RF Upgrades & Experience At JLab. Rick Nelson

Size: px
Start display at page:

Download "RF Upgrades & Experience At JLab. Rick Nelson"

Transcription

1 RF Upgrades & Experience At JLab Rick Nelson

2 Outline Background: CEBAF / Jefferson Lab History, upgrade requirements & decisions Progress & problems along the way Present status Future directions & concerns

3 CEBAF at Jefferson Lab Design 4 GeV, 200 ua 3 Experimental Halls Present (pre-upgrade) 6 GeV, 200 ua Upgrade 3 Experimental Halls 11 GeV, 200 ua 3 Experimental Halls 12 GeV, 200 ua 4 th Hall D only

4 From 6 to 12 GeV Upgrade magnets and power supplies CHL-2 Upgrade Existing Halls

5 RF Upgrades Original 42.5 cryomodules/338 SC cavities 340 klystrons: 5 to 6.5 kw CW, 1497 MHz Upgrade C25, C50 cryomodules 10 cryomodules, 80 SC cavities 80 klystrons: 13 kw CW, 1497 MHz New designs for klystrons, power supplies, circulators, controls

6 Energy Content (Norm.) Key RF Requirements 10 new zones of RF power for new accelerating structures: 1497 MHz Operating Gradients Required >17.5 MV/m RF Power per cavity 13 kw saturated Regulation requirements (table) Cavity Q L 2x Phase Stability (rms) Amplitude (rms) Master Oscillator EPICS IOC Ethernet LLRF Controls Fast ( <1sec) Ethernet High Voltage Power Supply Klystron Slow (>1sec) 0.5º 3.0º 4.5x10-4 NA Detuning (Hz) 0.0 Superconducting Cavity Cavity de-tuning curve

7 1 per cavity (existing configuration) Minimum impact of failures How Many RF Sources? 1 per zone or 1 per linac Larger impact on faults High power splitters High power amplitude and phase control required with high precision. Additional controls and high power modulators found to be more $$ than individual RF sources. Single LINAC upgrade shown

8 CEBAF Klystrons Compared Parameter Power Old Spec 5 to 8 New Spec Actual Units KW Center frequency MHz Bandwidth, -1dB MHz Bandwidth, -3 db MHz 0.5 db incremental gain at 4 10 meets kw Efficiency (at rated power) 32 > % Gain 38 >42 >50 db Harmonics meets dbc Beam voltage 11.6 < kv DC Heater voltage typ V DC Modulating anode Yes Yes Yes Isolated collector Yes Yes Yes Cavities/Resonators Focus PM EM ~900 Watts

9 Each system powers 8 klystrons (as before) Resonant mode switcher design (15-20 KHz) 4 separate supplies. Each feeds 2 klystrons Minimizes klystrons taken offline due to power supply failure Controlled as a unit Each adjustable to -15kV 15 A total Design adapted from electrostatic precipitator application (higher volts/lower amps & in oil) units in the field at award Highly tolerant to load faults HV DC Power Supply Lower stored energy than T-R, fast turn off on fault, series resistor limits output current (no crowbar)

10 Additional Views HV Deck (4 per system, on rollers) Rear View

11 Typical RF Installation All zones installed and commissioned with beam

12 Tunnel Connections Waveguide installation

13 RF Commissioning Selected Data Commissioned w/ Beam Commissioned w/o Beam Zone/ Cavity Gradient Cryomodule Energy Gain Beam Current Zone/ Cryomodule Gradient Cavity Energy Gain Beam Current SL24 SL NA NA NA NA NA NA NA NA Total Total SL25 SL NA NA NA NA NA NA NA NA Total Total

14 Good & Bad Results Not all according to plan usual problems Delivery delays on several key components Klystron & general WG close to schedule HOM filters, isolators, solenoid power delayed Revisions and rework One contract cancellation Multiple installation delays with starts & stops Budget problems Reassignment of workforce Rework and reinstallation

15 Waveguide Isolators 13 kw CW, full reflection 0.2 db insertion loss 21 db isolation (any phase & power) Water cooled PM only - no TCU Operates adjacent to others Awarded to Ferrite (who supplied 350+ units for CEBAF) Full power testing at JLab Vendor capabilities missing Several rounds of testing with sliding short Using FA klystron at L-3 At JLab using 2 x 6.5 kw and 13 kw klystron

16 Events Initial tests looked OK and first lots were installed Initial tests into WG shorts not as good Results not repeatable/consistent Performance different for distance to short Two rounds of measurements & adjustments to understand the fix Next production units still variable

17 Testing

18 Sensitive to Match & Phase Isolation affected by Ferrite temperature Magnetic field strength These may be adjusted to maintain good performance Less field needed at higher temperature Solutions include TCU, active field control (VSWR) Automatically handled in small units Reflected phase Match (all ports) 2 of 3 need to be good for high isolation Load OK, short bad, klystron needs to be good (but not easily measured)

19 Early Test Results " short iso Iso-J " Iso-J1196 Iso-J1204 iso 1210 iso 1229 Iso-J1219 Iso-J " Iso-J " Iso-J " Iso-J " Iso-J "

20 Early Test Results

21 Isolation (db) Isolation vs. Short Position Iso-J " Iso-8.5" Iso-10" Forward Power (kw)

22 Temperature Initial measurements done steady-state Find position for lowest isolation Changes observed at turn-on Concerns for off-resonance conditions at turn-on Avoid tripping on high reflected power 8 units per RF zone; different distances to cavities

23 power (dbm) Isolation vs. Heating/Time forward-0 reverse-0 isolation : : : : : : : : :09.1 Elapsed time (seconds) RF heating of ferrite resulted in significant changes over (short) time

24 Adjusting Magnetic Fields Isolation response at 10+ kw vs Magnet Count : : : : : : : : :09.1 isolation-0 isolation-1 isolation-2 Isolation-3 isolation-4

25 Isolator

26 Tuning

27 Resolution Vendor reworked dome new domes & rebuilds Results were still inconsistent Something being missed during setup Ultimately all setup the same, but fine-tuned at Jlab 100% re-tested at high power Reflected power well below threshold for klystron damage or performance degradation Solution meets operational needs including credible fault conditions All 84 units modified, tested, reinstalled Extra work since all units were installed/removed/reinstalled.

28 Isolation (db) Isolation vs. Short Position Iso-J Iso-J Short Position (inches)

29 HOM Filters Uncertainty of need Originally not needed so not ordered Directions changed, but only 2 of 8 caviteis expected cavities (later testing confirmed) Normal procurement process Final filters essentially identical to what we had from multiple purchases Small tweaks to reduce fundamental absorption Manufacturing relied on external shops (as before) Vendor a small concern, limited resources & staff Fabrication subcontracted (metal fab, Iridite, dip brazing) Dummy spool pieces installed in other positions Had expected this to come in last

30 Klystron HV PS Performance has been good overall Switcher design and controls work well - good reliability DSP-based controls with hardware safety interlocks Code changes needed to address timing issues 1 unit tested OK, but all 4 might trip external breaker Extended step-start to deal with high inrush & breaker trips Possible race condition for contactor control vs. status reporting (several contactors changed but seem to be OK) Control transformers (480:120) shorted out Loose connections/loosening connections Contactors, IGBT Suggestion: check everything carefully! No similar problems with old supplies, but a lot less connections DC power guys regularly check transistor connections New doesn t mean perfect -- especially after x-country trips A couple noticeable events

31 Installation Challenges Funding shortages resulted in work reassignments & delays Techs reassigned to dismantle other systems Start/stop/start not efficient and required relearning

32 Maintenance Issues New systems to be learned and maintained New systems to be checked closely Old systems getting older and more frail Significant PM planned for summer

33 A Year for Water Brazing issues and water leaks Multiple new components, nuisance problems Both believed to be of similar origin but different suppliers Pressure tested (but not long enough) Trapped flux dissolved out resulted in small leaks on a few pieces Circulator load assemblies New loads built, and testing refined Solenoid leaks on plumbing Longer pressure testing with hot water HOM dip braze excesses Control transformers shorted (purchased by vendor)

34 Ongoing Circulator (old style) Reliable for a lot of years, but load failures becoming more frequent LC DI water 15 years+ erosion and leaching Self-rebuilding w/o retuning Same load back to its circulator New circulator loads won t experience this failure mode

35 Water Flows Downhill All LCW was turned off during extended down (~1 year) Circulator load seals lost their seal Water in select waveguides (not our selection) Water level horizontal run Bleed hole was for air

36 Summary All new LINAC RF has been installed and commissioned Operating requirements met, though staff are still learning differences from old systems Maintenance activities scheduled for summer down old and new systems Lobby to purchase spares with new equipment Costs more later and may be too late Monitor procurements closely, start early

RF Power Upgrade at Jefferson Lab

RF Power Upgrade at Jefferson Lab RF Power Upgrade at Jefferson Lab Rick Nelson*, Andrew Kimber *nelson@jlab.org * Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE- AC05-06OR23177. The U.S. Government

More information

Upgrade of CEBAF to 12 GeV

Upgrade of CEBAF to 12 GeV Upgrade of CEBAF to 12 GeV Leigh Harwood (for 12 GeV Accelerator team) Page 1 Outline Background High-level description Schedule Sub-system descriptions and status Summary Page 2 CEBAF Science Mission

More information

Operating Experience and Reliability Improvements on the 5 kw CW Klystron at Jefferson Lab

Operating Experience and Reliability Improvements on the 5 kw CW Klystron at Jefferson Lab Operating Experience and Reliability Improvements on the 5 kw CW Klystron at Jefferson Lab Richard Walker & Richard Nelson Jefferson Lab, Newport News VA Jefferson Lab is a $600M Department of Energy facility

More information

RF Power Klystrons & 20 Year Look. R. Nelson 7/15/15

RF Power Klystrons & 20 Year Look. R. Nelson 7/15/15 RF Power Klystrons & 20 Year Look R. Nelson 7/15/15 RF Power klystrons 8 x 13 kw klystrons Page 2 Why A klystron? Best (only) choice at the time - 1988 Easy to use: Input (drive), output (to CM), power

More information

Introduction: CW SRF linac types, requirements and challenges High power RF system architecture

Introduction: CW SRF linac types, requirements and challenges High power RF system architecture RF systems for CW SRF linacs S. Belomestnykh Cornell University Laboratory for Elementary-Particle Physics LINAC08, Victoria, Canada October 1, 2008 Outline L band Introduction: CW SRF linac types, requirements

More information

RF considerations for SwissFEL

RF considerations for SwissFEL RF considerations for H. Fitze in behalf of the PSI RF group Workshop on Compact X-Ray Free Electron Lasers 19.-21. July 2010, Shanghai Agenda Introduction RF-Gun Development C-band development Summary

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 4 MAX IV Injector 4.6. Acceleration MAX IV Facility CHAPTER 4.6. ACCELERATION 1(10) 4.6. Acceleration 4.6. Acceleration...2 4.6.1. RF Units... 2 4.6.2. Accelerator Units...

More information

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation Matthias Liepe Assistant Professor of Physics Cornell University Experience with the Cornell ERL Injector SRF

More information

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline

3 cerl. 3-1 cerl Overview. 3-2 High-brightness DC Photocathode Gun and Gun Test Beamline 3 cerl 3-1 cerl Overview As described before, the aim of the cerl in the R&D program includes the development of critical components for the ERL, as well as the construction of a test accelerator. The

More information

INFN School on Electron Accelerators. RF Power Sources and Distribution

INFN School on Electron Accelerators. RF Power Sources and Distribution INFN School on Electron Accelerators 12-14 September 2007, INFN Sezione di Pisa Lecture 7b RF Power Sources and Distribution Carlo Pagani University of Milano INFN Milano-LASA & GDE The ILC Double Tunnel

More information

2 Work Package and Work Unit descriptions. 2.8 WP8: RF Systems (R. Ruber, Uppsala)

2 Work Package and Work Unit descriptions. 2.8 WP8: RF Systems (R. Ruber, Uppsala) 2 Work Package and Work Unit descriptions 2.8 WP8: RF Systems (R. Ruber, Uppsala) The RF systems work package (WP) addresses the design and development of the RF power generation, control and distribution

More information

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY

IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY IOT OPERATIONAL EXPERIENCE ON ALICE AND EMMA AT DARESBURY LABORATORY A. Wheelhouse ASTeC, STFC Daresbury Laboratory ESLS XVIII Workshop, ELLETRA 25 th 26 th November 2010 Contents Brief Description ALICE

More information

Spear3 RF System Sam Park 11/06/2003. Spear3 RF System. High Power Components Operation and Control. RF Requirement.

Spear3 RF System Sam Park 11/06/2003. Spear3 RF System. High Power Components Operation and Control. RF Requirement. Spear3 RF System RF Requirement Overall System High Power Components Operation and Control SPEAR 3 History 1996 Low emittance lattices explored 1996 SPEAR 3 proposed 11/97 SPEAR 3 design study team formed

More information

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting

Status of BESSY II and berlinpro. Wolfgang Anders. Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting Status of BESSY II and berlinpro Wolfgang Anders Helmholtz-Zentrum Berlin for Materials and Energy (HZB) 20th ESLS-RF Meeting 16.-17.11.2016 at PSI Outline BESSY II Problems with circulators Landau cavity

More information

Status of SOLARIS. Paweł Borowiec On behalf of Solaris Team

Status of SOLARIS. Paweł Borowiec On behalf of Solaris Team Status of SOLARIS Paweł Borowiec On behalf of Solaris Team e-mail: pawel.borowiec@uj.edu.pl XX ESLS-RF Meeting, Villingen 16-17.11.2016 Outline 1. Timeline 2. Injector 3. Storage ring 16-17.11.2016 XX

More information

Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA

Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA Abstract The U.S. Department of Energy (DOE) Office of Science has funded the construction of a new accelerator-based

More information

The LEP Superconducting RF System

The LEP Superconducting RF System The LEP Superconducting RF System K. Hübner* for the LEP RF Group CERN The basic components and the layout of the LEP rf system for the year 2000 are presented. The superconducting system consisted of

More information

CEBAF 8 kw CW KLYSTRON SPECIFICATION EE0043, Rev. H January 15, 1998

CEBAF 8 kw CW KLYSTRON SPECIFICATION EE0043, Rev. H January 15, 1998 Thomas Jefferson National Laboratory Specification CEBAF 8 kw CW KLYSTRON SPECIFICATION EE0043, Rev. H January 15, 1998 Approved by: Richard Nelson Date William Merz Date Claus Rode Date EE0044, Rev. H

More information

18 GHz, 2.2 kw KLYSTRON GENERATOR GKP 24KP 18GHz WR62 3x400V

18 GHz, 2.2 kw KLYSTRON GENERATOR GKP 24KP 18GHz WR62 3x400V 18 GHz, 2.2 kw KLYSTRON GENERATOR GKP 24KP 18GHz WR62 3x400V With its characteristics of power stability whatever the load, very fast response time when pulsed (via external modulated signal), low ripple,

More information

CEBAF Accelerator Update. Michael Tiefenback CASA Accelerator Physics Experimental Liaison June 14, 2017

CEBAF Accelerator Update. Michael Tiefenback CASA Accelerator Physics Experimental Liaison June 14, 2017 CEBAF Accelerator Update Michael Tiefenback CASA Accelerator Physics Experimental Liaison June 14, 2017 CLAS12 Collaboration Meeting, June 13-16, 2017 1 Accelerator Division Leadership On April 30 Andrew

More information

14 GHz, 2.2 kw KLYSTRON GENERATOR GKP 22KP 14GHz WR62 3x400V

14 GHz, 2.2 kw KLYSTRON GENERATOR GKP 22KP 14GHz WR62 3x400V 14 GHz, 2.2 kw KLYSTRON GENERATOR GKP 22KP 14GHz WR62 3x400V With its characteristics of power stability independent of the load, very fast response time when pulsed (via external modulated signal), low

More information

XFEL High Power RF System Recent Developments

XFEL High Power RF System Recent Developments XFEL High Power RF System Recent Developments for the XFEL RF Group Outline XFEL RF System Requirements Overview Basic Layout RF System Main Components Multibeam Klystrons Modulator RF Waveguide Distribution

More information

Next Linear Collider. The 8-Pack Project. 8-Pack Project. Four 50 MW XL4 X-band klystrons installed on the 8-Pack

Next Linear Collider. The 8-Pack Project. 8-Pack Project. Four 50 MW XL4 X-band klystrons installed on the 8-Pack The Four 50 MW XL4 X-band klystrons installed on the 8-Pack The Demonstrate an NLC power source Two Phases: 8-Pack Phase-1 (current): Multi-moded SLED II power compression Produce NLC baseline power: 475

More information

RF plans for ESS. Morten Jensen. ESLS-RF 2013 Berlin

RF plans for ESS. Morten Jensen. ESLS-RF 2013 Berlin RF plans for ESS Morten Jensen ESLS-RF 2013 Berlin Overview The European Spallation Source (ESS) will house the most powerful proton linac ever built. The average beam power will be 5 MW which is five

More information

9th ESLS RF Meeting September ALBA RF System. F. Perez. RF System 1/20

9th ESLS RF Meeting September ALBA RF System. F. Perez. RF System 1/20 ALBA RF System F. Perez RF System 1/20 ALBA Synchrotron Light Source in Barcelona (Spain) 3 GeV accelerator 30 beamlines (7 on day one) 50-50 Spanish Government Catalan Government First beam for users

More information

Low Level RF for PIP-II. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017

Low Level RF for PIP-II. Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017 Low Level RF for PIP-II Jonathan Edelen LLRF 2017 Workshop (Barcelona) 16 Oct 2017 PIP-II LLRF Team Fermilab Brian Chase, Edward Cullerton, Joshua Einstein, Jeremiah Holzbauer, Dan Klepec, Yuriy Pischalnikov,

More information

IOT RF Power Sources for Pulsed and CW Linacs

IOT RF Power Sources for Pulsed and CW Linacs LINAC 2004 Lübeck, August 16 20, 2004 IOT RF Power Sources H. Bohlen, Y. Li, Bob Tornoe Communications & Power Industries Eimac Division, San Carlos, CA, USA Linac RF source property requirements (not

More information

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics

High Brightness Injector Development and ERL Planning at Cornell. Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics High Brightness Injector Development and ERL Planning at Cornell Charlie Sinclair Cornell University Laboratory for Elementary-Particle Physics June 22, 2006 JLab CASA Seminar 2 Background During 2000-2001,

More information

LLRF at SSRF. Yubin Zhao

LLRF at SSRF. Yubin Zhao LLRF at SSRF Yubin Zhao 2017.10.16 contents SSRF RF operation status Proton therapy LLRF Third harmonic cavity LLRF Three LINAC LLRF Hard X FEL LLRF (future project ) Trip statistics of RF system Trip

More information

ANKA RF System - Upgrade Strategies

ANKA RF System - Upgrade Strategies ANKA RF System - Upgrade Strategies Vitali Judin ANKA Synchrotron Radiation Facility 2014-09 - 17 KIT University of the State Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

More information

A New 4MW LHCD System for EAST

A New 4MW LHCD System for EAST 1 EXW/P7-29 A New 4MW LHCD System for EAST Jiafang SHAN 1), Yong YANG 1), Fukun LIU 1), Lianmin ZHAO 1) and LHCD Team 1) 1) Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China E-mail

More information

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON A.Beunas and G. Faillon Thales Electron Devices, Vélizy, France S. Choroba DESY, Hamburg, Germany Abstract THALES ELECTRON DEVICES has developed

More information

ILC-LNF TECHNICAL NOTE

ILC-LNF TECHNICAL NOTE IL-LNF EHNIAL NOE Divisione Acceleratori Frascati, July 4, 2006 Note: IL-LNF-001 RF SYSEM FOR HE IL DAMPING RINGS R. Boni, INFN-LNF, Frascati, Italy G. avallari, ERN, Geneva, Switzerland Introduction For

More information

Diamond RF Status (RF Activities at Daresbury) Mike Dykes

Diamond RF Status (RF Activities at Daresbury) Mike Dykes Diamond RF Status (RF Activities at Daresbury) Mike Dykes ASTeC What is it? What does it do? Diamond Status Linac Booster RF Storage Ring RF Summary Content ASTeC ASTeC was formed in 2001 as a centre of

More information

Program Risks Risk Analysis Fallback Plans for the. John T. Seeman DOE PEP-II Operations Review April 26, 2006

Program Risks Risk Analysis Fallback Plans for the. John T. Seeman DOE PEP-II Operations Review April 26, 2006 Program Risks Risk Analysis Fallback Plans for the PEP-II B-FactoryB John T. Seeman DOE PEP-II Operations Review April 26, 2006 OPS Review Topics Are there any PEP-II program risks? Has the laboratory

More information

Empirical Model For ESS Klystron Cathode Voltage

Empirical Model For ESS Klystron Cathode Voltage Empirical Model For ESS Klystron Cathode Voltage Dave McGinnis 2 March 2012 Introduction There are 176 klystrons in the superconducting portion of ESS linac. The power range required spans a factor of

More information

Beam Loss Detection for MPS at FRIB

Beam Loss Detection for MPS at FRIB Beam Loss Detection for MPS at FRIB Zhengzheng Liu Beam Diagnostics Physicist This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.

More information

RF Solutions for Science.

RF Solutions for Science. RF Solutions for Science www.thalesgroup.com State-of-the-art RF sources for your scientific needs High-power klystrons HIGH KLYSTRONS WITH RF LONG PULSE above 50 μs Thales has been one of the leading

More information

SRS and ERLP developments. Andrew moss

SRS and ERLP developments. Andrew moss SRS and ERLP developments Andrew moss Contents SRS Status Latest news Major faults Status Energy Recovery Linac Prototype Latest news Status of the RF system Status of the cryogenic system SRS Status Machine

More information

The PEFP 20-MeV Proton Linear Accelerator

The PEFP 20-MeV Proton Linear Accelerator Journal of the Korean Physical Society, Vol. 52, No. 3, March 2008, pp. 721726 Review Articles The PEFP 20-MeV Proton Linear Accelerator Y. S. Cho, H. J. Kwon, J. H. Jang, H. S. Kim, K. T. Seol, D. I.

More information

NSLS-II RF Systems James Rose, Radio Frequency Group Leader PAC 2011

NSLS-II RF Systems James Rose, Radio Frequency Group Leader PAC 2011 NSLS-II RF Systems James Rose, Radio Frequency Group Leader PAC 2011 1 BROOKHAVEN SCIENCE ASSOCIATES Introduction Linac RF cavities and klystrons Booster Cavity-Transmitter Storage Ring 500 MHz SRF cavity

More information

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB

KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB KEKB INJECTOR LINAC AND UPGRADE FOR SUPERKEKB S. Michizono for the KEK electron/positron Injector Linac and the Linac Commissioning Group KEK KEKB injector linac Brief history of the KEK electron linac

More information

Synchrotron Light Facility. Operation of ALBA RF. Angela Salom on behalf of RF team: Francis Perez, Bea Bravo and Jesus Ocampo

Synchrotron Light Facility. Operation of ALBA RF. Angela Salom on behalf of RF team: Francis Perez, Bea Bravo and Jesus Ocampo Operation of ALBA RF Angela Salom on behalf of RF team: Francis Perez, Bea Bravo and Jesus Ocampo Outline ALBA RF Overview: Booster and SR RF Operation with beam Statistics of first year operation Cavities

More information

RF Power Generation II

RF Power Generation II RF Power Generation II Klystrons, Magnetrons and Gyrotrons Professor R.G. Carter Engineering Department, Lancaster University, U.K. and The Cockcroft Institute of Accelerator Science and Technology Scope

More information

STATUS OF THE SWISSFEL C-BAND LINEAR ACCELERATOR

STATUS OF THE SWISSFEL C-BAND LINEAR ACCELERATOR Proceedings of FEL213, New York, NY, USA STATUS OF THE SWISSFEL C-BAND LINEAR ACCELERATOR F. Loehl, J. Alex, H. Blumer, M. Bopp, H. Braun, A. Citterio, U. Ellenberger, H. Fitze, H. Joehri, T. Kleeb, L.

More information

ANKA Status Report. N.Smale, on behalf of all ANKA colleagues, Directors : A.-S. Müller, C Heske, T Baumbach.

ANKA Status Report. N.Smale, on behalf of all ANKA colleagues, Directors : A.-S. Müller, C Heske, T Baumbach. ANKA Status Report N.Smale, on behalf of all ANKA colleagues, Directors : A.-S. Müller, C Heske, T Baumbach. Institute for Synchrotron Radiation KIT - University of the State of Baden-Wuerttemberg and

More information

TOSHIBA Industrial Magnetron E3328

TOSHIBA Industrial Magnetron E3328 TOSHIBA E3328 is a fixed frequency continuous wave magnetron intended for use in the industrial microwave heating applications. The average output power is 3kW in the frequency range from 2450 to 2470

More information

AREAL- Phase 1. B. Grigoryan on behalf of AREAL team

AREAL- Phase 1. B. Grigoryan on behalf of AREAL team AREAL- Phase 1 Progress & Status B. Grigoryan on behalf of AREAL team Contents Machine Layout Building & Infrastructure Laser System RF System Vacuum System Cooling System Control System Beam Diagnostics

More information

Oak Ridge Spallation Neutron Source Proton Power Upgrade Project and Second Target Station Project

Oak Ridge Spallation Neutron Source Proton Power Upgrade Project and Second Target Station Project Oak Ridge Spallation Neutron Source Proton Power Upgrade Project and Second Target Station Project Workshop on the future and next generation capabilities of accelerator driven neutron and muon sources

More information

SLS RF operation report 2003

SLS RF operation report 2003 SLS RF operation report 2003 M. Pedrozzi, Jean-Yves Raguin Paul Scherrer Institute, 5232 Villigen PSI, Switzerland SUMMARY LINAC report SR Superconducting Third Harmonic system report SR 500 MHz system

More information

Jefferson Lab Experience with Beam Halo, Beam Loss, etc.

Jefferson Lab Experience with Beam Halo, Beam Loss, etc. Jefferson Lab Experience with Beam Halo, Beam Loss, etc. Pavel Evtushenko with a lot of input from many experienced colleagues Steve Benson, Dave Douglas, Kevin Jordan, Carlos Hernandez-Garcia, Dan Sexton,

More information

North Damping Ring RF

North Damping Ring RF North Damping Ring RF North Damping Ring RF Outline Overview High Power RF HVPS Klystron & Klystron EPICS controls Cavities & Cavity Feedback SCP diagnostics & displays FACET-specific LLRF LLRF distribution

More information

CEPC Klystron Development

CEPC Klystron Development CEPC Klystron Development Zusheng Zhou On behalf of High Efficiency RF Source R&D Collaboration Institute of High Energy Physics Sep. 26, 2018, HKUST, Hong Kong 1 Outline Strategy and plan 650MHz/800kW

More information

MAXTECH, Inc. BRC-1000 Series. C-Band Redundant LNB Systems. Technology for Communications. System Block Diagrams

MAXTECH, Inc. BRC-1000 Series. C-Band Redundant LNB Systems. Technology for Communications. System Block Diagrams MAXTECH, Inc. Technology for Communications BRC-1000 Series C-Band Redundant LNB Systems Introduction Redundant LNB systems minimize system downtime due to LNB failure by providing a spare LNB and an automatic

More information

Linac3 experience for LHC ion runs

Linac3 experience for LHC ion runs Linac3 experience for LHC ion runs G Bellodi for the Linac3 team Keywords: beam performance reliability set up time results of MDs remaining unknowns 1 A year in perspective Source removed: change of main

More information

ESS Linac WP8 Radio Frequency Systems and Test Facilities

ESS Linac WP8 Radio Frequency Systems and Test Facilities ESS Linac WP8 Radio Frequency Systems and Test Facilities ESS/SPL Collaboration Meeting Lund, 29 June 2010 Roger Ruber (Uppsala University) for the ESS Linac RF Team ESS Linac WP8: RF Systems Outline Work

More information

L-Band RF R&D. SLAC DOE Review June 15 th, Chris Adolphsen SLAC

L-Band RF R&D. SLAC DOE Review June 15 th, Chris Adolphsen SLAC L-Band RF R&D SLAC DOE Review June 15 th, 2005 Chris Adolphsen SLAC International Linear Collider (ILC) RF Unit (TESLA TDR Layout) Gradient = 23.4 MV/m Bunch Spacing = 337 ns Fill Time = 420 µs Train Length

More information

Karin Rathsman, Håkan Danared and Rihua Zeng. Report from RF Power Source Workshop

Karin Rathsman, Håkan Danared and Rihua Zeng. Report from RF Power Source Workshop Accelerator Division ESS AD Technical Note ESS/AD/0020 Karin Rathsman, Håkan Danared and Rihua Zeng Report from RF Power Source Workshop 10 July 2011 Report on the RF Power Source Workshop K. Rathsman,

More information

INTEGRATED ASSEMBLIES MICROWAVE SOLUTIONS FROM TELEDYNE COUGAR

INTEGRATED ASSEMBLIES MICROWAVE SOLUTIONS FROM TELEDYNE COUGAR INTEGRATED ASSEMBLIES MICROWAVE SOLUTIONS FROM TELEDYNE COUGAR INTEGRATED ASSEMBLIES MICROWAVE SOLUTIONS FROM TELEDYNE COUGAR Teledyne Cougar offers full first-level integration capabilities, providing

More information

!"!3

!!3 Abstract A single-mode 500 MHz superconducting cavity cryomodule has been developed at Cornell for the electronpositron collider/synchrotron light source CESR. The Cornell B-cell cavity belongs to the

More information

Welcome and FRIB Project Status. FRIB Highlights and Plan Ahead

Welcome and FRIB Project Status. FRIB Highlights and Plan Ahead Welcome and FRIB Project Status Thomas Glasmacher Project Manager This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.

More information

Pulses inside the pulse mode of operation at RF Gun

Pulses inside the pulse mode of operation at RF Gun Pulses inside the pulse mode of operation at RF Gun V. Vogel, V. Ayvazyan, K. Floettmann, D. Lipka, P. Morozov, H. Schlarb, S. Schreiber FLASH Seminar, DESY March 29, 2011 Contents Why we need a PiPmode

More information

Dark current and multipacting trajectories simulations for the RF Photo Gun at PITZ

Dark current and multipacting trajectories simulations for the RF Photo Gun at PITZ Dark current and multipacting trajectories simulations for the RF Photo Gun at PITZ Introduction The PITZ RF Photo Gun Field simulations Dark current simulations Multipacting simulations Summary Igor Isaev

More information

Power Amplifier 0.5 W 2.4 GHz AM TR Features. Functional Schematic. Description. Pin Configuration 1. Ordering Information

Power Amplifier 0.5 W 2.4 GHz AM TR Features. Functional Schematic. Description. Pin Configuration 1. Ordering Information Features Ideal for 802.11b ISM Applications Single Positive Supply Output Power 27.5 dbm 57% Typical Power Added Efficiency Downset MSOP-8 Package Description M/A-COM s is a 0.5 W, GaAs MMIC, power amplifier

More information

ModuMAX SSPA Systems. C, X, and Ku Bands. Completely modular solid-state power amplifier systems for world-wide satellite communications

ModuMAX SSPA Systems. C, X, and Ku Bands. Completely modular solid-state power amplifier systems for world-wide satellite communications ModuMAX SSPA Systems C, X, and Ku Bands Completely modular solid-state power amplifier systems for world-wide satellite communications C-Band SSPAs 1500 Watts 1000 Watts 800 Watts X-Band SSPAs 1250 Watts

More information

Towards an X-Band Power Source at CERN and a European Structure Test Facility

Towards an X-Band Power Source at CERN and a European Structure Test Facility Towards an X-Band Power Source at CERN and a European Structure Test Facility Erk Jensen and Gerry McMomagle CERN The X-Band Accelerating Structure Design and Test-Program Workshop Day 2: Structure Testing

More information

650MHz/800kW Klystron Development at IHEP

650MHz/800kW Klystron Development at IHEP 650MHz/800kW Klystron Development at IHEP Shilun Pei, IHEP On behalf of HERSC (High Efficiency RF Source R&D Collaboration) in China Presentation at the IAS Program on High Energy Physics January 22, 2018,

More information

Status of RF Power and Acceleration of the MAX IV - LINAC

Status of RF Power and Acceleration of the MAX IV - LINAC Status of RF Power and Acceleration of the MAX IV - LINAC Dionis Kumbaro ESLS RF Workshop 2015 MAX IV Laboratory A National Laboratory for synchrotron radiation at Lunds University 1981 MAX-lab is formed

More information

A Unique Power Supply for the PEP II Klystron at SLAC*

A Unique Power Supply for the PEP II Klystron at SLAC* I : SLAC-PUB-7591 July 1997 A Unique Power Supply for the PEP II Klystron at SLAC* R. Case1 and M. N. Nguyen Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309 Presented at the

More information

PEP-II Overview & Ramp Down Plan. J. Seeman DOE PEP-II Ramp Down-D&D Review August 6-7, 2007

PEP-II Overview & Ramp Down Plan. J. Seeman DOE PEP-II Ramp Down-D&D Review August 6-7, 2007 PEP-II Overview & Ramp Down Plan J. Seeman DOE PEP-II Ramp Down-D&D Review August 6-7, 2007 Topics Overview of the PEP-II Collider PEP-II turns off September 30, 2008. General list of components and buildings

More information

J/NLC Progress on R1 and R2 Issues. Chris Adolphsen

J/NLC Progress on R1 and R2 Issues. Chris Adolphsen J/NLC Progress on R1 and R2 Issues Chris Adolphsen Charge to the International Linear Collider Technical Review Committee (ILC-TRC) To assess the present technical status of the four LC designs at hand,

More information

5 Project Costs and Schedule

5 Project Costs and Schedule 93 5 Project Costs and Schedule 5.1 Overview The cost evaluation for the integrated version of the XFEL with 30 experiments and 35 GeV beam energy as described in the TDR-2001 yielded 673 million EUR for

More information

Current status of XFEL/SPring-8 project and SCSS test accelerator

Current status of XFEL/SPring-8 project and SCSS test accelerator Current status of XFEL/SPring-8 project and SCSS test accelerator Takahiro Inagaki for XFEL project in SPring-8 inagaki@spring8.or.jp Outline (1) Introduction (2) Key technology for compactness (3) Key

More information

RSSL1:1-KuXER. Outdoor Unit (ODU) Ku Ext Ref LNB Redundancy System with external 10 MHz Reference System. Mux/Tee. Coax cable

RSSL1:1-KuXER. Outdoor Unit (ODU) Ku Ext Ref LNB Redundancy System with external 10 MHz Reference System. Mux/Tee. Coax cable RSSL1:1-KuXER Ku Ext Ref LNB Redundancy System with external 10 MHz Reference System Outdoor Unit (ODU) Waveguide Switch & Status LNB 1 Coax cable Interface Terminal LNB 2 Indoor Unit Outdoor Unit Indoor

More information

The Elettra Storage Ring and Top-Up Operation

The Elettra Storage Ring and Top-Up Operation The Elettra Storage Ring and Top-Up Operation Emanuel Karantzoulis Past and Present Configurations 1994-2007 From 2008 5000 hours /year to the users 2010: Operations transition year Decay mode, 2 GeV (340mA)

More information

Application Note 5098

Application Note 5098 LO Buffer Applications using Avago Technologies ABA-3X563 Silicon Amplifiers Application Note 5098 Introduction An oscillator or a voltage-controlled oscillator (VCO) is usually buffered with an external

More information

An Operational Diagnostic Complement for Positrons at CEBAF/JLab

An Operational Diagnostic Complement for Positrons at CEBAF/JLab An Operational Diagnostic Complement for Positrons at CEBAF/JLab Michael Tiefenback JLab, CASA International Workshop on Physics with Positrons at Jefferson Lab 12-15 September 2017 Operating CEBAF with

More information

K800 RF AMPLIFIER TUBE UPGRADE

K800 RF AMPLIFIER TUBE UPGRADE R. F. Note 107 John Vincent August 5, 1988 K800 RF AMPLIFIER TUBE UPGRADE Contents: 1. Introduction 2. RCA 4648 Operating Experience and Evaluation. 3. Tube Selection Criteria 4. Cost and Availability

More information

THE JLAB 12 GEV ENERGY UPGRADE OF CEBAF *

THE JLAB 12 GEV ENERGY UPGRADE OF CEBAF * THE JLAB 12 GEV ENERGY UPGRADE OF CEBAF * Leigh Harwood (for the JLab 12 GeV project team) Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 USA Abstract CEBAF at Jefferson Lab was

More information

Key Features and functions. General Description

Key Features and functions. General Description Technical Specification Summary Frequency Range 470 862MHz Typ. Gain 56 db P1dB 1400 W Typ. Efficiency >40 % @ 1dBcp Analogue TV 2400 Wps Temperature Range 0 to +45C DVB 290 Wrms Max VSWR 3:1 DTV 500 Wrms

More information

6MSD Weekly Scheduling Meeting. 1:30, MCC Conference Room

6MSD Weekly Scheduling Meeting. 1:30, MCC Conference Room 6MSD Weekly Scheduling Meeting Wednesday @ 1:30, MCC Conference Room July 6, 2011 1) Glance Back and 2-Week Look Ahead (F. Pilat)... 10 mins 2) PMI Report (P. Collins)... 5 mins 3) Critical Path Service

More information

SPINNER BROADCAST EXPLANATION OF THE MULTI CHANNEL COMBINER SPECIFICATIONS

SPINNER BROADCAST EXPLANATION OF THE MULTI CHANNEL COMBINER SPECIFICATIONS EXPLANATION OF THE MULTI CHANNEL COMBINER SPECIFICATIONS Calculation of the maximum permissible output voltage Various signals are added up within the combiner. The peak voltages of the individual signal

More information

Digital BPMs and Orbit Feedback Systems

Digital BPMs and Orbit Feedback Systems Digital BPMs and Orbit Feedback Systems, M. Böge, M. Dehler, B. Keil, P. Pollet, V. Schlott Outline stability requirements at SLS storage ring digital beam position monitors (DBPM) SLS global fast orbit

More information

DA E: Series of Narrowband or Wideband Distribution Amplifiers

DA E: Series of Narrowband or Wideband Distribution Amplifiers DA1-150-10-E: Series of Narrowband or Wideband Distribution Amplifiers Key Features Dual A and B inputs. Automatic or manual switchover, configured by the Ethernet port. 1-150 MHz wideband operation. Other

More information

Review of Diamond SR RF Operation and Upgrades

Review of Diamond SR RF Operation and Upgrades Review of Diamond SR RF Operation and Upgrades Morten Jensen on behalf of Diamond Storage Ring RF Group Agenda Stats X-ray and LN2 pressure results Cavity Failure Conditioning in the RFTF Cavity Simulations

More information

Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications

Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications Michael V. Fazio C. Adolphsen, A. Jensen, C. Pearson, D.

More information

PoS(EPS-HEP2015)525. The RF system for FCC-ee. A. Butterworth CERN 1211 Geneva 23, Switzerland

PoS(EPS-HEP2015)525. The RF system for FCC-ee. A. Butterworth CERN 1211 Geneva 23, Switzerland CERN 1211 Geneva 23, Switzerland E-mail: andrew.butterworth@cern.ch O. Brunner CERN 1211 Geneva 23, Switzerland E-mail: olivier.brunner@cern.ch R. Calaga CERN 1211 Geneva 23, Switzerland E-mail: rama.calaga@cern.ch

More information

TECHNICAL SPECIFICATION Multi-beam S-band Klystron type BT267

TECHNICAL SPECIFICATION Multi-beam S-band Klystron type BT267 TECHNICAL SPECIFICATION Multi-beam S-band Klystron type BT267 The company was created for the development and manufacture of precision microwave vacuum-electron-tube devices (VETD). The main product areas

More information

Solid State Modulators for X-Band Accelerators

Solid State Modulators for X-Band Accelerators Solid State Modulators for X-Band Accelerators John Kinross-Wright Diversified Technologies, Inc. Bedford, Massachusetts DTI X-Band Experience Developed and built two completely different NLC-class modulator

More information

Ku-Band Redundant LNB Systems. 1:1 System RF IN (WR75) TEST IN -40 db OFFLINE IN CONTROLLER. 1:2 System POL 1 IN (WR75) TEST IN -40 db POL 2 IN

Ku-Band Redundant LNB Systems. 1:1 System RF IN (WR75) TEST IN -40 db OFFLINE IN CONTROLLER. 1:2 System POL 1 IN (WR75) TEST IN -40 db POL 2 IN BRK-1000 Series Ku-Band Redundant LNB Systems Introduction Redundant LNB systems minimize system downtime due to LNB failure by providing a spare LNB and an automatic means of switching to the spare upon

More information

The ESRF Radio-frequency Data Logging System for Failure Analysis

The ESRF Radio-frequency Data Logging System for Failure Analysis The ESRF Radio-frequency Data Logging System for Failure Analysis Jean-Luc REVOL Machine Division European Synchrotron Radiation Facility Accelerator Reliability Workshop 4-6 February 2002 Impact of the

More information

ANKA Status Report. N.Smale, A.-S. Müller, E. Huttel, M.Schuh Slides courtesy of A.-S. Müller and C.Heske.

ANKA Status Report. N.Smale, A.-S. Müller, E. Huttel, M.Schuh Slides courtesy of A.-S. Müller and C.Heske. ANKA Status Report N.Smale, A.-S. Müller, E. Huttel, M.Schuh Slides courtesy of A.-S. Müller and C.Heske. KIT - University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

More information

Basic rules for the design of RF Controls in High Intensity Proton Linacs. Particularities of proton linacs wrt electron linacs

Basic rules for the design of RF Controls in High Intensity Proton Linacs. Particularities of proton linacs wrt electron linacs Basic rules Basic rules for the design of RF Controls in High Intensity Proton Linacs Particularities of proton linacs wrt electron linacs Non-zero synchronous phase needs reactive beam-loading compensation

More information

The TESLA RF System. S. Choroba. for the TESLA Collaboration. DESY Notkestr. 85, D Hamburg, Germany

The TESLA RF System. S. Choroba. for the TESLA Collaboration. DESY Notkestr. 85, D Hamburg, Germany The TESLA RF System S. Choroba for the TESLA Collaboration DESY Notkestr. 85, D-22603 Hamburg, Germany Abstract. The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear

More information

DEVELOPMENT OF A 10 MW SHEET BEAM KLYSTRON FOR THE ILC*

DEVELOPMENT OF A 10 MW SHEET BEAM KLYSTRON FOR THE ILC* DEVELOPMENT OF A 10 MW SHEET BEAM KLYSTRON FOR THE ILC* D. Sprehn, E. Jongewaard, A. Haase, A. Jensen, D. Martin, SLAC National Accelerator Laboratory, Menlo Park, CA 94020, U.S.A. A. Burke, SAIC, San

More information

CLIC Feasibility Demonstration at CTF3

CLIC Feasibility Demonstration at CTF3 CLIC Feasibility Demonstration at CTF3 Roger Ruber Uppsala University, Sweden, for the CLIC/CTF3 Collaboration http://cern.ch/clic-study LINAC 10 MO303 13 Sep 2010 The Key to CLIC Efficiency NC Linac for

More information

Jae-Young Choi On behalf of PLS-II Linac team

Jae-Young Choi On behalf of PLS-II Linac team PLS-II Linac 2015. 4. 8. Jae-Young Choi On behalf of PLS-II Linac team Accelerators in Pohang Accelerator Laboratory XFEL (under construction) 400 M$ Machines under installation PLS-II PAL : Chronology

More information

US-ILC Waveguide Industrialization Study. Marc Ross, Chris Nantista and Chris Adolphsen

US-ILC Waveguide Industrialization Study. Marc Ross, Chris Nantista and Chris Adolphsen US-ILC Waveguide Industrialization Study Marc Ross, Chris Nantista and Chris Adolphsen ILC Local Power Distribution System (LPDS) variable power divider, pressurizable, 0-100%, phase stable pressure window

More information

Non-Invasive Energy Spread Monitoring for the JLAB Experimental Program via Synchrotron Light Interferometers

Non-Invasive Energy Spread Monitoring for the JLAB Experimental Program via Synchrotron Light Interferometers Non-Invasive for the JLAB Experimental Program via Synchrotron Light Interferometers P. Chevtsov, T. Day, A.P. Freyberger, R. Hicks Jefferson Lab J.-C. Denard Synchrotron SOLEIL 20th March 2005 1. Energy

More information