The Laser Harp. The Concept: Software: Douglas Simmons Group: Dana Price and Ed Vitiello EMID ES 95, Lehrman

Similar documents
The Schwinnaphone A Musical Bicycle. By Jeff Volinski with Mike Caselli

The New and Improved DJ Hands: A Better Way to Control Sound

Atari PICO Composite Mod Board Installation Instructions:

SECTION 7 -- CROSS-CONNECT SYSTEMS

randomrhythm Bedienungsanleitung User Guide

INPUT OUTPUT GAIN DELAY. Hue Candela Strobe Controller. Hue Candela s STROBE CONTROLLER. Front Panel Actual Size 7 ¼ By 4 ¾ POWER. msec SEC 10 1.

HS-509 VIBRATION TRIP MODULE

SECU-16. Specifications Power: Input Voltage 9-12V DC or AC Input Current Max 200mA. 8 2-wire inputs, Analog (0 5VDC) or Supervised

DMC550 Technical Reference

S Regulators. Supplement 1. Contents. Control Replacement Assembly Installation Instructions Supplement

Sentinel I24 Digital Input and Output Configuration

Operating Instructions

Igaluk To Scare the Moon with its own Shadow Technical requirements

Theory and Practice of Tangible User Interfaces. Thursday Week 3: Analog Input. week. Sensor 1: Potentiometers. Analog input

Pilot Computer

C2 +5V. (14) Vdd (+5 Vdc) (13) OSC1/A7 1.2K (12) 1.2K (11) 1.2K (10) U1 16F628 16F628A 1.2K (1) A2 1.2K (8) 1.2K (7) 1.2K. (Gnd) Vss (5) (6) 1.

Magic Patch Patch Leads & Accessories

Peak Atlas IT. RJ45 Network Cable Analyser Model UTP05. Designed and manufactured with pride in the UK. User Guide

Synthesis Technology E102 Quad Temporal Shifter User Guide Version 1.0. Dec

Catch or Die! Julia A. and Andrew C. ECE 150 Cooper Union Spring 2010

Low Voltage Wall Mount Touch Panel RGB Controller

This module senses temperature and humidity. Output: Temperature and humidity display on serial monitor.

Pixie Construction Notes

By CHANNEL VISION. Flush Mount Amplifier A0350

Modular Analog Synthesizer

Site Installation Model MP-8433

Site Installation Model MP-8424

16-BIT LOAD CELL/DUAL STATUS INPUT

Assembly and Operating Instructions for HiViz.com Kits

0.56" 4 Digital Blue LED Panel Meter (rescalable) User s Guide

Troubleshooting. 1. Symptom: Status indicator (Red LED) on SSR is constant on. 2. Symptom: Output indicator (Yellow LED) on SSR is flashing.

V 180 Series Photoelectric Switches

Table of contents 1. INTRODUCTION GENERAL CONTENTS OF PACKAGE GENERAL USE OF THE EQUFLOW 6100 D/A CONVERTER STORAGE..

COMPANY. MX 9000 Process Monitor. Installation, Operating & Maintenance Manual AW-Lake Company. All rights reserved. Doc ID:MXMAN082416

SWITCH: Microcontroller Touch-switch Design & Test (Part 2)

Label Applicator HERMA 400

Lesson Sequence: S4A (Scratch for Arduino)

SCALE & WEIGHT DISPLAYS

Modcan Touch Sequencer Manual

LeRIBSS MTC MANUAL. Issue #1. March, MTC Control Unit Definitions, Information and Specifications. MTC Control Unit Electronic Schematics

Oberkorn User Manual. Analogue Sequencer. Analogue Solutions

LX3V-4AD User manual Website: Technical Support: Skype: Phone: QQ Group: Technical forum:

// K4815 // Pattern Generator. User Manual. Hardware Version D-F Firmware Version 1.2x February 5, 2013 Kilpatrick Audio

RG NDT INTERNATIONAL INC

Total solder points: 123 Difficulty level: beginner 1. advanced AUDIO ANALYZER K8098. audio gea Give your. . high-tech ILLUSTRATED ASSEMBLY MANUAL

MXS Strada USER GUIDE

Owners SW-LCD 2.0 Manual & Specifications

PRESET TEN ARCHITECTURAL TWO OWNERS MANUAL

VISION. Data VS2 DATAVS2. Phone: Fax: Web:

Vorne Industries. 87/719 Analog Input Module User's Manual Industrial Drive Itasca, IL (630) Telefax (630)

Copyright 01/2004 Rextron Technology, Inc. PP5-V Printed in Taiwan

GIMOTA AG. Assembly Instructions GTM12 Series

Noise Tools 1U Manual. Noise Tools 1U. Clock, Random Pulse, Analog Noise, Sample & Hold, and Slew. Manual Revision:

UTTR BEST TELEMETRY SOURCE SELECTOR

TS612. Multi-line, On-Air Phone System. Installation & Operations Manual. Perfect Communication through Technology, Service, and Education ṬM

RGB-3400-X RGB SEQUENCER / 3-CHANNEL UNIVERSAL LED DIMMER

// K4815 // Pattern Generator. User Manual. Hardware Version D/E Firmware Version 1.1x February 16, 2011 Kilpatrick Audio

LWC Series LWC-80. Design. LWC Series Laser Wire Counters. Product name: Accessories: LWC-80

Application Note AN-LD09 Rev. B Troubleshooting Low Noise Systems. April, 2015 Page 1 NOISE MEASUREMENT SYSTEM BASELINES INTRODUCTION

XYNTHESIZR User Guide 1.5

Vorne Industries. 2000B Series Buffered Display Users Manual Industrial Drive Itasca, IL (630) Telefax (630)

A0325. ARIA Audio Streaming Source Receiver with a built in Bluetooth 4.2 Module. ARIA Audio

MIX-MINUS BRIDGE TABLE OF CONTENTS SECTION 1 ...INTRODUCTION YOU NEED MIX-MINUS FEATURES WHAT COMES WITH MMB...

KING-METER USER GUIDE SW-LCD

Quick Start Function Summary Instructions for ASHCROFT GC52 Differential Pressure Transmitter Version 6.03 Rev. B

ORM0022 EHPC210 Universal Controller Operation Manual Revision 1. EHPC210 Universal Controller. Operation Manual

Revision 1.2d

A BBD replacement and adjustment procedure

Digital Effects Pedal Description Ross Jongeward 10 December 2014

ANTUMBRA FADE MANUAL

Lab 7: Soldering - Traffic Light Controller ReadMeFirst

PicoBoo PLUS. OPERATING MANUAL V1.1 (Sep 8, 2011) 6 Oakside Court Barrie, Ontario L4N 5V5 Tel: or

Physics 123 Hints and Tips

CONTENTS. Product Guide 1. Multi Conductor Cable 11. Paired Cable 20. RS-232 Application Cable 27. RS-422 Application Cable 28

We will cover the following topics in this document:

Multi-Key v2.4 Multi-Function Amplifier Keying Interface

Lab experience 1: Introduction to LabView

ENC - LKE51 - L I B

Hardware Verification after Installation. D0 Run IIB L1Cal Technical Readiness Review. Presented by Dan Edmunds August 2005

VINTAGE STOMP PACKAGE Owner s Manual

R1MS-GH3 BEFORE USE... POINTS OF CAUTION INSTRUCTION MANUAL THERMOCOUPLE & DC INPUT MODULE MODEL. (8 points; isolated)

Data Acquisition Networks. Installing and Configuring the DM01 Hardware

AI-1664LAX-USB. Features. 100KSPS 16-bit Analog Input Unit for USB AI-1664LAX-USB 1. Ver.1.01

ADE-32 OCTOCONTROLLER

KNX Dimmer RGBW - User Manual

REMOTE I/O R30 SERIES. PC CONFIGURATOR SOFTWARE Model: R30CFG Ver Users Manual

RGB LED Controller and Dimmer Pro Plus RF Remote 3-Channels, 12 or 24 VDC Part No. RGB-3-Dimmer-Pro

PB-507. Advanced Analog & Digital Electronic Design Workstation Instruction Manual. Revision: 2/2014

Working with CSWin32 Software

Instruction Manual. Series 3000 Model R-165A. Audio/Video IF/RF Relay Panel. CATV Switching and Control

Short Manual. ZX2 Short Manual.doc Page 1 of 12

TAC1 Telephone Entry System

Plog rev 1.0 MANUAL Overview

Triple RTD. On-board Digital Signal Processor. Linearization RTDs 20 Hz averaged outputs 16-bit precision comparator function.

Technovision DV-66B User Guide (HW V1.3, FW V1.6) Latest Version Sept. 2004

Field Test Procedure for Sentry. 1 Purpose Applicable documents Procedure Duration - Time Estimate... 2


L, LTC, LTM, LT are registered trademarks of Linear Technology Corporation. Other product

Pedal, Switch, and Cable Tutorial

There are many ham radio related activities

Transcription:

Douglas Simmons Group: Dana Price and Ed Vitiello EMID ES 95, Lehrman The Laser Harp The Concept: The original idea was to build a harp with lasers replacing the strings. Instead of plucking a string the player would break a laser beam, how futuristic. We also wanted to include several other controllers to change other parameters. Some of our original ideas were ribbon sensors to control pitch bend or modulation, switches to change the octave range, and switches to control different background sequences. Software: Note Logic: The photocell on the harp sends in controller data values to Max based on how much light is in contact with its surface. With the laser pointers powered on there is a base value coming in to Max, say 25 for example, and when the beam is broken it jumps up to about 98. So the basic idea of triggering notes becomes simple, play a note every time the incoming value is greater than the base value. However, if any electrical noise causes that base value to fluctuate then a note would be played. To solve this problem a specified value was added to the base value, say 6, to act as a filter and ensure that notes were only being played when the beam was broken. This is how the original note logic was setup, except there was a major flaw. The flaw is that when your finger breaks the beam, the incoming value is not constant, it fluctuates. Therefore a makenote is triggered every time that number changes, regardless of whether you have removed your finger from the beams path. What the program should be doing is triggering a makenote the first time the incoming value crosses the threshold and not sending another one until the value has dropped back below the threshold. The code on the right does just that. What it is doing is actually changing the threshold value that the incoming value is being compared to. So when an incoming value is higher than 32 a note is triggered, and the number in the > object is changed to

200. No values from the photocell will be above 200 and therefore the > object will never evaluate true, keeping more notes from being triggered. Then, when the incoming value drops back below the original threshold, 32, the number in the > object changes from 200 back to 32, setting up the code to trigger another note. This code was then used to control a clocker that would time how long your finger was breaking the laser beam. When the threshold value is changed to 200 the timer starts, and when it drops back down it stops. That timer value is then scaled to 0 to 127 and sent to a bendout. However one key aspect in the scaling is that the output is negative until 800 milliseconds. That way the pitch bend does not start until after you have held your finger in the beam for.8 seconds, giving the player time to move there finger if they do not want to bend a particular note. Also, the switch at the bottom makes sure the value going to the bendout never exceeds 127. Calibrate Threshold: The incoming base value for each sensor was not always same. So a sub patch was written so the value of the threshold could be calculated automatically based on the incoming value, instead of having to change each one manually. LFO and Sustain Button Logic: When one of the six buttons shown above is hit, it sends out controller data to Max. Each button sends out a different value and that value is then mapped to a musical parameter. When a controller value enters it Max it is compared to see if it fits within a specified range. If that comparison evaluates true then a number, between 0 and 127, is sent out. The code to accomplish this is shown below.

Scale and Octave Selection: Three buttons on the front of the harp control which scale is being played by the harp. The logic in Max first decides which button has been pushed and sends a bang to one of three lines of code, shown below. This then triggers those specified numbers to be added to a base note of 60, and this is what gives the final note values for each scale. Shown below are the final note values for the chromatic scale. To change the octave up and down, the foot switch was simply wired to change the base note up by 12 or down by 12. Sequencing:

We wanted to have background sequences that would accompany the player and could be controlled from the harp. Three sequences were put together in Reason that the player could play over. Buttons on the front edge of the harp control which sequence is loaded and a foot switch on the floor starts and stops the sequences when the player wishes. Ribbon Sensor: Originally we wanted two ribbon sensors on either side of the photocells for changing parameters on the fly. The sensors were made of two strips of conductive plastic. Leads were attached to each end of each strip and the strips were taped together, conductive sides facing each other. However we could not get our homemade ribbon sensors to give us reliable data. All of the output data was extremely noisy, fluctuating between as many as 15 values and the point on the ribbon did not always produce the same number. Two different prototypes were constructed and several different circuit setups with the op-amp were tried only to no avail. We were then forced to scrap the ribbon sensors and replace them with switches. My Particular Responsibilities: - Construct wiring for six buttons on either side of photo cells and program logic for buttons to control LFO amount and note duration. - Program logic to output notes when laser beam is broken and bend note when beam is broken for specified amount of time. - Construct ribbon sensors and get them to output reliable data. (did not work) - Program potentiometer knob to control master volume. - Program foot pedal to control modulation wheel. - Have pieces of metal for body cut by machine shop. Summary of What Harp Does: - When laser beam is broken a single note plays o if beam is held broken for longer then.8 seconds the note will bend - Set of six buttons changes LFO amount at six discrete settings - Set of six buttons changes note duration at six discrete settings - Three buttons on front face select between three different scales

- Three buttons on front face select between three different sequences o foot switch on floor starts and stops sequences - Knob on front face controls master volume - Foot pedal controls modulation wheel o wheel set to control filter frequency - Foot switches change range of harp up one octave and down one octave Some Pictures of Final Product:

Hardware and Wiring Appendix: Description The Laser Harp is built with 12 photocells, 12 laser pointers, resistors (for divider circuits) and assorted switches, pots and push buttons. Power requirements are 5Vdc at 500 Ma. Controls are shown below: Front Panel Controls Power On/Off Floor Controls Modulatio Sequence Octav n Select e U Wheel p Load Song #1 Load Song #2 Load Song #3 Chromatic Scale Blues Scale Diatonic Scale Scale Select Octav e Dow n Pla Sto y p volum e not used 5 VDC Harp Controls 12 photocells for generating notes by breaking the beam of light with your finger left side 6-switch row for controlling note duration right side 6-switch row for controlling LFO amount

Control Name Wiring Information Analog Control Signals Type Cable Pair wire size (awg) Cable Color Doepfer Connect MAX Control +5 VDC +5Vdc Power blk/white 1 22 blk -> red 1 5VDC n/a GND Ground blk/red 22 black GND n/a PC-1 photocell/note 1 brown/white 24 brown/white JP1-9 ctlin 8 PC-2 photocell/note 2 white/brown 24 white/brown JP1-12 ctlin 11 PC-3 photocell/note 3 green/white 24 green/white JP1-4 ctlin 3 PC-4 photocell/note 4 white/green 24 white/green JP1-7 ctlin 6 PC-5 photocell/note 5 blue/white 24 blue/white JP1-10 ctlin 9 PC-6 photocell/note 6 white/blue 24 white/blue JP1-5 ctlin 4 PC-7 photocell/note 7 orange/white 24 orange/white JP1-2 ctlin 1 PC-8 photocell/note 8 white/orange 24 white/orange JP1-6 ctlin 5 PC-9 photocell/note 9 yellow/blk 22 yellow JP1-1 ctlin 0 PC-10 photocell/note 10 yellow/blk 22 black JP1-8 ctlin 7 PC-11 photocell/note 11 blue/blk 22 blue JP1-3 ctlin 2 PC-12 photocell/note 12 blue/blk 22 blk JP1-11 ctlin 10 VC-1 volume control 1 blk/orange 22 orange JP1-13 ctlin 12 VC-2 volume pedal brown/black 22 JP1-15 ctlin 14 VC-3 not used (spare) n/a 22 n/a n/a n/a MC-1 left 6-switch row brown/black 22 brown JP1-14 ctlin 13 MC-2 right 6-switch row brown/black 22 black JP1-16 ctlin 15 Digital (Switch Input) Control Signals PB1.C PB-1 Common blk/red 22 red JP6-COM (+5V) n/a SW-1 1 of 3 seq select black/white 22 white JPx-3 note notein 2 SW-2 2 of 3 seq select black/white 22 black JPx-1 note notein 0 SW-3 3 of 3 seq select black/green 22 black JPx-5 note notein 4 SW-4 1 of 3 scale select black/green 22 green JPx-7 note notein 6 SW-5 2 of 3 scale select red/green 22 green JPx-11 note notein 10 SW-6 3 of 3 scale select red/green 22 red JPx-9 note notein 8 SW-7 Play/Stop 22 JPx-13 note notein 12 SW-8 Octave UP 22 JPx-2 note notein 1 SW-9 Octave DOWN 22 JPx-15 note notein 14 Notes: (1) 5VDC doepfer signal is connected only to the volume pedal floor switch. All other 5V power is from an external supply.

Schematics Harp s and Front Panel Volume Control +5 VDC ctlin 1 #1 ctlin 2 #2 ctlin 3 #3 ctlin 11 ctlin 12 #11 #12 VC1 10k pot GND Harp left side 6-button switch row Harp right side 6-button switch row Front Panel Switches Floor Switch and Volume Pedal