Report on the Organ + First Lutheran Church + Cedar Rapids, Iowa April 6, 2015

Similar documents
QUIMBY PIPE ORGANS INCORPORATED

Fact: An organ s most important stop is the room in which it plays.

QUIMBY PIPE ORGANS INCORPORATED

Aeolian-Skinner Carnegie Music Hall, Pittsburgh, PA Note: This Organ was a rebuild of Skinner-270. See also Skinner 180 and 270.

The Pipe Organ King of Instruments Index Page

Sydney Town Hall Organ Technical Specification

PLANO, TEXAS. Four Manuals ~ 92 ranks CHANCEL ORGAN 75 RANKS GALLERY ORGAN 17 RANKS. 4-Manual Drawknob [Chancel] 2-Manual Drawknob [Gallery] #2264

Three Manuals ~ 107 ranks NEW CHANCEL ORGAN 60 RANKS EXISTING GALLERY ORGAN 47 RANKS. 3-Manual Drawknob [Musicom] #2216

AUSTIN ORGANS, INC OPUS 2334A

The Organists Manual. Josh Robinson

1969 Schantz Opus manual 46 rank American Classic Pipe Organ $186,000

First Congregational Church United Church of Christ Sioux Falls, South Dakota. Director of Music. Job Description and Information

Exploring a pipe organ with CATO Answers and Commentary for Teachers

CHRIST THE KING CHAPEL

Austin City Hall Auditorium, Portland, ME

EASTMAN SCHOOL OF MUSIC KILBOURN HALL

We all enjoyed building this instrument for this very fine, generous, good man.

Four-Manual Trillium Masterpiece Series Custom Organ for Church of Our Saviour San Gabriel, California

T T -270 T D D - 570

Calgary, Alberta Knox United Church

1 of 28. 9/24/18 3:38 PM Stoplist - First Presbyterian Church, Amarillo, TX Dan Garland 1990/NEG Keyboard Services 2018 IV/123

Los Gatos United Methodist Church. 111 Church St, Los Gatos, CA Wicks Organ, Ranks, 1,783 pipes, 36 Stops

Guidelines for the Installation and Maintenance of Pipe Organs

THE ORGANS OF BANGOR CATHEDRAL

Pipe Organ THE ORIGINAL ORGAN

Estey City Auditorium Orlando, FL. Specification for an Organ Built by. The Estey Organ Company. For. City Auditorium-Orlando, Florida

Thanks to its beautiful sound and contemporary console, the Opus has been the world s best-selling

The Sonus Paradisi William Hill Sample Set Some details about the real organ Compiled by Iain Stinson, August 2018

Thanks to its beautiful sound and contemporary. console, the Opus has been the world s best-selling. Johannus organ for many decades.

Organ Specifications for the KCOA visit to Bromley 10 th November 2012

The Lewis Organ at Community Central Hall 304 Maryhill Road, Glasgow

text by Sandra Soderlund drawings by Catherine Fischer Books Radio Minnesota A Guide to the Greeks to Press, 1980 Voices 261 the

HILLGREEN, LANE & COMPANY (1948, ALLIANCE, OHIO)

Workshop Friday, June 27th 1:00 PM

LIVERPOOL CATHEDRAL GRAND ORGAN SPECIFICATION

Principal Features Display and Software Features Dimensions and Finishes Playing Aids Audio System and Sound Management

THE ORGANS ST. M ARY S, LANGLEY M ARISH. A brief historical survey PHILIP WHARTON

Principal Features Display and Software Features Dimensions and Finishes Playing Aids Audio System and Sound Management

Viscount Classic Organs Division Via Borgo, 68/70 Mondaino (RN) Tel Fax

The Organ at St. Matthew Lutheran Church Hanover, Pennsylvania

Principal Features Display and Software Features Dimensions and Finishes Playing Aids Audio System and Sound Management

MELBOURNE TOWN HALL GRAND ORGAN

E X P E R I E N C E E L E V AT E D

Crawl prepared by Bob and Barbara Hutchins

A Brief History of the Hill Organ

The Organs. Diocesan College

Principal Features Display and Software Features Dimensions and Finishes Playing Aids Audio System and Sound Management

Grace United Church of Christ. To my eyes and ears the organ will ever be the King of Instruments ~Wolfgang Amadeus Mozart

Information pack for examination candidates St Barnabas, Dulwich, London SE21

HE Aeolian Company has the honor of herein presenting some information regarding the large Aeolian Concert Organ it has built and installed for Mr.

Display and Software Features Backlight display with 6 button control to access all organ choice and set up features

A Festival of Hymns and Musical Celebration

GREAT (II, Enclosed, Flues 7½", Reeds 12" Wind)

Organ Design and the Kraft Music Hall

MELTON MOWBRAY, ST MARY S CHURCH THE ORGAN REPORT & RECOMMENDATIONS PAUL HALE DECEMBER 2012

Understanding and Mastering Pipe (and Electric) Organs: Technology and Technique for LDS Organists

The Parish Church of St Thomas of Canterbury Brentwood. Assistant Director of Music. and Director of the Girls Choir.

GOETZE & GWYNN PROPOSAL. Restoration of the Thomas Elliot Organ at Crick Parish Church

Steere and Turner organ, 1875

vivaceorgans

Mitchell L. Crawford

Owners Guide, l' 1. TOPPEIt 1 -J RODGE:RS ORGP\N,CON\PP\NY, HILLSBORO, OREGON U.S.A. "'1 ~

Choir T T D D - 450

Protégé AP-15. Copyright 1999 Allen Organ Company All Rights Reserved AOC P/N

CHAPTER 14 INSTRUMENTS

Display and Software Features Backlight display with 6 button control to access all organ choice and set up features

Renaissance R-280. Copyright 2000 Allen Organ Company All Rights Reserved

Saturday, April 25, :00 a.m. Hamilton Presbyterian Church 5532 Harford Road Baltimore, Maryland 21214

The Wanamaker Grand Court Organ, in Philadelphia

Get to Know Your Instrument A Little Better

For this desire we have invented an instrument that will change the organ world forever. Monarke III

Classic. The Johannus Classic is an exciting convergence. of classic elegance and modern beauty. It is an organ

A virtual Instrument for the Hauptwerk Virtual Pipe Organ

John Stainer: The Organ.

E X P E R I E N C E E L E V AT E D

The Main («Wiener») Organ of the Pilgrimage Basilica in Mariazell/Austria

Instruments. Of the. Orchestra

OrganTutor Registration Workbook Version 3.3 Copyright 1998, 2018 by Ard Publications All Rights Reserved

Saturday, May 31, :00 a.m. Goucher College Chapel 1021 Dulaney Valley Road Towson, Maryland Herman L. Schlicker 2 manual and pedal

a g r e at s e t o f p i p e s Purchase A Pipe

Grace Church Organ Task Force Questions & Answers

FOR THE NEW ONE? ARE YOU READY

HAVERHILL OLD INDEPENDENT CHURCH

Hilbus Chapter. Saturday, February 24, 2007 Three Organs in Historic Georgetown

Registration Reference Book

A true Johannus to fit any living room!

The Lied Chancel Organ East & West Chancel organ chambers Through

Display and Software Features Backlight display with 6 button control to access all organ choice and set up features

George Fincham's tonal palette: some thoughts on tonal design

3/14 Municipal Möller, "Mini-Mo" M. P. Möller Opus stops, 14 ranks, 1,111 Pipes, 5 percussion

Hilbus Chapter. Saturday, November 17, A Day on Capitol Hill. 9:30 AM St. Dominic s Roman Catholic Church. 630 E Street SW, Washington, DC 20024

Owners Manual RODG RS. COLUMbiAN. . and 7-; Jamestown PART # RODGERS ORGAN COMPANY 1300 NE 24TH Avenue Hillsboro, Oregon 97124

VOICING THE PINNACLE OF REALISM EXPERIENCE ELEVATED

ARTIST SERIES. FEATURES: 29 stops / 241 total voices VOICES: PREV/NEXT piston sequencer recall. Traditional wood veneer cabinet with 29 primary voices

ORGANS USING SYNTHESIZED SAMPLES

Houston Theatre Organ Society

ASSISTANT ORGANIST BACKGROUND

2017 VCE Music Performance performance examination report

Class Notes November 7. Reed instruments; The woodwinds

Innovation at the Inn

Transcription:

Report on the Organ + First Lutheran Church + Cedar Rapids, Iowa April 6, 2015 Report Purpose The purpose of this report is to: Describe the current status, disposition and condition of the First Lutheran Church organ Report and comment on the possibility, feasibility and advisability of repairing, restoring, and/or augmenting the current organ. Create a Specification or Specification Options for the repair, restoration, maintenance, and possible augmentation needs of the current organ. Create an RFP ready for submission to qualified and experienced Organ Companies inviting proposals and price quotations to accomplish the specified repair/restoration/augmentation work Report and comment on the advisability of replacing the current organ. Create a Specification or Specification Options for the replacement of the current organ. Create an RFP ready for submission to qualified and experienced Organ Companies inviting proposals and price quotations to install the specified replacement instrument. THE FIRST LUTHERAN CHURCH ORGAN; A Brief Description The organ at First Lutheran Church was built by the Levsen Organ Company of Buffalo, Iowa in 1983, Levsen Opus Number 4 (the 4 th organ produced by the company). It has been since altered from its original design and installation; some pipes and mechanisms originally installed on the balcony railing have been moved to the upper-rear balcony wall alcove (to reduce the loudness of the organ, as heard near the rear pews of the nave). Many, but not all, original electromechanical switches were replaced with solid-state electronic switches in 1996. Current organ in balcony 2015

Page 2 The organ consists of pipes (which produce the musical organ tone), wind-chests (on which pipes sit, and that contain the valve mechanisms to let wind into pipes), the winding and actions (the methodology of getting pressurized air to the wind-chests, and the methodologies of opening vales within the wind-chests, to allow pipes to sound), and the console (where keys, pedals, and stops allow the organist to control the organ). Organ pipes are crafted of either various metal alloys (zinc, tin, copper, lead, aluminum, etc.) or wood species (poplar, pine, etc.). Their shapes (square, round, conical) produce varieties of tone, akin to the wealth of tonal colors in a symphonic orchestra. Taller pipes produce low pitches, and shorter pipes produce higher musical pitches. Just as an orchestra has multiple tonal families (strings, brasses, woodwinds, percussion) at various pitch levels (low tubas to high piccolos), so does a pipe organ have a variety of colorful voices in a range of dynamic levels, produced by the many ranks of pipes. Sample of current metal and wood organ pipes These sonorities are intended to lead the singing of an entire congregation or assembly, to accompany choirs and soloists, and to perform sacred organ repertoire (preludes, postludes, processions, etc.). To accomplish these various musical tasks, the organ has four tone families, designed for multiple primary and secondary musical uses. These tone families and their prime functions are the Principals - for leading the singing of the full assembly, and full solo/ensemble playing); the Flutes - for quieter hymns, accompaniments, and softer passages; the Strings - for quiet & expressive playing; and, the Reeds - for solo melodic and ensemble playing. The tonal families also produce sounds at a wide range of pitch. (Bass for musical depth and accompanying singing in the men s range and Treble for melodies, brilliance, and accompanying singing in the women s range.) The First Lutheran Church organ has pipes in all of the tone families.

Page 3 The organ operates by a unique electro-mechanical wind-chest valve action. Electromechanical actions employ low voltage DC current driven electro-magnets that move a felt and leather valve pad. When the DC electro-magnet receives current (when a key is played at the console) its internal magnet armature moves. This armature movement pulls the felt and leather pad to open position.and wind (pressurized air within the air-tight wind-chest air box) enters the pipe, causing it to sound (just as blowing air into a flute or clarinet causes those instruments to sound). When the key is not being played, the electro-magnet armature can return to its off position, returning the pad to valve closed position, and stopping the pipe from sounding. Current pipe valves inside wind-chest The pressurized air/ wind in the organ is generated by an electric fan blower ; the wind s pressure and flow/amount are controlled by a series of wind regulators (similar to bellows). The electric fan blower is located in the music library/storage room adjoining the choir balcony. The multiple wind regulators (bellows) are located within the blower room and pipe areas, usually below the wind-chests and pipes. The blower, regulators, and wind-chests are connected by air ducts. Current wind-ducts and regulators

Page 4 The console is the control panel of the organ, and contains keyboards, stops, and pedals, for the organist to play the instrument. No tone emanates from the console. The console cabinet also contains its associated stop, key, and pedal electrical contacts and switches, and is located at the left side of the balcony. The console is connected to the pipes via under-floor cables and conduits. Current console All pipes, wind-chests, valves, wind lines, and electrical switches are located in the rear choir loft/gallery area of the church, in two primary areas; one is the wooden case with silver colored metal façade pipes, at the left of the balcony, next to the organ console and Sound System control desk. The second is the alcove in the rear wall of the balcony, above and behind choir singers. Some electrical switches and operating equipment is located within the console and some nearer the pipes and wind-chests. Current electrical switches (solid state)

Page 5 Existing Organ Technical Specification Levsen Organ Opus 4, 1983 27 Registers, 36 Ranks, 37 Stop Controls Electro-Mechanical ( Direct Electric ) Action Great Organ (Manual 2), Pressure 3-7/8 w.g. 8 Principal 8 Holz Gedeckt 8 Erzahler (Swell) 8 Erzahler Celeste (Swell) 4 Octave 4 Koppel Flöte 2 Fifteenth IV Mixture 8 Trompette 4 Great to Great 16 Swell to Great 8 Swell to Great 4 Swell to Great 16 Positive to Great 8 Positive to Great 4 Positive to Great Positive Organ (Manual 1), Pressure 3-7/8 w.g. 8 Gedeckt 4 Principal 4 Wald Flöte 2 Block Flöte III Cymbal 8 Krummhorn Chimes Harp Cymbelstern (Volume, Speed, and Delay Control) 16 Positive to Positive Positive Unison Off 4 Positive to Positive 8 Swell to Positive

Page 6 Swell Organ (Manual 3), Pressure 3-5/8 w.g. 8 Rohr Flöte 8 Erzahler 8 Erzahler Celeste 4 Gemshorn 4 Rohr Flöte (from 8 Rohr Flöte) 2-2/3 Nazard 2 Principal 1-3/5 Tierce II Scharf 16 Trumpet 8 Trumpet (from 16 Trumpet) 4 Hautbois Tremolo 16 Swell to Swell Swell Unison Off 4 Swell to Swell Pedal Organ, Pressure 3-1/2 w.g. 16 Subbass 16 Lieblich (From Subbass---with lower pressure); ext. from C13 from Swell 8 Rohr Flöte 10-2/3 Quint (from 16 Subbass) 8 Principal 8 Pommer 4 Choral Bass III Mixture 16 Trumpet (from Swell) 8 Trompette (from Swell 16 Trumpet) 4 Clarion (from Swell 16 Trumpet) 8 Great to Pedal 4 Great to Pedal 8 Swell to Pedal 4 Swell to Pedal 8 Positive to Pedal 4 Positive to Pedal Console and Accessories 3 Manual draw-knob style Crescendo Pedal Swell Expression Pedal 8 General Pistons 5 Great Pistons 5 Swell Pistons 5 Positive Pistons 5 Pedal Pistons 8 General Toe Studs 4 Pedal Toe Studs (Continued)

Page 7 General Cancel Piston Great to Pedal Reversible Piston and Toe Stud Swell to Pedal Reversible Piston and Toe Stud Positive to Pedal Reversible Piston and Toe Stud Sforzando Reversible Piston and Toe Stud Cymbalstern Reversible Toe Stud MIDI System Sequencer Blower Dayton Motor 2 H.P. 3450 RPM 115/230 Hz Rectifier La Marche In-put: 240V, 1 phase, 17 Amp, AC Out-put: 10-15V DC, 50 Amp Switching System Peterson

Page 8 Organ Repair and Maintenance Needs While the organ is currently substantially functional and playable, many operations and functions are unreliable. It is suffering a number of continually worsening mechanical, physical, and tonal defects which will increase in severity and cost to maintain or to attempt to rectify over time. There are critical defects and deterioration in all of the organ s systems and areas. These include the following large scope issues that make the organ both difficult for an organist to control and play, and which limit the quality and authentic scope of liturgical music available to the congregation: Leaning/bending/collapsing pipes Deteriorating gaskets and wind leaks Unreliable electrical switches and motors Worn out console keyboard and pedal actions, felts and springs Pipes that will not reach or maintain proper speech, balance, tuning and pitch Dead notes Inaccessible (or difficult/expensive/time-consuming to access) mechanisms and pipes Non-standard or compliant console dimensions and layout A musical and tonal scheme that is unbalanced, with incorrect power/volume ratios, poorly regulated, and that lacks important musical resources that are necessary to render the historic and current liturgical and sacred musical literature of the (Lutheran) Church. This organ suffers primarily from fundamentally and inherently low grade materials, workmanship, and design engineering. This is likely due to the fact that the manufacturer lacked the scope and depth of experience, having built only three instruments prior to this one. Each of the following features and elements contribute to a collectively poor musical rendition and unacceptable mechanical and functional operative reliability. Specifically: 1. Electro-mechanical ( DEA ) Pipe Valve Actions: These valves permit wind into pipes in a manner that is both abrupt and without adequate pressure control. As a result, pipes receive inconsistent wind supply, and therefore cannot have tonal or tuning consistency or reliability. While the DEA valves are inexpensive to purchase, they are costly in terms of causing unstable tone and frequent tunings. 2. Inaccessible Pipe Layout: Many pipes cannot be accessed (or many parts/pipes need to be disassembled or moved away) for tuning or regulation; tuning and servicing is therefore costly and unreliable.

Page 9 3. Poor Engineering Layout: o Many mechanisms and features of the organ are difficult to access, or require the disassembly of adjoining components to gain access. o The proximity and location of many pipes creates situations of poor tonal balance or blend, and tonal interference. o In the case of the pipes located at the upper rear alcove behind the choir loft; the mechanisms controlling these pipes are only accessible by removing ceiling tiles from the 2 nd floor building hallway; this is time consuming and disruptive to servicing and maintenance. Further, hallway and structural features prevent full access. o There is inadequate support and racking for many components and pipes, causing damage and collapse of pipes and parts. o The winding system and wind-ducts are installed in an unorganized and haphazard manner; wind supply is unstable and inadequate, causing pitch and tone fluctuations 4. Inappropriate Materials: Many of the raw materials used in the construction of this instrument are poorly selected. Problems include: o Dimensional instability of wood types (example-coniferous varieties) causing cracks, leaks, and unstable tuning. o The use of unsuitable metals which can have weak structural stability and poor tonal resonance. (Example; Aluminum pipes which cannot be adjusted as precisely as other metals, and which do not produce full resonance) o Inappropriately used lead pipe toes that collapse under their own weight o Tin/lead alloys that are inherently weak, causing bending and collapse o Zinc pipe resonators that impart dissonant tonal harmonics o Weak and thin metal tuning scrolls prone to tearing o Poor material uses also negatively affect the console actions and electrical systems of the organ; o Too thin key and Pedal felts compress and wear o Electrical contacts burn, break, and corrode o Too thin cork and leather gaskets dry, decay, and compress, causing leaks o Plastic parts crack and break 5. Poor Tonal Design: The pipe-rank choices, wind pressure, pipe scales, and voicing techniques employed are incorrectly selected for the purpose of achieving well developed tone for Lutheran liturgical use or for the church s room size: o Tone can be excessively loud near to pipes in balcony, but tone is unevenly projected to the nave. o Volume levels are uneven throughout all ranks o Tone balance and blend is uneven throughout all ranks o Tuning is unstable, especially in trebles and reeds o Voicing style is neo-baroque, but miss-applied for the size of room and acoustic setting (too treble-aggressive and articulate) o Musical elements important to Lutheran liturgy and literature are lacking (i.e., Reed Choruses, Balanced Mutations/Cornets, independent 8 & 4 ranks, and dynamic expression for the Choir division, etc.).

Page 10 6. Console inadequacies: Organ consoles should conform to the American Guild of Organists Standards for layout, location of controls, and dimensions. The standards are developed for the purpose of facilitating accurate playing, and reliable identification and use of all organ controls. o This console does not comply to AGO Standards o Controls are difficult to identify, reach, or operate. o Components are poorly made and unreliable o Functions are noisy and slow to operate Current Status Defects and Repair Work List (as of March, 2015): 1. Dead Notes: a. Great 4 Octave, A#59 b. Great 2 Fifteenth, G8, A#47 c. Swell 2 Principal, G20 d. Swell II Scharf, A46 2. Failing Control/Actions: a. All General Pistons (esp. note Gen. #7) b. Positive to Pedal 8 Coupler knob c. Positive Harp; Dead d. Pedal 10-2/3 Quint F30, sticking action e. Some switching changed to solid state in 1996 portions remain as electromechanical switches; incompatible 3. Un-regulated tone/voicing: a. Great 4 Koppel Flöte, Action noise G44 to C61 b. Great 8 Trompette, Reed to Flue transition unbalanced c. Great 8 Trompette, poor regulation, tuning, speech throughout d. Positive 4 Principal, D27, D#28, E29 mouth interference e. Positive 4 Wald Flöte, B36, C37, C#38 mouth interference f. Positive 4 Wald Flöte, excessive wind in regulation Bass and Treble octaves g. Positive 2 Block Flöte, uneven volume regulation, C37 to C49 h. Positive 8 Krummhorn, poor regulation, tuning, speech throughout i. Swell 4 Rohr Flöte, uneven volume regulation throughout j. Swell II Scharf; no pitch breaks k. Swell 16 Trumpet (ext. to Swell 8, 4, and Pedal 16, 8 4 ), poor regulation, tuning, speech throughout l. Swell 4 Oboe, too loud, poor regulation, tuning, speech throughout m. Pedal division pipes at different locations throughout organ; no tonal or tuning compatibility or unity n. Aluminum Pipes cannot be reliably or stably voiced or tuned o. Wind-pressure is too low to achieve proper pipe tone, speech or tuning stability

Page 11 4. Console defects: a. Un-regulated and failing key/spring actions b. Failed/compressed manual key felts c. Un-regulated and failing pedal key/spring actions d. Failed/compressed pedal key felts e. Un-adjustable key contacts f. Failed pedal contact blocks g. Uneven key-bed h. Inadequate combination action/piston memory and sequencing systems 5. Pipe Condition: a. Reed resonators bending/collapsing b. Reed tongues corroded c. Cracked wood pipes d. Decaying wood pipe tuning gaskets e. Metal toes of wood bodied pipes bending/collapsing f. Torn tuning scrolls 6. Inadequate tonal resources (missing ranks important to Lutheran liturgical musical literature include): a. Great 16 Flue b. Great Mutations/Cornet c. Great Chorus Reeds d. Swell independent 8 and 4 Flutes e. Swell 1-1/3 pitch f. Swell 8 Oboe g. Swell 16 Flue h. Swell Chorus Reeds i. Positive Mutations/Cornet j. Positive (or Choir division) dynamic expression k. Pedal 16 open Flue l. Pedal Chorus Reeds m. Pedal 4 Flute n. Pedal 32 pitch options

Page 29 Conclusion The First Lutheran Church organ exhibits problems, poor operation, and poor performance in all primary parameters. The instrument is: A. Mechanically and physically unreliable and defective B. Functionally inadequate to support and serve the music program and liturgy C. Musically and acoustically defective and inadequate The causes of these problems and defects are not due to abuse, damage or poor maintenance. In fact, very little apparent abuse or externally sourced damage (i.e., vandalism, accident, roof-leak, etc.) has befallen the instrument. Further, the maintenance the organ has received in recent years (tuning and best effort repairs) has been carefully and responsibly done. The causes of these problems and defects are due to fundamental flaws in the design, materials, and craftsmanship applied when the instrument was created. A pipe organ built of careful design and engineering, from appropriately selected and compatible raw materials, assembled in an experienced, workman-like, and artistic manner, should function reliably for decades and centuries. Indeed, example organs built over 400 years ago still function regularly in the service of their congregations. This instrument is in distress due primarily to its inherent design and manufacture, and not due to any critically poor or deferred maintenance. The defects are beyond the stage of needing adjustment. Comparative description and evaluation of solution options: The practical options available for dealing with a faulty and unreliable instrument are the following: 1. Repair, rebuild, restore, and possibly augment the existing instrument (or employ the best components of the existing organ into a replacement instrument scenario) 2. Replacement with another pre-existing/heritage/used instrument 3. Replacement with a new instrument

Page 30 Option 1; Repair, rebuild, restore and/or augment the existing organ The challenge in this option is that the roots of the organ s defects are fundamental and deep, more akin to rust and decay in an older automobile than to an automobile needing new tires and an oil change. Further, due to the labor intensive nature of extensive organ repair work of the type needed for this instrument, costs for repair may meet or exceed the cost of replacement. Prototype Repair Work-list/Specification 1. Repair and straighten all bent and collapsing pipes 2. Add stiffening rods to all 8 and longer reed resonators 3. Provide new racks for all pipes 4. Provide double and triple multi-level racks for all 8 and longer reed resonators 5. Replace all wood pipe stopper gaskets 6. Repair all cracked wood pipes 7. Replace all aluminum pipes with tin/lead alloy or zinc pipes 8. Repair all reed resonator scrolls 9. Replace all flue pipe scrolls with sleeve tuners 10. Replace all reed tongues 11. Replace current 4 Oboe with new 8 Oboe rank 12. Re-voice and tone regulate all ranks 13. Lubricate all DEA valves 14. Replace all wind-chest and flange gaskets 15. Replace console 16. Replace electrical switching and operating system 17. Repair, re-leather and re-engage Harp action 18. Recover all regulator pneumatics While this repair list will address a large number of current defects, the following problems cannot be repaired because these problems are fundamental and inherent to the substance of the current organ. These un-repairable problems include: 1. Pipe tone and tuning stability cannot be fully improved due to the limitations of the DEA valves and wind pressure 2. Accessibility for maintenance and tuning cannot be improved due to the layout and location of equipment 3. Protection against future dead notes cannot be fully accomplished due to the type of DEA valves used 4. Musical blend, balance, and tonal improvements cannot be substantially achieved due to the selection, materials, wind-pressure, and scaling of the current pipes 5. The proximities and placement of current pipes cannot be improved due to the design and engineering layout of the organ 6. There is no space for any augmentations or additions due to the layout and engineering design of the instrument 7. Future maintenance and tuning costs and needs cannot be substantially reduced due to the engineering layout, access challenges, and original material quality employed 8. The same forces that led to the current defects will re-occur in the same way after repair, requiring future repeated repairs for many items

Page 31 9. It should be noted that the current (low) quality grade of engineering, materials, and workmanship of the existing equipment precludes the use of any current parts into a worthwhile, durable and credible revision or replacement scenario. Conclusion: Repair of some components and features is possible Repair of some inherent design, engineering, and components/materials is not possible Many repairs will be short term, and require repair again The current engineering and layout prevents any upgrades or augmentation Most major, experienced, and credible organ companies will not take on this repair job Potential Estimated Cost of attempted Repair: $500,000.00 to $600,000.00

Page 32 Option 2; Replace the organ with another pre-existing/heritage/used instrument Many well built durable instruments with artistic and musical integrity become available for sale used from time to time. Some used organs are offered for sale because they are problematic and defective. Other used and worthwhile heritage instrument also become available for sale due to such factors as church mergers, expansions, or closings. An available used organ can easily be inspected and evaluated regarding its suitability for First Lutheran Church. It should be noted that a prospective purchaser of a good used organ must be capable of making an offer to purchase relatively quickly; good used instruments are searched for and desired by many, so they do not remain on the market for a long time. A relocated heritage/used organ project can typically cost only half of an equivalent new organ. If funds are not immediately available to purchase a used organ and have it restored and installed, the instrument can be purchased and placed into storage until restoration and installation funds are available. The challenge in finding a used/heritage organ appropriate for First Lutheran Church will be the limited space available in the balcony for an organ. The balcony ceiling height is relatively low, and the floor space available for an organ is somewhat limited due to the space also needed for choir singers, bell ringers, and instrumentalists. Re-locating the music ministry to the front of the church (behind the Altar area) would relieve some of this challenge, because of the greater ceiling height. So, it may be difficult to find a fitting used organ because of the limited and unique geometric space available in this building. Used and heritage organs can be costly if significant re-configuration and re-engineering is necessary; they are most economically relocated as is. A used heritage organ of genuine historic quality will be able to draw good musicians/staff/volunteers into the music ministry of the parish, and can inspire listeners and worshippers Conclusions: A used/heritage organ can be worthwhile---musically and technically, and with a long, durable life-span A used/heritage organ can be cost effective---possibly costing less than half of equivalent new It may be quite difficult to find a used/heritage organ that will fit into the architectural space available at First Lutheran Church Good heritage organs are in great demand; a purchase may need to be accomplished in short time A used/heritage organ can be purchased and stored until restoration and installation funds are available Possible cost range: $550,000.00 to $750,000.00

Page 33 Option 3; Replace the organ a new instrument The purchase of a new organ allows maximum potential to meet the musical goals for a congregation. A new instrument can be custom designed to fit into the physical and architectural parameters of the building and its acoustic environment, and to meet the specific dynamic artistic and musical needs of a congregation; the congregation s liturgical, musical, and functional goals can be specifically met. Typically such goals include: 1. A tonal palette fitting the liturgical and musical traditions, as well as future and flexible practices of the parish 2. A tonal palette appropriate to the architectural and acoustic worship space/size 3. Mechanical and technical durability and reliability 4. Low maintenance needs and costs 5. A visual and aesthetic presence fitting the building s architectural style 6. Cost effective value in purchase price and for long term service 7. Able to draw good musicians/staff/volunteers into the music ministry of the parish 8. Able to inspire and draw listeners and worshippers These goals can be achieved with cost control in mind, but sufficient funds are required to achieve quality and durability. The no free lunch, and you get what you pay for principles of cost vs. quality indeed apply in the organ industry. Over time, a high quality instrument will cost a parish the least, due to a long and durable life span and low maintenance costs and needs. Many organ builders will have available or offer the incorporation of good used heritage parts or pipes within an otherwise new instrument. This can be a worthwhile opportunity, because it can lower costs while maintaining quality, and can conserve natural and artistic resources. Some churches may consider purchasing part of a new organ, with preparations and space reserved for future additions as an attempt at cost control. This scheme is not recommended, because if and when left un-completed, the instrument cannot fulfill its intended functions; all too often the future completion never happens, and the parish s liturgy and music suffer permanently. Further, all delayed purchase of parts will cost significantly more in the future. Conclusions: A new instrument will maximize custom design to meet a parish s unique functional, musical, and architectural needs. A new instrument can be cost effective---offering the greatest possible durable life span and artistic/aesthetic draw A new instrument will have a higher purchase price A new instrument will cost the least over time due to long life-span and low maintenance needs Purchasing an entire new organ (not preparing/delaying some components for future purchase) is recommended to assure the functional and musical integrity and use of the organ and to reduce future costs Possible cost range: $870,000.00 to $1,900,000.00

Page 45 Notes for next activities/action points by committee 1. Recommended Process: a. Establish need for organ repair or replacement b. Thorough study of all options c. Recommendation/Selection of most appropriate solution for congregation d. Communicate to leadership and membership e. Support and funding options/plan 2. Decision Points: a. Balcony or Front of Church music ministry/organ location b. Acoustic and spatial improvements c. Rebuild/Repair or Replacement d. New or Heritage/used e. Organ design/action/type selection f. (Digital or Hybrid) 3. Fund Raising: a. Funding plan b. Funding sources