A Digital Hologram Encryption Method Using Data Scrambling of Frequency Coefficients

Similar documents
Digital holographic security system based on multiple biometrics

Steganographic Technique for Hiding Secret Audio in an Image

Contents. xv xxi xxiii xxiv. 1 Introduction 1 References 4

Digital Video Telemetry System

Colour Reproduction Performance of JPEG and JPEG2000 Codecs

OBJECT-BASED IMAGE COMPRESSION WITH SIMULTANEOUS SPATIAL AND SNR SCALABILITY SUPPORT FOR MULTICASTING OVER HETEROGENEOUS NETWORKS

DATA COMPRESSION USING THE FFT

Color Image Compression Using Colorization Based On Coding Technique

TERRESTRIAL broadcasting of digital television (DTV)

The Development of a Synthetic Colour Test Image for Subjective and Objective Quality Assessment of Digital Codecs

Fast thumbnail generation for MPEG video by using a multiple-symbol lookup table

Error Resilience for Compressed Sensing with Multiple-Channel Transmission

Multichannel Satellite Image Resolution Enhancement Using Dual-Tree Complex Wavelet Transform and NLM Filtering

WHEN a fault occurs on power systems, not only are the

ISSN (Print) Original Research Article. Coimbatore, Tamil Nadu, India

A Novel Approach towards Video Compression for Mobile Internet using Transform Domain Technique

Compression of digital hologram sequences using MPEG-4

Ch. 1: Audio/Image/Video Fundamentals Multimedia Systems. School of Electrical Engineering and Computer Science Oregon State University

Fast MBAFF/PAFF Motion Estimation and Mode Decision Scheme for H.264

Region Adaptive Unsharp Masking based DCT Interpolation for Efficient Video Intra Frame Up-sampling

1. INTRODUCTION. Index Terms Video Transcoding, Video Streaming, Frame skipping, Interpolation frame, Decoder, Encoder.

Transform Coding of Still Images

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Comparative Analysis of Wavelet Transform and Wavelet Packet Transform for Image Compression at Decomposition Level 2

Time-division color electroholography using one-chip RGB LED and synchronizing controller

Principles of Video Compression

Video compression principles. Color Space Conversion. Sub-sampling of Chrominance Information. Video: moving pictures and the terms frame and

Spatial Error Concealment Technique for Losslessly Compressed Images Using Data Hiding in Error-Prone Channels

Automatic Commercial Monitoring for TV Broadcasting Using Audio Fingerprinting

Studies for Future Broadcasting Services and Basic Technologies

RECOMMENDATION ITU-R BT.1201 * Extremely high resolution imagery

WYNER-ZIV VIDEO CODING WITH LOW ENCODER COMPLEXITY

Research Article. ISSN (Print) *Corresponding author Shireen Fathima

Unequal Error Protection Codes for Wavelet Image Transmission over W-CDMA, AWGN and Rayleigh Fading Channels

A SVD BASED SCHEME FOR POST PROCESSING OF DCT CODED IMAGES

Understanding IP Video for

Signal Processing with Wavelets.

Reduced complexity MPEG2 video post-processing for HD display

2-Dimensional Image Compression using DCT and DWT Techniques

Laboratory 5: DSP - Digital Signal Processing

Selective Intra Prediction Mode Decision for H.264/AVC Encoders

An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions

MPEG + Compression of Moving Pictures for Digital Cinema Using the MPEG-2 Toolkit. A Digital Cinema Accelerator

How smart dimming technologies can help to optimise visual impact and power consumption of new HDR TVs

Fundamentals of DSP Chap. 1: Introduction

Motion Re-estimation for MPEG-2 to MPEG-4 Simple Profile Transcoding. Abstract. I. Introduction

A Comparitive Analysiss Of Lossy Image Compression Algorithms

Implementation of an MPEG Codec on the Tilera TM 64 Processor

Impact of DMD-SLMs errors on reconstructed Fourier holograms quality

MPEGTool: An X Window Based MPEG Encoder and Statistics Tool 1

Lecture 2 Video Formation and Representation

Investigation of Digital Signal Processing of High-speed DACs Signals for Settling Time Testing

Robust 3-D Video System Based on Modified Prediction Coding and Adaptive Selection Mode Error Concealment Algorithm

Detection and demodulation of non-cooperative burst signal Feng Yue 1, Wu Guangzhi 1, Tao Min 1

Investigation of the Effectiveness of Turbo Code in Wireless System over Rician Channel

EMBEDDED ZEROTREE WAVELET CODING WITH JOINT HUFFMAN AND ARITHMETIC CODING

Digital Video Engineering Professional Certification Competencies

ELEC 691X/498X Broadcast Signal Transmission Fall 2015

COMPRESSION OF DICOM IMAGES BASED ON WAVELETS AND SPIHT FOR TELEMEDICINE APPLICATIONS

MULTIMEDIA TECHNOLOGIES

Feasibility Study of Stochastic Streaming with 4K UHD Video Traces

Intra-frame JPEG-2000 vs. Inter-frame Compression Comparison: The benefits and trade-offs for very high quality, high resolution sequences

The preferred display color temperature (Non-transparent vs. Transparent Display)

Distributed Video Coding Using LDPC Codes for Wireless Video

Analysis of a Two Step MPEG Video System

Spatiotemporal Multiplexing and Streaming of Hologram Data for Full-Color Holographic Video Display

Data flow architecture for high-speed optical processors

Efficient Implementation of Neural Network Deinterlacing

DICOM medical image watermarking of ECG signals using EZW algorithm. A. Kannammal* and S. Subha Rani

The H.26L Video Coding Project

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

Guidance For Scrambling Data Signals For EMC Compliance

Research Article Design and Analysis of a High Secure Video Encryption Algorithm with Integrated Compression and Denoising Block

An Introduction to Image Compression

Multimedia Communications. Image and Video compression

Line-Adaptive Color Transforms for Lossless Frame Memory Compression

Temporal Error Concealment Algorithm Using Adaptive Multi- Side Boundary Matching Principle

Chapter 2 Introduction to

Analysis, Synthesis, and Perception of Musical Sounds

INTRA-FRAME WAVELET VIDEO CODING

CHROMA CODING IN DISTRIBUTED VIDEO CODING

Permutation based speech scrambling for next generation mobile communication

Real-time QC in HCHP seismic acquisition Ning Hongxiao, Wei Guowei and Wang Qiucheng, BGP, CNPC

An Overview of Video Coding Algorithms

ONE SENSOR MICROPHONE ARRAY APPLICATION IN SOURCE LOCALIZATION. Hsin-Chu, Taiwan

ATSC vs NTSC Spectrum. ATSC 8VSB Data Framing

Image Resolution and Contrast Enhancement of Satellite Geographical Images with Removal of Noise using Wavelet Transforms

Motion Video Compression

Analysis of Different Pseudo Noise Sequences

Information Transmission Chapter 3, image and video

Channel models for high-capacity information hiding in images

DATA hiding technologies have been widely studied in

Highly Efficient Video Codec for Entertainment-Quality

Fourier Transforms 1D

CS311: Data Communication. Transmission of Digital Signal - I

Towards Design and Implementation of Discrete Transform Image Coding based on G-Lets and Z- transform

Analyzing Modulated Signals with the V93000 Signal Analyzer Tool. Joe Kelly, Verigy, Inc.

A simplified fractal image compression algorithm

Privacy Level Indicating Data Leakage Prevention System

Joint Optimization of Source-Channel Video Coding Using the H.264/AVC encoder and FEC Codes. Digital Signal and Image Processing Lab

Transcription:

J. lnf. Commun. Converg. Eng. 11(3): 185-189, Sep. 2013 Regular paper A Digital Hologram Encryption Method Using Data Scrambling of Frequency Coefficients Hyun-Jun Choi *, Member, KIICE Department of Electronic Engineering, Mokpo National Maritime University, Mokpo 530-729, Korea Abstract A digital hologram generated by a computer calculation (computer-generated hologram or capture using charge-coupled device [CCD] camera) is one of the most expensive types of content, and its usage is expanding. Thus, it is highly necessary to protect the ownership of digital holograms. This paper presents an efficient visual security scheme for holographic image reconstruction with a low scrambling cost. Most recent studies on optical security concentrate their focus on security authentication using optical characteristics. However, in this paper, we propose an efficient scrambling method to protect a digital hologram. Therefore, we introduce in this paper several scrambling attempts in both the spatial domain and frequency domain on the basis of the results of analyzing the properties of the coefficients in each domain. To effectively hide the image information, 1/4, 1/256, and 1/16,384 of the original digital hologram needs to be scrambled for the spatial-domain scheme, Fresnel-domain scheme, and discrete cosine transform-domain scheme, respectively. The encryption schemes and the analyses in this paper can be expected to be useful in the research on encryption and other works on digital holograms. Index Terms: Computer-generated hologram, Digital holography, Digital Hologram, Fresnel Transform I. INTRODUCTION Recently, a strong trend in communication has been to include multimedia contents such as video, images, voice, music, text, etc., rather than just a single form of media. Image and/or video contents are especially preferred because of their very information-rich properties. However, their large quantity of data requires a wide communication bandwidth. Thus, for the last few decades, most research and development in this area has been on the reduction of the amount of data they contain [1-3]. A digital hologram is a technique in which the interference patterns between the reference light wave and the object light wave are captured with a charge-coupled device (CCD) camera or calculated from an algorithm on a computer (computer-generated hologram, CGH) [4, 5] instead of writing it on holographic film [6]. The original image can be reconstructed by loading the digital hologram on a spatial light modulator and illuminating the reference light, which is the same as was recorded. A hologram is a relatively expensive form of 3-dimensional (3D) image content, and recently researchers at many institutions around the world have been studying encryption techniques for holograms. However, most of them are optical methods that use optical elements or optical parameters to hide information [7]. In this paper, we try to encrypt a digital hologram electronically, not optically. This includes both spatialdomain encryption and frequency-domain encryption. For the frequency domain, both the discrete Fresnel transform (DFT) and discrete cosine transform (DCT) are considered Received 21 January 2013, Revised 03 April 2013, Accepted 23 April 2013 *Corresponding Author Hyun-Jun Choi (E-mail: hjchoi@mmu.ac.kr, Tel: +82-61-240-7273) Department of Electronic Engineering, Mokpo National Maritime University, 91 Haeyangdaehak-ro, Mokpo 530-729, Korea. Open Access http://dx.doi.org/10.6109/jicce.2013.11.3.185 print ISSN: 2234-8255 online ISSN: 2234-8883 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li-censes/bync/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright c The Korea Institute of Information and Communication Engineering 185

J. lnf. Commun. Converg. Eng. 11(3): 185-189, Sep. 2013 as the transform methodologies from spatial-domain data to frequency-domain data. In each domain, we try to findd the best encryption method. Therefore, the main purpose off this paper is to examine the possibility of electronic encryption of a digital hologram. For the digital hologram, we usee the digital holograms created by means of thee CGH technique. II. PROPOSED SCRAMBLING METHODS In this section, we try several attempts to t hide the contents of a digital hologram in both the spatial domain and frequency domain. In the frequency domain, we consider r both the global DCT (GDCT) domain and DFT domain. A. Scrambling in the Spatial Domain In the spatial domain, it is not easy to determine which coefficients in digital holograms are important in recon- our structing the holographic object. Thus, we focusedd attention on the bit-planes (BPs) of the whole or a segment of the digital hologram. However, as explained above, because a segment of a digital hologram can be usedd to reconstruct the image, it is useless to hide a part or a segment of a digital hologram. Thus, to encrypt in the spatial domain, the whole digital hologram should be considered. Note that each BPP has the same amount of data, even though the importance level of each BP is different. 1 shows the scrambling schemes in the spatial domain. As shown in Section II, BP7 is the most importantt one (most significant bit-plane, MSBP). Thus, the first considerationn is to encrypt the BP7, as in 1. In 2, an example of the resultant reconstructed image fromm the spatial-domain scrambling. 2 is the result by scrambling only BP7 of the digital hologram in 2. When it is compared to the original image of 2,, it is clear that the information is still configurable. Thus, we added BP6 to the data to be scrambled following the scheme shown in. 1. 2. Data scramb bling results: original holographicc image, result from encrypting all the data, result from scrambling only most significant bit-plane (MSBP), and result from scrambling only MSBP + BP6. 2 is thee example of the resulting reconstructed image by this scheme, whose content is totally unreco- gnizable. For each of the digital holograms considered, scrambling BP7 and BP6 was enough to hide the t contents of the 3D image. Note that BP7 and BP6 are one-fourth of the amount of dataa of the original digital hologram. That means that at least one-fourth off the digital hologram shouldd be scrambled to hide the information of the 3DD image. If wee assume that a digital hologram has h the size off 1,024 1,024, more than 2 Mbits (2,097,152 bits) need too be encrypted. As will be shown in the following, this amount of data is relatively highh compared to that of the frequency domainn scheme. B. Scrambling g in Frequency Domain For the frequency domain, wee considered both b the globall DCT and Fresnel transform. t 1. Bit-p plane (BP) scrambling in a spatial domain: most significant bit-plane (MSBP) and MSBP + BP6. LSBP: least significant bit-plane. 1) Scramblingg in the DCT Domain As mentioned before, b the DCTT is performedd by the unit of a given size of coefficient block. Thus, there can be two kinds of scrambling methods for GDCT domain data. The first one is to select s the appropriate number of DCT coefficients after the DCT for the whole digital hologram. Of course, the coefficients should be the ones retaining as much energy as possible. p The second method is that after appropriate segmentation of the digital hologram h and performing DCT for each segment, only a few coefficients http://dx.doi.org/ /10.6109/jicce.2013.11.3.185 186

An Enhanced Searching Algorithm over Unstructured Mobile P2P Overlay Networks 3. Methodology and procedure for DCT-domain scrambling. CGH: computer-generated hologram, DCT: discrete cosine transform. (say, only the DC coefficients in the extreme) from each segment are taken to be scrambled. The first method has the problem that it is not easy to find the coefficients retaining the highest energies in general. Therefore, we decided to choose the second method. For the coefficients also, we decided to take only the DC coefficients because it is the most promising way to hide the highest energy. In this methodology ( 3), after segmentation and DCT, only DC coefficients are taken to form a scrambling block (128 bits in this paper). Each scrambling block is scrambled separately with a block cipher method (Advanced Encryption Standard [AES]-128 in this paper). Each of the resulting bits is relocated to its original place. Then, the result is inverse-dcted and reconstructed to form the corresponding 3D image. 4 shows several examples of the reconstructed images after scrambling for various segment sizes. Note that the number of coefficients to be scrambled is the same as the number of segments. As can see in the figures, all the cases considered showed satisfied scrambling results. However, in the case of segmentation to 256 256 segments, the original image is a still a bit recognizable if it is enlarged in some of the test images. Thus, the safe approach is to segment a digital hologram into 128 128 blocks. In this case, only 512 bits need to be scrambled if a DCT coefficient consists of 8 bits. Compared to the spatial-domain scrambling case, DCT-domain scrambling is much more effective, specifically, 4,096 times more effective. 2) Scrambling in Fresnel Domain This encryption algorithm is based on a Fresnel transform. For encryption, the Fresnel transform is performed by regarding a digital hologram as a natural 2D image. If we analyze the results of previous study [7] shown with regard to the properties of sampling, localization, and transformation, we can obtain two characteristics. 4. The resulting reconstructed image from scrambling only DC coefficients by segmenting to the block size of the original holographic image, 64 64 (256 segments), 128 128 (64 segments), and 256 256 (16 segments). The first is that a local region of a digital hologram contains information about the entire object. Second is that it has a frequency characteristic that is different from natural images. From such characteristics, the following conclusions can be made. Because the local region of a digital hologram includes information for the entire object, we must encrypt the entire hologram rather than a segment of the hologram. 5 shows the scrambling schemes in the Fresnel domain. The encryption methodology is the following: 1) Fresnel transform 2) Selection of encrypted region 3) Encryption using block cipher 4) Inverse Fresnel transform 187 http://jicce.org

J. lnf. Commun. Converg. Eng. 11(3): 185-189, Sep. 2013 Depth & intensity CGH Pre- processing Fresnel transform Search of scrambling region Encrypted holographic image I-CGH I-Fresnel transform Scrambling Selection of region 5. Metho odology and procedure for Fresnel-domain scrambling. CGH: computer-generated hologram. 6 shows a Fresnel transform result image. As shown in 6, the result from DFT of a digital hologram shows a similar image to the original one in the right bottom part. Using this characteristic, this paper proposes a scrambling scheme in the DFT domain. To apply the proposed algorithm, digital holograms of 3D objects (depth map, intensity) are generated using the CGH method. The proposed algorithm is applied to them. The encryption results are verified numerically using the peak noise-to-signal ratio and normalized correlation. In addition to the numerical statistics, visual observation is used to determine the encryption efficiency. The size of a digital hologram is 1,024 1,024 pixels. We divided the digital hologram intoo three regions in the DFT domain, whose scheme is shown in 7. Here, we are scrambling the object region. The scrambling results are shown in 7 for all of thee three regions. As can be seen from the figure, the scrambling effect is highest in the Object region. 8 shows several examples of the reconstructed images after scrambling for the three regions. 7. Three region s for data-scrambling. 8. Data-scram bling results: original holographic reconstructionn object, Cloud region scrambling (peak noise-to-signal ratio [PSNR], 15.68 db), DC region scrambling (PSNR, 16.42 db) ), and Object region scrambling (PSNR, 15.80 db). III. CONCLUSION 6. Result of discrete Fresnel transform: original o digital hologram, real part, imaginary part, and absolute image of and. This paper introduced several methods for scrambling a digital hologramm in the frequency domain as well as the spatial domain. For F the frequency domain, both 2DDCT http://dx.doi.org/ /10.6109/jicce.2013.11.3.185 188

An Enhanced Searching Algorithm over Unstructured Mobile P2P Overlay Networks and 2DDFT were considered. The purpose of this study was to find a scrambling method with the highest efficiency and lowest cost with the requirement of hiding the image information unrecognizably. The reason for considering the frequency domain is that a transform to the frequency domain concentrates the energy of the image to a certain frequency band(s), and it is more efficient to disturb the information in the higher energy coefficients. Consequently, the GDCT/DFT-domain scrambling schemes can be used efficiently to encrypt the digital hologram. The frequency-domain schemes are especially suitable when used during the data compression process (on-site scrambling), which includes the DFT-domain scheme. ACKNOWLEDGMENTS This work was supported by a National Research Foundation of Korea Grant funded by the Korean Government (NRF-2010-0026245). REFERENCES [1] B. R. Brown and A. W. Lohmann, Complex spatial filtering with binary masks, Applied Optics, vol. 5, no. 6, pp. 967-969, 1966. [2] B. Javidi and F. Okano, Three-dimensional Television, Video, and Display Technologies. New York, NY: Springer-Verlag, 2002. [3] Y. H. Seo, H. J. Choi, J. S. Yoo, and D. W. Kim, Selective and adaptive signal hiding technique for security of JPEG2000, International Journal of Imaging Systems and Technology, vol. 20, no. 3, pp. 277-284, 2010. [4] H. Yoshikawa, Fast computation of Fresnel holograms employing difference, Optical Review, vol. 8, no. 5, pp. 331-335, 2001. [5] T. Shimobaba and T. Ito, An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition, Computer Physics Communications, vol. 138, no. 1, pp. 44-52, 2001. [6] H. J. Choi, Y. H. Seo, S. W. Jang, and D. W. Kim, Analysis of digital hologram rendering using computational method, Journal of Information and Communication Convergence Engineering, vol. 10, no. 2, pp. 205-209, 2012. [7] D. W. Kim, H. J. Choi, Y. G. Choi, J. S. Yoo, and Y. H. Seo, Information hiding for digital holograms by electronic partial encryption methods, Optics Communications, vol. 277, no. 2, pp. 277-287, 2007. received his M.S. and Ph.D. degrees in 2005 and 2009 from the Department of Electronic Materials Engineering of Kwangwoon University in Seoul, Korea. He was a research professor at the Realistic Media Institute at Kwangwoon University. He was an assistant professor in the Department of Information and Communication Engineering at Anyang University in Anyang, Korea from 2010 to 2011. He is currently an assistant professor with the Department of Electronic Engineering, Mokpo National Maritime University, Mokpo, Korea. His research interests are in optical image processing and 3D displays. 189 http://jicce.org