ratio of watching time to the total time of a program played Baselines PMF mpmf Random # watching group # watching group as 1 # watching group as 3 5/1/

32 Experiments Ranking Accuracy 5/1/

33 Experiments Top-K Recommendation 5/1/

34 Experiments Top-K Recommendation 5/1/

35 Experiments Data Conversion Methods Data Conversion Methods Cumulative Ratios Frequency Binary Confidence Level 5/1/

36 Conclusion Design a two-stage framework Employ clustering to discover watching groups Develop probabilistic model to learn the preference of television for TV program based on Gaussian mixture distributions Evaluate the proposed model in real-world data with various metrics 5/1/

37 Thank you! Question? 5/1/

Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization

Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization Huayu Li Hengshu Zhu Yong Ge Yanjie Fu Yuan Ge ± Abstract With the rapid development of smart TV industry, a large number

More information

BIBLIOGRAPHIC DATA: A DIFFERENT ANALYSIS PERSPECTIVE. Francesca De Battisti *, Silvia Salini

BIBLIOGRAPHIC DATA: A DIFFERENT ANALYSIS PERSPECTIVE. Francesca De Battisti *, Silvia Salini Electronic Journal of Applied Statistical Analysis EJASA (2012), Electron. J. App. Stat. Anal., Vol. 5, Issue 3, 353 359 e-issn 2070-5948, DOI 10.1285/i20705948v5n3p353 2012 Università del Salento http://siba-ese.unile.it/index.php/ejasa/index

More information

Computational Modelling of Harmony

Computational Modelling of Harmony Computational Modelling of Harmony Simon Dixon Centre for Digital Music, Queen Mary University of London, Mile End Rd, London E1 4NS, UK simon.dixon@elec.qmul.ac.uk http://www.elec.qmul.ac.uk/people/simond

More information

A Discriminative Approach to Topic-based Citation Recommendation

A Discriminative Approach to Topic-based Citation Recommendation A Discriminative Approach to Topic-based Citation Recommendation Jie Tang and Jing Zhang Department of Computer Science and Technology, Tsinghua University, Beijing, 100084. China jietang@tsinghua.edu.cn,zhangjing@keg.cs.tsinghua.edu.cn

More information

A Statistical Framework to Enlarge the Potential of Digital TV Broadcasting

A Statistical Framework to Enlarge the Potential of Digital TV Broadcasting A Statistical Framework to Enlarge the Potential of Digital TV Broadcasting Maria Teresa Andrade, Artur Pimenta Alves INESC Porto/FEUP Porto, Portugal Aims of the work use statistical multiplexing for

More information

Topic 11. Score-Informed Source Separation. (chroma slides adapted from Meinard Mueller)

Topic 11. Score-Informed Source Separation. (chroma slides adapted from Meinard Mueller) Topic 11 Score-Informed Source Separation (chroma slides adapted from Meinard Mueller) Why Score-informed Source Separation? Audio source separation is useful Music transcription, remixing, search Non-satisfying

More information

Soundprism: An Online System for Score-Informed Source Separation of Music Audio Zhiyao Duan, Student Member, IEEE, and Bryan Pardo, Member, IEEE

Soundprism: An Online System for Score-Informed Source Separation of Music Audio Zhiyao Duan, Student Member, IEEE, and Bryan Pardo, Member, IEEE IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 6, OCTOBER 2011 1205 Soundprism: An Online System for Score-Informed Source Separation of Music Audio Zhiyao Duan, Student Member, IEEE,

More information

Automatic Piano Music Transcription

Automatic Piano Music Transcription Automatic Piano Music Transcription Jianyu Fan Qiuhan Wang Xin Li Jianyu.Fan.Gr@dartmouth.edu Qiuhan.Wang.Gr@dartmouth.edu Xi.Li.Gr@dartmouth.edu 1. Introduction Writing down the score while listening

More information

WHAT'S HOT: LINEAR POPULARITY PREDICTION FROM TV AND SOCIAL USAGE DATA Jan Neumann, Xiaodong Yu, and Mohamad Ali Torkamani Comcast Labs

WHAT'S HOT: LINEAR POPULARITY PREDICTION FROM TV AND SOCIAL USAGE DATA Jan Neumann, Xiaodong Yu, and Mohamad Ali Torkamani Comcast Labs WHAT'S HOT: LINEAR POPULARITY PREDICTION FROM TV AND SOCIAL USAGE DATA Jan Neumann, Xiaodong Yu, and Mohamad Ali Torkamani Comcast Labs Abstract Large numbers of TV channels are available to TV consumers

More information

GENDER IDENTIFICATION AND AGE ESTIMATION OF USERS BASED ON MUSIC METADATA

GENDER IDENTIFICATION AND AGE ESTIMATION OF USERS BASED ON MUSIC METADATA GENDER IDENTIFICATION AND AGE ESTIMATION OF USERS BASED ON MUSIC METADATA Ming-Ju Wu Computer Science Department National Tsing Hua University Hsinchu, Taiwan brian.wu@mirlab.org Jyh-Shing Roger Jang Computer

More information

Take a Break, Bach! Let Machine Learning Harmonize That Chorale For You. Chris Lewis Stanford University

Take a Break, Bach! Let Machine Learning Harmonize That Chorale For You. Chris Lewis Stanford University Take a Break, Bach! Let Machine Learning Harmonize That Chorale For You Chris Lewis Stanford University cmslewis@stanford.edu Abstract In this project, I explore the effectiveness of the Naive Bayes Classifier

More information

POL 572 Multivariate Political Analysis

POL 572 Multivariate Political Analysis POL 572 Multivariate Political Analysis Fall 2007 Prof. Gregory Wawro 212-854-8540 247 Corwin Hall gwawro@princeton.edu Office Hours: Tues. and Thurs. 4 5pm and by appointment Course Goals Please note

More information

gresearch Focus Cognitive Sciences

gresearch Focus Cognitive Sciences Learning about Music Cognition by Asking MIR Questions Sebastian Stober August 12, 2016 CogMIR, New York City sstober@uni-potsdam.de http://www.uni-potsdam.de/mlcog/ MLC g Machine Learning in Cognitive

More information

Multiple instrument tracking based on reconstruction error, pitch continuity and instrument activity

Multiple instrument tracking based on reconstruction error, pitch continuity and instrument activity Multiple instrument tracking based on reconstruction error, pitch continuity and instrument activity Holger Kirchhoff 1, Simon Dixon 1, and Anssi Klapuri 2 1 Centre for Digital Music, Queen Mary University

More information

ECE302H1S Probability and Applications (Updated January 10, 2017)

ECE302H1S Probability and Applications (Updated January 10, 2017) ECE302H1S 2017 - Probability and Applications (Updated January 10, 2017) Description: Engineers and scientists deal with systems, devices, and environments that contain unavoidable elements of randomness.

More information

Structured training for large-vocabulary chord recognition. Brian McFee* & Juan Pablo Bello

Structured training for large-vocabulary chord recognition. Brian McFee* & Juan Pablo Bello Structured training for large-vocabulary chord recognition Brian McFee* & Juan Pablo Bello Small chord vocabularies Typically a supervised learning problem N C:maj C:min C#:maj C#:min D:maj D:min......

More information

CTP431- Music and Audio Computing Music Information Retrieval. Graduate School of Culture Technology KAIST Juhan Nam

CTP431- Music and Audio Computing Music Information Retrieval. Graduate School of Culture Technology KAIST Juhan Nam CTP431- Music and Audio Computing Music Information Retrieval Graduate School of Culture Technology KAIST Juhan Nam 1 Introduction ü Instrument: Piano ü Genre: Classical ü Composer: Chopin ü Key: E-minor

More information

A PROBABILISTIC TOPIC MODEL FOR UNSUPERVISED LEARNING OF MUSICAL KEY-PROFILES

A PROBABILISTIC TOPIC MODEL FOR UNSUPERVISED LEARNING OF MUSICAL KEY-PROFILES A PROBABILISTIC TOPIC MODEL FOR UNSUPERVISED LEARNING OF MUSICAL KEY-PROFILES Diane J. Hu and Lawrence K. Saul Department of Computer Science and Engineering University of California, San Diego {dhu,saul}@cs.ucsd.edu

More information

Hidden Markov Model based dance recognition

Hidden Markov Model based dance recognition Hidden Markov Model based dance recognition Dragutin Hrenek, Nenad Mikša, Robert Perica, Pavle Prentašić and Boris Trubić University of Zagreb, Faculty of Electrical Engineering and Computing Unska 3,

More information

Automatic Labelling of tabla signals

Automatic Labelling of tabla signals ISMIR 2003 Oct. 27th 30th 2003 Baltimore (USA) Automatic Labelling of tabla signals Olivier K. GILLET, Gaël RICHARD Introduction Exponential growth of available digital information need for Indexing and

More information

A STATISTICAL VIEW ON THE EXPRESSIVE TIMING OF PIANO ROLLED CHORDS

A STATISTICAL VIEW ON THE EXPRESSIVE TIMING OF PIANO ROLLED CHORDS A STATISTICAL VIEW ON THE EXPRESSIVE TIMING OF PIANO ROLLED CHORDS Mutian Fu 1 Guangyu Xia 2 Roger Dannenberg 2 Larry Wasserman 2 1 School of Music, Carnegie Mellon University, USA 2 School of Computer

More information

Music Composition with RNN

Music Composition with RNN Music Composition with RNN Jason Wang Department of Statistics Stanford University zwang01@stanford.edu Abstract Music composition is an interesting problem that tests the creativity capacities of artificial

More information

TRACKING THE ODD : METER INFERENCE IN A CULTURALLY DIVERSE MUSIC CORPUS

TRACKING THE ODD : METER INFERENCE IN A CULTURALLY DIVERSE MUSIC CORPUS TRACKING THE ODD : METER INFERENCE IN A CULTURALLY DIVERSE MUSIC CORPUS Andre Holzapfel New York University Abu Dhabi andre@rhythmos.org Florian Krebs Johannes Kepler University Florian.Krebs@jku.at Ajay

More information

A Bayesian Network for Real-Time Musical Accompaniment

A Bayesian Network for Real-Time Musical Accompaniment A Bayesian Network for Real-Time Musical Accompaniment Christopher Raphael Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA 01003-4515, raphael~math.umass.edu

More information

Enabling editors through machine learning

Enabling editors through machine learning Meta Follow Meta is an AI company that provides academics & innovation-driven companies with powerful views of t Dec 9, 2016 9 min read Enabling editors through machine learning Examining the data science

More information

Supervised Learning in Genre Classification

Supervised Learning in Genre Classification Supervised Learning in Genre Classification Introduction & Motivation Mohit Rajani and Luke Ekkizogloy {i.mohit,luke.ekkizogloy}@gmail.com Stanford University, CS229: Machine Learning, 2009 Now that music

More information

Chapter 27. Inferences for Regression. Remembering Regression. An Example: Body Fat and Waist Size. Remembering Regression (cont.)

Chapter 27. Inferences for Regression. Remembering Regression. An Example: Body Fat and Waist Size. Remembering Regression (cont.) Chapter 27 Inferences for Regression Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 27-1 Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley An

More information

A STUDY ON LSTM NETWORKS FOR POLYPHONIC MUSIC SEQUENCE MODELLING

A STUDY ON LSTM NETWORKS FOR POLYPHONIC MUSIC SEQUENCE MODELLING A STUDY ON LSTM NETWORKS FOR POLYPHONIC MUSIC SEQUENCE MODELLING Adrien Ycart and Emmanouil Benetos Centre for Digital Music, Queen Mary University of London, UK {a.ycart, emmanouil.benetos}@qmul.ac.uk

More information

Reconstruction of Ca 2+ dynamics from low frame rate Ca 2+ imaging data CS229 final project. Submitted by: Limor Bursztyn

Reconstruction of Ca 2+ dynamics from low frame rate Ca 2+ imaging data CS229 final project. Submitted by: Limor Bursztyn Reconstruction of Ca 2+ dynamics from low frame rate Ca 2+ imaging data CS229 final project. Submitted by: Limor Bursztyn Introduction Active neurons communicate by action potential firing (spikes), accompanied

More information

DeepID: Deep Learning for Face Recognition. Department of Electronic Engineering,

DeepID: Deep Learning for Face Recognition. Department of Electronic Engineering, DeepID: Deep Learning for Face Recognition Xiaogang Wang Department of Electronic Engineering, The Chinese University i of Hong Kong Machine Learning with Big Data Machine learning with small data: overfitting,

More information

Automatic Construction of Synthetic Musical Instruments and Performers

Automatic Construction of Synthetic Musical Instruments and Performers Ph.D. Thesis Proposal Automatic Construction of Synthetic Musical Instruments and Performers Ning Hu Carnegie Mellon University Thesis Committee Roger B. Dannenberg, Chair Michael S. Lewicki Richard M.

More information

Chapter 21. Margin of Error. Intervals. Asymmetric Boxes Interpretation Examples. Chapter 21. Margin of Error

Chapter 21. Margin of Error. Intervals. Asymmetric Boxes Interpretation Examples. Chapter 21. Margin of Error Context Part VI Sampling Accuracy of Percentages Previously, we assumed that we knew the contents of the box and argued about chances for the draws based on this knowledge. In survey work, we frequently

More information

1 Introduction to the life course perspective. 2 Working with life course data. 3 Familial life course analysis. 4 Visualization.

1 Introduction to the life course perspective. 2 Working with life course data. 3 Familial life course analysis. 4 Visualization. Outline : clustering and visualization 1 Nicolas S. Müller, Alexis Gabadinho, Gilbert Ritschard, Matthias Studer Department of Econometrics, University of Geneva 10th International Conference on Data Warehousing

More information

WHAT MAKES FOR A HIT POP SONG? WHAT MAKES FOR A POP SONG?

WHAT MAKES FOR A HIT POP SONG? WHAT MAKES FOR A POP SONG? WHAT MAKES FOR A HIT POP SONG? WHAT MAKES FOR A POP SONG? NICHOLAS BORG AND GEORGE HOKKANEN Abstract. The possibility of a hit song prediction algorithm is both academically interesting and industry motivated.

More information

Chord Representations for Probabilistic Models

Chord Representations for Probabilistic Models R E S E A R C H R E P O R T I D I A P Chord Representations for Probabilistic Models Jean-François Paiement a Douglas Eck b Samy Bengio a IDIAP RR 05-58 September 2005 soumis à publication a b IDIAP Research

More information

Using Genre Classification to Make Content-based Music Recommendations

Using Genre Classification to Make Content-based Music Recommendations Using Genre Classification to Make Content-based Music Recommendations Robbie Jones (rmjones@stanford.edu) and Karen Lu (karenlu@stanford.edu) CS 221, Autumn 2016 Stanford University I. Introduction Our

More information

Keywords Separation of sound, percussive instruments, non-percussive instruments, flexible audio source separation toolbox

Keywords Separation of sound, percussive instruments, non-percussive instruments, flexible audio source separation toolbox Volume 4, Issue 4, April 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Investigation

More information

CS229 Project Report Polyphonic Piano Transcription

CS229 Project Report Polyphonic Piano Transcription CS229 Project Report Polyphonic Piano Transcription Mohammad Sadegh Ebrahimi Stanford University Jean-Baptiste Boin Stanford University sadegh@stanford.edu jbboin@stanford.edu 1. Introduction In this project

More information

Singer Traits Identification using Deep Neural Network

Singer Traits Identification using Deep Neural Network Singer Traits Identification using Deep Neural Network Zhengshan Shi Center for Computer Research in Music and Acoustics Stanford University kittyshi@stanford.edu Abstract The author investigates automatic

More information

arxiv: v1 [cs.lg] 15 Jun 2016

arxiv: v1 [cs.lg] 15 Jun 2016 Deep Learning for Music arxiv:1606.04930v1 [cs.lg] 15 Jun 2016 Allen Huang Department of Management Science and Engineering Stanford University allenh@cs.stanford.edu Abstract Raymond Wu Department of

More information

Resampling Statistics. Conventional Statistics. Resampling Statistics

Resampling Statistics. Conventional Statistics. Resampling Statistics Resampling Statistics Introduction to Resampling Probability Modeling Resample add-in Bootstrapping values, vectors, matrices R boot package Conclusions Conventional Statistics Assumptions of conventional

More information

AUTOREGRESSIVE MFCC MODELS FOR GENRE CLASSIFICATION IMPROVED BY HARMONIC-PERCUSSION SEPARATION

AUTOREGRESSIVE MFCC MODELS FOR GENRE CLASSIFICATION IMPROVED BY HARMONIC-PERCUSSION SEPARATION AUTOREGRESSIVE MFCC MODELS FOR GENRE CLASSIFICATION IMPROVED BY HARMONIC-PERCUSSION SEPARATION Halfdan Rump, Shigeki Miyabe, Emiru Tsunoo, Nobukata Ono, Shigeki Sagama The University of Tokyo, Graduate

More information

Study of White Gaussian Noise with Varying Signal to Noise Ratio in Speech Signal using Wavelet

Study of White Gaussian Noise with Varying Signal to Noise Ratio in Speech Signal using Wavelet American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Automatic Music Genre Classification

Automatic Music Genre Classification Automatic Music Genre Classification Nathan YongHoon Kwon, SUNY Binghamton Ingrid Tchakoua, Jackson State University Matthew Pietrosanu, University of Alberta Freya Fu, Colorado State University Yue Wang,

More information

CHAPTER-9 DEVELOPMENT OF MODEL USING ANFIS

CHAPTER-9 DEVELOPMENT OF MODEL USING ANFIS CHAPTER-9 DEVELOPMENT OF MODEL USING ANFIS 9.1 Introduction The acronym ANFIS derives its name from adaptive neuro-fuzzy inference system. It is an adaptive network, a network of nodes and directional

More information

Detecting Musical Key with Supervised Learning

Detecting Musical Key with Supervised Learning Detecting Musical Key with Supervised Learning Robert Mahieu Department of Electrical Engineering Stanford University rmahieu@stanford.edu Abstract This paper proposes and tests performance of two different

More information

COSC282 BIG DATA ANALYTICS FALL 2015 LECTURE 11 - OCT 21

COSC282 BIG DATA ANALYTICS FALL 2015 LECTURE 11 - OCT 21 COSC282 BIG DATA ANALYTICS FALL 2015 LECTURE 11 - OCT 21 1 Topics for Today Assignment 6 Vector Space Model Term Weighting Term Frequency Inverse Document Frequency Something about Assignment 6 Search

More information

TERRESTRIAL broadcasting of digital television (DTV)

TERRESTRIAL broadcasting of digital television (DTV) IEEE TRANSACTIONS ON BROADCASTING, VOL 51, NO 1, MARCH 2005 133 Fast Initialization of Equalizers for VSB-Based DTV Transceivers in Multipath Channel Jong-Moon Kim and Yong-Hwan Lee Abstract This paper

More information

Analysis of Video Transmission over Lossy Channels

Analysis of Video Transmission over Lossy Channels 1012 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 6, JUNE 2000 Analysis of Video Transmission over Lossy Channels Klaus Stuhlmüller, Niko Färber, Member, IEEE, Michael Link, and Bernd

More information

PERCEPTUAL QUALITY OF H.264/AVC DEBLOCKING FILTER

PERCEPTUAL QUALITY OF H.264/AVC DEBLOCKING FILTER PERCEPTUAL QUALITY OF H./AVC DEBLOCKING FILTER Y. Zhong, I. Richardson, A. Miller and Y. Zhao School of Enginnering, The Robert Gordon University, Schoolhill, Aberdeen, AB1 1FR, UK Phone: + 1, Fax: + 1,

More information

A Shift-Invariant Latent Variable Model for Automatic Music Transcription

A Shift-Invariant Latent Variable Model for Automatic Music Transcription Emmanouil Benetos and Simon Dixon Centre for Digital Music, School of Electronic Engineering and Computer Science Queen Mary University of London Mile End Road, London E1 4NS, UK {emmanouilb, simond}@eecs.qmul.ac.uk

More information

Lecture 9 Source Separation

Lecture 9 Source Separation 10420CS 573100 音樂資訊檢索 Music Information Retrieval Lecture 9 Source Separation Yi-Hsuan Yang Ph.D. http://www.citi.sinica.edu.tw/pages/yang/ yang@citi.sinica.edu.tw Music & Audio Computing Lab, Research

More information

Base, Pulse, and Trace File Reference Guide

Base, Pulse, and Trace File Reference Guide Base, Pulse, and Trace File Reference Guide Introduction This document describes the contents of the three main files generated by the Pacific Biosciences primary analysis pipeline: bas.h5 (Base File,

More information

Topic 10. Multi-pitch Analysis

Topic 10. Multi-pitch Analysis Topic 10 Multi-pitch Analysis What is pitch? Common elements of music are pitch, rhythm, dynamics, and the sonic qualities of timbre and texture. An auditory perceptual attribute in terms of which sounds

More information

arxiv: v1 [cs.dl] 9 May 2017

arxiv: v1 [cs.dl] 9 May 2017 Understanding the Impact of Early Citers on Long-Term Scientific Impact Mayank Singh Dept. of Computer Science and Engg. IIT Kharagpur, India mayank.singh@cse.iitkgp.ernet.in Ajay Jaiswal Dept. of Computer

More information

Lecture 5: Clustering and Segmentation Part 1

Lecture 5: Clustering and Segmentation Part 1 Lecture 5: Clustering and Segmentation Part 1 Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today Segmentation and grouping Gestalt principles Segmentation as clustering K means Feature

More information

MODELS of music begin with a representation of the

MODELS of music begin with a representation of the 602 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 3, MARCH 2010 Modeling Music as a Dynamic Texture Luke Barrington, Student Member, IEEE, Antoni B. Chan, Member, IEEE, and

More information

1C.4.1. Modeling of Motion Classified VBR Video Codecs. Ya-Qin Zhang. Ferit Yegenoglu, Bijan Jabbari III. MOTION CLASSIFIED VIDEO CODEC INFOCOM '92

1C.4.1. Modeling of Motion Classified VBR Video Codecs. Ya-Qin Zhang. Ferit Yegenoglu, Bijan Jabbari III. MOTION CLASSIFIED VIDEO CODEC INFOCOM '92 Modeling of Motion Classified VBR Video Codecs Ferit Yegenoglu, Bijan Jabbari YaQin Zhang George Mason University Fairfax, Virginia GTE Laboratories Waltham, Massachusetts ABSTRACT Variable Bit Rate (VBR)

More information

NEXTONE PLAYER: A MUSIC RECOMMENDATION SYSTEM BASED ON USER BEHAVIOR

NEXTONE PLAYER: A MUSIC RECOMMENDATION SYSTEM BASED ON USER BEHAVIOR 12th International Society for Music Information Retrieval Conference (ISMIR 2011) NEXTONE PLAYER: A MUSIC RECOMMENDATION SYSTEM BASED ON USER BEHAVIOR Yajie Hu Department of Computer Science University

More information

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. X, MONTH 20XX 1

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. X, MONTH 20XX 1 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. X, MONTH 20XX 1 Transcribing Multi-instrument Polyphonic Music with Hierarchical Eigeninstruments Graham Grindlay, Student Member, IEEE,

More information

Release Year Prediction for Songs

Release Year Prediction for Songs Release Year Prediction for Songs [CSE 258 Assignment 2] Ruyu Tan University of California San Diego PID: A53099216 rut003@ucsd.edu Jiaying Liu University of California San Diego PID: A53107720 jil672@ucsd.edu

More information

Neural Network for Music Instrument Identi cation

Neural Network for Music Instrument Identi cation Neural Network for Music Instrument Identi cation Zhiwen Zhang(MSE), Hanze Tu(CCRMA), Yuan Li(CCRMA) SUN ID: zhiwen, hanze, yuanli92 Abstract - In the context of music, instrument identi cation would contribute

More information

BayesianBand: Jam Session System based on Mutual Prediction by User and System

BayesianBand: Jam Session System based on Mutual Prediction by User and System BayesianBand: Jam Session System based on Mutual Prediction by User and System Tetsuro Kitahara 12, Naoyuki Totani 1, Ryosuke Tokuami 1, and Haruhiro Katayose 12 1 School of Science and Technology, Kwansei

More information

Building Trust in Online Rating Systems through Signal Modeling

Building Trust in Online Rating Systems through Signal Modeling Building Trust in Online Rating Systems through Signal Modeling Presenter: Yan Sun Yafei Yang, Yan Sun, Ren Jin, and Qing Yang High Performance Computing Lab University of Rhode Island Online Feedback-based

More information

Research on sampling of vibration signals based on compressed sensing

Research on sampling of vibration signals based on compressed sensing Research on sampling of vibration signals based on compressed sensing Hongchun Sun 1, Zhiyuan Wang 2, Yong Xu 3 School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

More information

WEB APPENDIX. Managing Innovation Sequences Over Iterated Offerings: Developing and Testing a Relative Innovation, Comfort, and Stimulation

WEB APPENDIX. Managing Innovation Sequences Over Iterated Offerings: Developing and Testing a Relative Innovation, Comfort, and Stimulation WEB APPENDIX Managing Innovation Sequences Over Iterated Offerings: Developing and Testing a Relative Innovation, Comfort, and Stimulation Framework of Consumer Responses Timothy B. Heath Subimal Chatterjee

More information

ECONOMICS 351* -- INTRODUCTORY ECONOMETRICS. Queen's University Department of Economics. ECONOMICS 351* -- Winter Term 2005 INTRODUCTORY ECONOMETRICS

ECONOMICS 351* -- INTRODUCTORY ECONOMETRICS. Queen's University Department of Economics. ECONOMICS 351* -- Winter Term 2005 INTRODUCTORY ECONOMETRICS Queen's University Department of Economics ECONOMICS 351* -- Winter Term 2005 INTRODUCTORY ECONOMETRICS Winter Term 2005 Instructor: Web Site: Mike Abbott Office: Room A521 Mackintosh-Corry Hall or Room

More information

Audio: Generation & Extraction. Charu Jaiswal

Audio: Generation & Extraction. Charu Jaiswal Audio: Generation & Extraction Charu Jaiswal Music Composition which approach? Feed forward NN can t store information about past (or keep track of position in song) RNN as a single step predictor struggle

More information

Comparison of Mixed-Effects Model, Pattern-Mixture Model, and Selection Model in Estimating Treatment Effect Using PRO Data in Clinical Trials

Comparison of Mixed-Effects Model, Pattern-Mixture Model, and Selection Model in Estimating Treatment Effect Using PRO Data in Clinical Trials Comparison of Mixed-Effects Model, Pattern-Mixture Model, and Selection Model in Estimating Treatment Effect Using PRO Data in Clinical Trials Xiaolei Zhou, 1,2 Jianmin Wang, 1 Jessica Zhang, 1 Hongtu

More information

http://www.xkcd.com/655/ Audio Retrieval David Kauchak cs160 Fall 2009 Thanks to Doug Turnbull for some of the slides Administrative CS Colloquium vs. Wed. before Thanksgiving producers consumers 8M artists

More information

Time Domain Simulations

Time Domain Simulations Accuracy of the Computational Experiments Called Mike Steinberger Lead Architect Serial Channel Products SiSoft Time Domain Simulations Evaluation vs. Experimentation We re used to thinking of results

More information

Refined Spectral Template Models for Score Following

Refined Spectral Template Models for Score Following Refined Spectral Template Models for Score Following Filip Korzeniowski, Gerhard Widmer Department of Computational Perception, Johannes Kepler University Linz {filip.korzeniowski, gerhard.widmer}@jku.at

More information

Can the Computer Learn to Play Music Expressively? Christopher Raphael Department of Mathematics and Statistics, University of Massachusetts at Amhers

Can the Computer Learn to Play Music Expressively? Christopher Raphael Department of Mathematics and Statistics, University of Massachusetts at Amhers Can the Computer Learn to Play Music Expressively? Christopher Raphael Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, MA 01003-4515, raphael@math.umass.edu Abstract

More information

Automatic Composition from Non-musical Inspiration Sources

Automatic Composition from Non-musical Inspiration Sources Automatic Composition from Non-musical Inspiration Sources Robert Smith, Aaron Dennis and Dan Ventura Computer Science Department Brigham Young University 2robsmith@gmail.com, adennis@byu.edu, ventura@cs.byu.edu

More information

EVALUATION OF A SCORE-INFORMED SOURCE SEPARATION SYSTEM

EVALUATION OF A SCORE-INFORMED SOURCE SEPARATION SYSTEM EVALUATION OF A SCORE-INFORMED SOURCE SEPARATION SYSTEM Joachim Ganseman, Paul Scheunders IBBT - Visielab Department of Physics, University of Antwerp 2000 Antwerp, Belgium Gautham J. Mysore, Jonathan

More information

A CLASSIFICATION-BASED POLYPHONIC PIANO TRANSCRIPTION APPROACH USING LEARNED FEATURE REPRESENTATIONS

A CLASSIFICATION-BASED POLYPHONIC PIANO TRANSCRIPTION APPROACH USING LEARNED FEATURE REPRESENTATIONS 12th International Society for Music Information Retrieval Conference (ISMIR 2011) A CLASSIFICATION-BASED POLYPHONIC PIANO TRANSCRIPTION APPROACH USING LEARNED FEATURE REPRESENTATIONS Juhan Nam Stanford

More information

LEARNING SPECTRAL FILTERS FOR SINGLE- AND MULTI-LABEL CLASSIFICATION OF MUSICAL INSTRUMENTS. Patrick Joseph Donnelly

LEARNING SPECTRAL FILTERS FOR SINGLE- AND MULTI-LABEL CLASSIFICATION OF MUSICAL INSTRUMENTS. Patrick Joseph Donnelly LEARNING SPECTRAL FILTERS FOR SINGLE- AND MULTI-LABEL CLASSIFICATION OF MUSICAL INSTRUMENTS by Patrick Joseph Donnelly A dissertation submitted in partial fulfillment of the requirements for the degree

More information

Automatic Rhythmic Notation from Single Voice Audio Sources

Automatic Rhythmic Notation from Single Voice Audio Sources Automatic Rhythmic Notation from Single Voice Audio Sources Jack O Reilly, Shashwat Udit Introduction In this project we used machine learning technique to make estimations of rhythmic notation of a sung

More information

Impact Factor COMMUN ANAL GEOM >10.0 >10.0. Cited Journal Citing Journal Source Data Journal Self Cites

Impact Factor COMMUN ANAL GEOM >10.0 >10.0. Cited Journal Citing Journal Source Data Journal Self Cites 2014 JCR Science Edition Journal: COMMUNICATIONS IN ANALYSIS AND GEOMETRY Mark Journal Title ISSN Total Cites Impact Factor 5-Year Impact Factor Immediacy Index Citable Items Cited Half-life Citing Half-life

More information

Lessons from the Netflix Prize: Going beyond the algorithms

Lessons from the Netflix Prize: Going beyond the algorithms Lessons from the Netflix Prize: Going beyond the algorithms Yehuda Koren movie #868 Haifa movie #76 movie #666 We Know What You Ought To Be Watching This Summer We re quite curious, really. To the tune

More information

Singing voice synthesis based on deep neural networks

Singing voice synthesis based on deep neural networks INTERSPEECH 2016 September 8 12, 2016, San Francisco, USA Singing voice synthesis based on deep neural networks Masanari Nishimura, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku, and Keiichi Tokuda

More information

MUSIC transcription is one of the most fundamental and

MUSIC transcription is one of the most fundamental and 1846 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 9, SEPTEMBER 2017 Note Value Recognition for Piano Transcription Using Markov Random Fields Eita Nakamura, Member, IEEE,

More information

Achieving BER/FLR targets with clause 74 FEC. Phil Sun, Marvell Adee Ran, Intel Venugopal Balasubramonian, Marvell Zhenyu Liu, Marvell

Achieving BER/FLR targets with clause 74 FEC. Phil Sun, Marvell Adee Ran, Intel Venugopal Balasubramonian, Marvell Zhenyu Liu, Marvell Achieving BER/FLR targets with clause 74 FEC Phil Sun, Marvell Adee Ran, Intel Venugopal Balasubramonian, Marvell Zhenyu Liu, Marvell Frame Loss Ratio 802.3by objective: Support a BER of better than or

More information

Linear mixed models and when implied assumptions not appropriate

Linear mixed models and when implied assumptions not appropriate Mixed Models Lecture Notes By Dr. Hanford page 94 Generalized Linear Mixed Models (GLMM) GLMMs are based on GLM, extended to include random effects, random coefficients and covariance patterns. GLMMs are

More information

YOU ARE WHAT YOU LIKE INFORMATION LEAKAGE THROUGH USERS INTERESTS

YOU ARE WHAT YOU LIKE INFORMATION LEAKAGE THROUGH USERS INTERESTS NDSS Symposium 2012 YOU ARE WHAT YOU LIKE INFORMATION LEAKAGE THROUGH USERS INTERESTS Abdelberi (Beri) Chaabane, Gergely Acs, Mohamed Ali Kaafar Internet = Online Social Networks? Most visited websites:

More information

OBJECTIVE EVALUATION OF A MELODY EXTRACTOR FOR NORTH INDIAN CLASSICAL VOCAL PERFORMANCES

OBJECTIVE EVALUATION OF A MELODY EXTRACTOR FOR NORTH INDIAN CLASSICAL VOCAL PERFORMANCES OBJECTIVE EVALUATION OF A MELODY EXTRACTOR FOR NORTH INDIAN CLASSICAL VOCAL PERFORMANCES Vishweshwara Rao and Preeti Rao Digital Audio Processing Lab, Electrical Engineering Department, IIT-Bombay, Powai,

More information

Acoustic Scene Classification

Acoustic Scene Classification Acoustic Scene Classification Marc-Christoph Gerasch Seminar Topics in Computer Music - Acoustic Scene Classification 6/24/2015 1 Outline Acoustic Scene Classification - definition History and state of

More information

A probabilistic approach to determining bass voice leading in melodic harmonisation

A probabilistic approach to determining bass voice leading in melodic harmonisation A probabilistic approach to determining bass voice leading in melodic harmonisation Dimos Makris a, Maximos Kaliakatsos-Papakostas b, and Emilios Cambouropoulos b a Department of Informatics, Ionian University,

More information

Feature-Based Analysis of Haydn String Quartets

Feature-Based Analysis of Haydn String Quartets Feature-Based Analysis of Haydn String Quartets Lawson Wong 5/5/2 Introduction When listening to multi-movement works, amateur listeners have almost certainly asked the following situation : Am I still

More information

DELTA MODULATION AND DPCM CODING OF COLOR SIGNALS

DELTA MODULATION AND DPCM CODING OF COLOR SIGNALS DELTA MODULATION AND DPCM CODING OF COLOR SIGNALS Item Type text; Proceedings Authors Habibi, A. Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings

More information

ARE TAGS BETTER THAN AUDIO FEATURES? THE EFFECT OF JOINT USE OF TAGS AND AUDIO CONTENT FEATURES FOR ARTISTIC STYLE CLUSTERING

ARE TAGS BETTER THAN AUDIO FEATURES? THE EFFECT OF JOINT USE OF TAGS AND AUDIO CONTENT FEATURES FOR ARTISTIC STYLE CLUSTERING ARE TAGS BETTER THAN AUDIO FEATURES? THE EFFECT OF JOINT USE OF TAGS AND AUDIO CONTENT FEATURES FOR ARTISTIC STYLE CLUSTERING Dingding Wang School of Computer Science Florida International University Miami,

More information

STAT 113: Statistics and Society Ellen Gundlach, Purdue University. (Chapters refer to Moore and Notz, Statistics: Concepts and Controversies, 8e)

STAT 113: Statistics and Society Ellen Gundlach, Purdue University. (Chapters refer to Moore and Notz, Statistics: Concepts and Controversies, 8e) STAT 113: Statistics and Society Ellen Gundlach, Purdue University (Chapters refer to Moore and Notz, Statistics: Concepts and Controversies, 8e) Learning Objectives for Exam 1: Unit 1, Part 1: Population

More information

Music Information Retrieval Community

Music Information Retrieval Community Music Information Retrieval Community What: Developing systems that retrieve music When: Late 1990 s to Present Where: ISMIR - conference started in 2000 Why: lots of digital music, lots of music lovers,

More information

Characteristics of Polyphonic Music Style and Markov Model of Pitch-Class Intervals

Characteristics of Polyphonic Music Style and Markov Model of Pitch-Class Intervals Characteristics of Polyphonic Music Style and Markov Model of Pitch-Class Intervals Eita Nakamura and Shinji Takaki National Institute of Informatics, Tokyo 101-8430, Japan eita.nakamura@gmail.com, takaki@nii.ac.jp

More information

PLANE TESSELATION WITH MUSICAL-SCALE TILES AND BIDIMENSIONAL AUTOMATIC COMPOSITION

PLANE TESSELATION WITH MUSICAL-SCALE TILES AND BIDIMENSIONAL AUTOMATIC COMPOSITION PLANE TESSELATION WITH MUSICAL-SCALE TILES AND BIDIMENSIONAL AUTOMATIC COMPOSITION ABSTRACT We present a method for arranging the notes of certain musical scales (pentatonic, heptatonic, Blues Minor and

More information

SPECTRAL LEARNING FOR EXPRESSIVE INTERACTIVE ENSEMBLE MUSIC PERFORMANCE

SPECTRAL LEARNING FOR EXPRESSIVE INTERACTIVE ENSEMBLE MUSIC PERFORMANCE SPECTRAL LEARNING FOR EXPRESSIVE INTERACTIVE ENSEMBLE MUSIC PERFORMANCE Guangyu Xia Yun Wang Roger Dannenberg Geoffrey Gordon School of Computer Science, Carnegie Mellon University, USA {gxia,yunwang,rbd,ggordon}@cs.cmu.edu

More information

MUSICAL INSTRUMENT IDENTIFICATION BASED ON HARMONIC TEMPORAL TIMBRE FEATURES

MUSICAL INSTRUMENT IDENTIFICATION BASED ON HARMONIC TEMPORAL TIMBRE FEATURES MUSICAL INSTRUMENT IDENTIFICATION BASED ON HARMONIC TEMPORAL TIMBRE FEATURES Jun Wu, Yu Kitano, Stanislaw Andrzej Raczynski, Shigeki Miyabe, Takuya Nishimoto, Nobutaka Ono and Shigeki Sagayama The Graduate

More information

ISMIR 2008 Session 2a Music Recommendation and Organization

ISMIR 2008 Session 2a Music Recommendation and Organization A COMPARISON OF SIGNAL-BASED MUSIC RECOMMENDATION TO GENRE LABELS, COLLABORATIVE FILTERING, MUSICOLOGICAL ANALYSIS, HUMAN RECOMMENDATION, AND RANDOM BASELINE Terence Magno Cooper Union magno.nyc@gmail.com

More information

Semi-automated extraction of expressive performance information from acoustic recordings of piano music. Andrew Earis

Semi-automated extraction of expressive performance information from acoustic recordings of piano music. Andrew Earis Semi-automated extraction of expressive performance information from acoustic recordings of piano music Andrew Earis Outline Parameters of expressive piano performance Scientific techniques: Fourier transform

More information

WHEN listening to music, people spontaneously tap their

WHEN listening to music, people spontaneously tap their IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 1, FEBRUARY 2012 129 Rhythm of Motion Extraction and Rhythm-Based Cross-Media Alignment for Dance Videos Wei-Ta Chu, Member, IEEE, and Shang-Yin Tsai Abstract

More information