CU4HDD Backplane Channel Analysis

Similar documents
Comparison of NRZ, PR-2, and PR-4 signaling. Qasim Chaudry Adam Healey Greg Sheets

Measurements and Simulation Results in Support of IEEE 802.3bj Objective

Simulations of Duobinary and NRZ Over Selected IEEE Channels (Including Jitter and Crosstalk)

Brian Holden Kandou Bus, S.A. IEEE GE Study Group September 2, 2013 York, United Kingdom

COM Study for db Channels of CAUI-4 Chip-to-Chip Link

100Gb/s Single-lane SERDES Discussion. Phil Sun, Credo Semiconductor IEEE New Ethernet Applications Ad Hoc May 24, 2017

More Insights of IEEE 802.3ck Baseline Reference Receivers

Performance comparison study for Rx vs Tx based equalization for C2M links

Signal Integrity Design Using Fast Channel Simulator and Eye Diagram Statistics

Analysis of Link Budget for 3m Cable Objective

New Serial Link Simulation Process, 6 Gbps SAS Case Study

SECQ Test Method and Calibration Improvements

Approach For Supporting Legacy Channels Per IEEE 802.3bj Objective

Update on FEC Proposal for 10GbE Backplane Ethernet. Andrey Belegolovy Andrey Ovchinnikov Ilango. Ganga Fulvio Spagna Luke Chang

Ali Ghiasi. Nov 8, 2011 IEEE GNGOPTX Study Group Atlanta

Analysis of Link Budget for 3m Cable Objective

Measurements Results of GBd VCSEL Over OM3 with and without Equalization

PAM-2 on a 1 Meter Backplane Channel

MR Interface Analysis including Chord Signaling Options

Summary of NRZ CDAUI proposals

The Case of the Closing Eyes: Is PAM the Answer? Is NRZ dead?

Clause 74 FEC and MLD Interactions. Magesh Valliappan Broadcom Mark Gustlin - Cisco

Combating Closed Eyes Design & Measurement of Pre-Emphasis and Equalization for Lossy Channels

Combating Closed Eyes Design & Measurement of Pre-Emphasis and Equalization for Lossy Channels

BER margin of COM 3dB

Exceeding the Limits of Binary Data Transmission on Printed Circuit Boards by Multilevel Signaling

Component BW requirement of 56Gbaud Modulations for 400GbE 2 & 10km PMD

Practical Receiver Equalization Tradeoffs Applicable to Next- Generation 28 Gb/s Links with db Loss Channels

Open electrical issues. Piers Dawe Mellanox

CDAUI-8 Chip-to-Module (C2M) System Analysis #3. Ben Smith and Stephane Dallaire, Inphi Corporation IEEE 802.3bs, Bonita Springs, September 2015

Transmission Strategies for 10GBase-T over CAT- 6 Copper Wiring. IEEE Meeting November 2003

100GEL C2M Channel Reach Update

AMI Modeling Methodology and Measurement Correlation of a 6.25Gb/s Link

D1.2 Comments Discussion Document. Chris DiMinico MC Communications/ LEONI Cables & Systems

Comment #147, #169: Problems of high DFE coefficients

Thoughts on 25G cable/host configurations. Mike Dudek QLogic. 11/18/14 Presented to 25GE architecture ad hoc 11/19/14.

Refining TDECQ. Piers Dawe Mellanox

Proposal for 10Gb/s single-lane PHY using PAM-4 signaling

Optical transmission feasibility for 400GbE extended reach PMD. Yoshiaki Sone NTT IEEE802.3 Industry Connections NG-ECDC Ad hoc, Whistler, May 2016

CAUI-4 Chip to Chip and Chip to Module Applications

Technical Feasibility of Single Wavelength 400GbE 2km &10km application

Draft Baseline Proposal for CDAUI-8 Chipto-Module (C2M) Electrical Interface (NRZ)

Powering Collaboration and Innovation in the Simulation Design Flow Agilent EEsof Design Forum 2010

Achieving BER/FLR targets with clause 74 FEC. Phil Sun, Marvell Adee Ran, Intel Venugopal Balasubramonian, Marvell Zhenyu Liu, Marvell

On Figure of Merit in PAM4 Optical Transmitter Evaluation, Particularly TDECQ

Presentation to IEEE P802.3ap Backplane Ethernet Task Force July 2004 Working Session

Ali Ghiasi. Jan 23, 2011 IEEE GNGOPTX Study Group Newport Beach

40G SWDM4 MSA Technical Specifications Optical Specifications

40GBASE-ER4 optical budget

Error performance objective for 25 GbE

Investigation of PAM-4/6/8 Signaling and FEC for 100 Gb/s Serial Transmission

Duobinary Transmission over ATCA Backplanes

LOW POWER DIGITAL EQUALIZATION FOR HIGH SPEED SERDES. Masum Hossain University of Alberta

100G PSM4 & RS(528, 514, 7, 10) FEC. John Petrilla: Avago Technologies September 2012

Line Signaling and FEC Performance Comparison for 25Gb/s 100GbE IEEE Gb/s Backplane and Cable Task Force Chicago, September 2011

64G Fibre Channel strawman update. 6 th Dec 2016, rv1 Jonathan King, Finisar

DesignCon Pavel Zivny, Tektronix, Inc. (503)

40G SWDM4 MSA Technical Specifications Optical Specifications

Eye Doctor II Advanced Signal Integrity Tools

EEE ALERT signal for 100GBASE-KP4

Approved Minutes IEEE P802.3AP - Backplane Ethernet January 24 26, 2005 Vancouver, BC

A Way to Evaluate post-fec BER based on IBIS-AMI Model

New Results on QAM-Based 1000BASE-T Transceiver

Error performance objective for 400GbE

AMI Simulation with Error Correction to Enhance BER

Further Clarification of FEC Performance over PAM4 links with Bit-multiplexing

Baseline proposal update

Using SOAs as Booster and/or Pre-Amplifier for 4x25-Gb/s 40-km 1310-nm PMD

50GbE and NG 100GbE Logic Baseline Proposal

Investigation of PAM-4/6/8 Signaling and FEC for 100 Gb/s Serial Transmission

CAUI-4 Chip to Chip Simulations

Supplemental Measurements of System Background Noise in 10GBASE-T Systems

CDAUI-8 Chip-to-Module (C2M) System Analysis. Stephane Dallaire and Ben Smith, September 2, 2015

100G SR4 Link Model Update & TDP. John Petrilla: Avago Technologies January 2013

10 Gb/s Duobinary Signaling over Electrical Backplanes Experimental Results and Discussion

Transmitter Specifications and COM for 50GBASE-CR Mike Dudek Cavium Tao Hu Cavium cd Ad-hoc 1/10/18.

Unapproved Minutes IEEE P802.3AP - Backplane Ethernet November 16-18, 2004 San Antonio, Tx

ELECTRICAL PERFORMANCE REPORT

Improving the Performance of Advanced Modulation Scheme. Yoshiaki Sone NTT IEEE802.3bs 400 Gb/s Ethernet Task Force, San Antonio, Novenver 2014.

100G EDR and QSFP+ Cable Test Solutions

System Evolution with 100G Serial IO

Reducing input dynamic range of SOA-preamplifier for 100G-EPON upstream

802.3bj FEC Overview and Status IEEE P802.3bm

PAM4 signals for 400 Gbps: acquisition for measurement and signal processing

Further Investigation of Bit Multiplexing in 400GbE PMA

Canova Tech. IEEE 802.3cg Collision Detection Reliability in 10BASE-T1S March 6 th, 2019 PIERGIORGIO BERUTO ANTONIO ORZELLI

New Technologies for 6 Gbps Serial Link Design & Simulation, a Case Study

FEC Applications for 25Gb/s Serial Link Systems

Samtec Final Inch PCIE Series Connector Differential Pair Configuration Channel Properties

Practical De-embedding for Gigabit fixture. Ben Chia Senior Signal Integrity Consultant 5/17/2011

PAM8 Baseline Proposal

52Gb/s Chip to Module Channels using zqsfp+ Mike Dudek QLogic Barrett Bartell Qlogic Tom Palkert Molex Scott Sommers Molex 10/23/2014

100GBASE-SR4 Extinction Ratio Requirement. John Petrilla: Avago Technologies September 2013

Problems of high DFE coefficients

Transmitter Preemphasis: An Easier Path to 99% Coverage at 300m?

Issues for fair comparison of PAM4 and DMT

EVLA Fiber Selection Critical Design Review

The Challenges of Measuring PAM4 Signals

CAUI-4 Application Requirements

Application Space of CAUI-4/ OIF-VSR and cppi-4

Transcription:

CU4HDD Backplane Channel Analysis Presenter: Peter Wu, Marvell 1

Outline Analysis of 54 SAS backplane channels (www.t10.org) Channels are from connector to connector (TP1 <-> TP4) IL - Insertion loss ICR ( Insertion loss to crosstalk ratio ) Simulation results using COM model ( Annex 93A 802.3bj with updated configurations) Simulation results with Stateye V4.2.3 Performance analysis for PCS coding and equalizations PCS coding: 8B/10B vs. 64B/66B encoding TX EQ 3 tap TX FIR 2

COM Channel Operating Margin ( Annex 93A) Simulation Configurations 2.5G-BASE-X 8B/10B Baud rate: 3.125G. TX EQ: No DFE: No 5G BASE-X 8B/10B Baud rate: 6.25G With/Without: TX EQ of 3-Tap FIR DFE: 6-Tap 5G BASE-R 64B/66B Baud rate: 5.15625G With/Without: TX EQ of 3-Tap FIR DFE: 6-Tap 3

IL (db) Channel Analysis of Insertion loss 0-5 -10-15 -20-25 -30-35 X: 1.56 Y: -8.52 X: 2.58 Y: -14.87 Worst IL for 2.5G with 8B/10B Encoding Insertion Loss Worst IL for 5G with 64B/66B Encoding X: 2.81 Y: -19.25 X: 3.13 Y: -17.24 Worst IL for 5G with 8B/10B Encoding IL @ Nyquist for 5G with 8B/10B Encoding Scheme 2.5G 8B/10B Worst IL (db) 5G 64B/66B 5G 8B/10B 8.52 14.87 19.25-40 0 1 2 3 4 5 Frequency (GHz) HP24, HP25, HP26 are with worst Insertion loss Large insertion loss deviation @ ~2.8GHz. 4

db Channel Analysis of ICR 70 Insertion to Crosstalk Ratio 60 50 Worst ICR for 5G with 64B/66B Encoding Scheme 2.5G 8B/10B 5G 64B/66B 5G 8B/10B 40 30 20 10 0 X: 1.56 Y: 29.27 Worst ICR for 2.5G with 8B/10B Encoding X: 2.58 Y: 20.41 X: 2.8 Y: 15.68 Worst IL (db) 29.27 20.41 15.68-10 -20 Worst ICR for 5G with 8B/10B Encoding -30 1 2 3 4 5 6 Frequency (GHz) Some channels have ICR dip @ ~2.8GHz 5

COM (db) Simulation Results with COM - 2.5GBASE-X 2.5G 8B/10B 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 No DFE 6-Tap DFE 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 Channel ID 3dB COM Limit 2.5Gbps with 8B/10B encoding 3dB COM reserved for loss from implementations All channels pass without DFE or TX EQ 6

COM (db) Simulation Results with COM -5GBASE-R 5G 64B/66B 13 12 11 10 3 Tap TX FFE NO TX FFE 9 8 7 6 5 4 3 2 1 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 Channel ID 5Gbps with 64B/66B encoding All channels pass without TX EQ 7

COM (db) Simulation Results with COM -5GBASE-X 5G 8B/10B 12 11 10 9 3tap TX EQ 3 Tap TX FFE No TX EQ NO TX FFE 8 7 6 5 4 3 2 1 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 Channel ID 5Gbps with 8B/10B encoding 20% of channels fail even with TX EQ Non-optimal DFE shape due to 8B/10B idle patterns may result in further performance loss ( Lo_802.3CU4HDD_01_0915) 8

IL (db) ICR (db) Performance Analysis with COM IL dip Insertion Loss Insertion Crosstalk Ratio -5-10 X: 2.58 Y: -11.71 HP25 Worst IL with 64B/66B Encoding 50 40 HP25-15 30 X: 2.58 Y: 23.58 Worst ICR with 64B/66B Encoding -20-25 Worst IL with 8B/10B Encoding X: 2.83 Y: -19.18 20 10 Worst ICR with 8B/10B Encoding X: 2.81 Y: 17.24-30 0-35 -10-40 1 2 3 4 5 6 Frequency (GHz) -20 1 2 3 4 5 6 Frequency (GHz) HP25 has IL dip @ around 2.8GHz and ICR dip @ around 2.8GHz Out of band for 64B/66B scheme (Nyquist at 2.578125GHz) In band for 8B/10B scheme (Nyquist at 3.125GHz) 9

Simulation Results Using Stateye v4.2.3 For additional margin - target BER 10-15 No TX EQ added 6-Tap DFE Jitter model added Results of eye opening for all 54 channels Minimum Required Eye Opening 0.2V Observations: 5GBASE-X Mode(8B/10B), 10 channels fail the required eye opening. 5GBASE-R Mode(64/66B) and 2.5GBASE-X(8B/10B) all channels pass The results align with that of COM analysis 10

Simulation Results Using Stateye 5G mode Channels fail 11

Simulation Results Using Stateye 2.5G mode 12

Conclusions 2.5Gbps 5Gbps ICR are good for all channels. All channels pass without TX EQ or DFE. 8B/10B is feasible All channels pass with 64B/66B encoding and no TX EQ required Some channels fail with 8B/10B encoding 64B/66B is a better choice than 8B/10B for both performance and implementation considerations 13

BACKUP SLIDES 14

List of Channels : 54 channels 15 channel ID channel XTALK 1 'HP01' 'HP19' 2 'HP01' 'HP15+HP16+2HP17+2HP18' 3 'HP02' 'HP19' 4 'HP02' 'HP15+HP16+2HP17+2HP18' 5 'HP03' 'HP19' 6 'HP03' 'HP15+HP16+2HP17+2HP18' 7 'HP04' 'HP19' 8 'HP04' 'HP15+HP16+2HP17+2HP18' 9 'HP05' 'HP19' 10 'HP05' 'HP15+HP16+2HP17+2HP18' 11 'HP06' 'HP19' 12 'HP06' 'HP15+HP16+2HP17+2HP18' 13 'HP07' 'HP19' 14 'HP07' 'HP15+HP16+2HP17+2HP18' 15 'HP08' 'HP19' 16 'HP08' 'HP15+HP16+2HP17+2HP18' 17 'HP09' 'HP19' 18 'HP09' 'HP15+HP16+2HP17+2HP18' 19 'HP10' 'HP19' 20 'HP10' 'HP15+HP16+2HP17+2HP18' 21 'HP11' 'HP19' 15

List of Channels 22 'HP11' 'HP15+HP16+2HP17+2HP18' 23 'HP24' 'HP19' 24 'HP24' 'HP15+HP16+2HP17+2HP18' 25 'HP25' 'HP19' 26 'HP25' 'HP15+HP16+2HP17+2HP18' 27 'HP26' 'HP19' 28 'HP26' 'HP15+HP16+2HP17+2HP18' 29 'long_board_to_drive_oldconn' 'long_board_to_drive_oldconn_next' 30 'short_board_to_drive_oldconn' 'short_board_to_drive_oldconn_next' 31 'long_board_to_board' 'long_board_to_board_fext' 32 'short_board_to_board' 'short_board_to_board_fext' 33 'b1_thu' 'b1_next' 34 'b2_thu' 'b2_next' 35 'c1_thu' 'c1_next' 36 'c2_thu' 'c2_next' 37 'd1_thu' 'd1_next' 38 'd1_thu' 'd1_lcc' 39 'd2_thu' 'd2_next_hdd' 40 'd2_thu' 'd2_next_lcc' 41 'a2_thu' 'a2_next' 42 'a2_thu' 'a2_lcc' 43 'Intel_HDD_BP_C_MB_03_thru' 'Intel_HDD_BP_C_MB_03_FEXT' 44 'Intel_HDD_BP_C_MB_04_thru' 'Intel_HDD_BP_C_MB_04_FEXT' 45 'Intel_HDD_SC_MB_11' 'Intel_HDD_SC_MB_11_FEXT' 46 'Intel_HDD_SC_MB_12' 'Intel_HDD_SC_MB_12_FEXT' 47 'Intel_MB_C_BP_HDD_01_thru' 'Intel_MB_C_BP_HDD_01_FEXT' 48 'Intel_MB_C_BP_HDD_02_thru' 'Intel_MB_C_BP_HDD_02_FEXT' 49 'Intel_MB_LC_HDD_05' 'Intel_MB_LC_HDD_05_FEXT' 50 'Intel_MB_LC_HDD_06' 'Intel_MB_LC_HDD_06_FEXT' 51 'Intel_MB_LC_HDD_07' 'Intel_MB_LC_HDD_07_FEXT' 52 'Intel_MB_LC_HDD_08' 'Intel_MB_LC_HDD_08_FEXT' 53 'Intel_MB_SC_HDD_09' 'Intel_MB_SC_HDD_09_FEXT' 54 'Intel_MB_SC_HDD_10' 'Intel_MB_SC_HDD_10_FEXT' 16