A KIND OF COAXIAL RESONATOR STRUCTURE WITH LOW MULTIPACTOR RISK. Engineering, University of Electronic Science and Technology of China, Sichuan, China

Similar documents
Multipaction Breakdown Prediction of Passive Microwave Devices with CST Particle-Studio

HHH. report from MULCOPIM 08. Frank Zimmermann LCU Meeting, 1 October 2008

Experimental Results of the Coaxial Multipactor Experiment. T.P. Graves, B. LaBombard, S.J. Wukitch, I.H. Hutchinson PSFC-MIT

Investigation of Radio Frequency Breakdown in Fusion Experiments

Pulsed Klystrons for Next Generation Neutron Sources Edward L. Eisen - CPI, Inc. Palo Alto, CA, USA

Detailed Design Report

Low-Noise, High-Efficiency and High-Quality Magnetron for Microwave Oven

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

MPI Cable Selection Guide

Standard/Handbook for Radio Frequency (RF) Breakdown Prevention in Spacecraft Components

Lecture 17 Microwave Tubes: Part I

Dark current and multipacting trajectories simulations for the RF Photo Gun at PITZ

Multipactor-induced induced neutral pressure limits on Alcator C-Mod ICRF Performance

Limitations of a Load Pull System

Modeling Microwave Waveguide Components: The Tuned Stub

RF Power Generation II

PEP-I1 RF Feedback System Simulation

Pseudospark-sourced Micro-sized Electron Beams for High Frequency klystron Applications

Research on sampling of vibration signals based on compressed sensing

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

Rapid Prototype Array (RPA) Feed

Orbital Ka-ISO. Ext Ref Ka LNB with integrated isolator. Orbital Research Ltd Marine Drive, White Rock, BC. Canada V4B 1A9

Application Note 5098

Design and Simulation of High Power RF Modulated Triode Electron Gun. A. Poursaleh

A HIGH POWER LONG PULSE HIGH EFFICIENCY MULTI BEAM KLYSTRON

Chris Gilmour Studies into the Design of a Higher Efficiency Ku Band ring-loop Travelling Wave Tube SWS using the CST PIC Software.

Technology Overview LTCC

CHAPTER 3 SEPARATION OF CONDUCTED EMI

Optimizing BNC PCB Footprint Designs for Digital Video Equipment

DEVELOPMENT OF X-BAND KLYSTRON TECHNOLOGY AT SLAC

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

9th ESLS RF Meeting September ALBA RF System. F. Perez. RF System 1/20

ONE SENSOR MICROPHONE ARRAY APPLICATION IN SOURCE LOCALIZATION. Hsin-Chu, Taiwan

Switching Solutions for Multi-Channel High Speed Serial Port Testing

A New 4MW LHCD System for EAST

SPINNER BROADCAST EXPLANATION OF THE MULTI CHANNEL COMBINER SPECIFICATIONS

Preliminary Study on Radio Frequency Neutralizer for Ion Engine

Detection and demodulation of non-cooperative burst signal Feng Yue 1, Wu Guangzhi 1, Tao Min 1

Practical considerations of accelerometer noise. Endevco technical paper 324

Low Loss RG 402 Equivalent

Design, Fabrication and Testing of Gun-Collector Test Module for 6 MW Peak, 24 kw Average Power, S-Band Klystron

18 GHz, 2.2 kw KLYSTRON GENERATOR GKP 24KP 18GHz WR62 3x400V

PHGN 480 Laser Physics Lab 4: HeNe resonator mode properties 1. Observation of higher-order modes:

UNIVERSAL SPATIAL UP-SCALER WITH NONLINEAR EDGE ENHANCEMENT

RF Solutions for Science.

DESIGN AND PERFORMANCE OF L-BAND AND S-BAND MULTI BEAM KLYSTRONS

EMI/EMC diagnostic and debugging

MM-wave Partial Information De-embedding: Errors and Sensitivities. J. Martens

R&S RT-Zxx High-Voltage and Current Probes Specifications

2 Work Package and Work Unit descriptions. 2.8 WP8: RF Systems (R. Ruber, Uppsala)

Development of optical transmission module for access networks

ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE

D-COAX, Inc. D-COAX d086 Series Cable Pair. High Frequency, Skew Matched, Phase Stable Cable Pair (65 GHz)

THE NEW AXIAL BUNCHER AT INFN-LNS

Advanced Techniques for Spurious Measurements with R&S FSW-K50 White Paper

Broadband System - D

SMPTE STANDARD Gb/s Signal/Data Serial Interface. Proposed SMPTE Standard for Television SMPTE 424M Date: < > TP Rev 0

14 GHz, 2.2 kw KLYSTRON GENERATOR GKP 22KP 14GHz WR62 3x400V

FDTD_SPICE Analysis of EMI and SSO of LSI ICs Using a Full Chip Macro Model

GaAs MMIC Triple Balanced Mixer

GaAs MMIC Double Balanced Mixer

TOSHIBA Industrial Magnetron E3328

GaAs MMIC Double Balanced Mixer

Low Mass SpaceWire Cable ITT AO/1-6214/09/NL/LvH

Measurement Accuracy of the ZVK Vector Network Analyzer

GaAs MMIC Double Balanced Mixer

AMERICAN NATIONAL STANDARD

Evaluation of Performance, Reliability, and Risk for High Peak Power RF Sources from S-band through X-band for Advanced Accelerator Applications

UNIT-3 Part A. 2. What is radio sonde? [ N/D-16]

GaAs MMIC Double Balanced Mixer

UF7500/UF17500/UF25000 Series UHF Band Pass Filters

DESIGN AND TECHNOLOGICAL ASPECTS OF KLYSTRON DEVELOPMENT

R&S RT-Zxx High-Bandwidth Probes Specifications

R&S ZVA-Zxx Millimeter-Wave Converters Specifications

Experimental Study on Dual-Wavelength Distributed Feedback Fiber Laser

Monoblock RF Filter Testing SMA, In-Fixture Calibration and the UDCK

Orbital 4400X & 4400XI Series X-Band Ext Ref LNB

Studies on an S-band bunching system with hybrid buncher

Features. = +25 C, 50 Ohm System

4.9 BEAM BLANKING AND PULSING OPTIONS

NEW METHOD FOR KLYSTRON MODELING

Inmarsat Downconverter Narrowband Downconverter

EBU INTERFACES FOR 625 LINE DIGITAL VIDEO SIGNALS AT THE 4:2:2 LEVEL OF CCIR RECOMMENDATION 601 CONTENTS

Parameter Symbol Units MIN MAX. RF Input Power (CW) Pin dbm +20. LO Input Power (CW) Pin dbm +27

Wideband LNB: 2.4 GHz

Terahertz focal plane arrays for astrophysics and remote sensing

Large Area, High Speed Photo-detectors Readout

Analysis of the CW-mode optically controlled microwave switch

This work was supported by FINEP (Research and Projects Financing) under contract

R&S RT-Zxx Standard Probes Specifications

Type "N" Connectors. Type "N" Interface Dimensions

J/NLC Progress on R1 and R2 Issues. Chris Adolphsen

Features. = +25 C, IF = 1 GHz, LO = +13 dbm*

GaAs MMIC Double Balanced Mixer

GaAs DOUBLE-BALANCED MIXER

Features. = +25 C, 50 Ohm System

Critical Benefits of Cooled DFB Lasers for RF over Fiber Optics Transmission Provided by OPTICAL ZONU CORPORATION

What really changes with Category 6

A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator

GaAs DOUBLE-BALANCED MIXER

Transcription:

Progress In Electromagnetics Research Letters, Vol. 39, 127 132, 2013 A KIND OF COAXIAL RESONATOR STRUCTURE WITH LOW MULTIPACTOR RISK Xumin Yu 1, 2, Xiaohong Tang 1, Juan Wang 2, Dan Tang 2, and Xinyang He 2 1 EHF Key Laboratory of Fundamental Science, School of Electronic Engineering, University of Electronic Science and Technology of China, Sichuan, China 2 Xi an Institute of Space Radio Technology, Microwave, Xi an, Shanxi, China Abstract Spacial coaxial resonator plays an important role in spacial system. However, its multipactor effect has not been reported so far. This paper presents a novel type of coaxial resonator structure with low multipactor risk. Compared with conventional coaxial resonator structures, the proposed structure improves the multipactor threshold of filters nearly 3 db. Experimental results and 3D full-wave analysis show good accordance with the predicted characteristics. 1. INTRODUCTION Multipaction is a nonlinear effect that may appear in microwave devices operating with high power and lowpressure conditions (lower than 1.3 10 3 Pa), resulting in resonant electron avalanche between the inner metal surfaces of a component. Multipaction takes place while certain field conditions are satisfied (including amplitude, frequency, and phase) caused by secondary electron emission [1]. The multipacting avalanche may give rise to degradation of signal and destruction of device. Given above reasons, multipactor is a critical issue in the design of microwave devices for space application [2], which has attracted much more attention from the scientific communities [3, 4]. Based on parallel plate theory, multipactor susceptibility curves are standard for the design of multipactor for space applications [5]. To save the development time and reduce the cost of space hardware, it is indispensable to assess multipactor risks before fabrication. Received 22 March 2013, Accepted 15 April 2013, Scheduled 18 April 2013 * Corresponding author: Xumin Yu (1149886452@qq.com).

128 Yu et al. Multipactor software, capable of predicting multipactor threshold, is applied to several types of transmission lines, such as waveguide, coaxial, and micro-strip line. Its theoretical basis is parallel plate approximation that can be used to design real microwave component if the gap size is much smaller compared to its dimensions and only fundamental mode is considered. Multipaction breakdown on passive waveguide components has been reported in [6 8], and the multipactor threshold of coaxial transmission lines has been demonstrated in [9, 10]. To our best knowledge, multipaction of spacial coaxial resonator structures has not been reported so far. However, spacial coaxial resonator plays an important role in spacial system and its multipaction may affect the performance of the whole special system. This motivates us to study the multiapction effect of spacial coaxial resonator and explore new type of spacial coaxial resonator structure with low multipaction risk. In this paper, a novel type of coaxial resonator with low multipactor risk is demonstrated. The proposed coaxial resonator is installed in the narrow band filter (L-band). The multipactor threshold has been improved by optimizing the coaxial resonator capacitance distribution. 3D full-wave analysis shows that the multipactor threshold of filters with low multipactor-risk resonators is nearly 3 db higher than that using normal structure coaxial resonators. These results accord very good with experimental measurements. 2. THE STRUCTURE AND ANALYSIS The proposed advanced structure with low multipactor risk is shown in Fig. 1(a). For comparison, conventional coaxial resonator is also demonstrated in Fig. 1(b). Their geometrical parameters can be found in Fig. 1(c) and Fig. 1(d) respectively. Both structures have the same parameters except for the minimum gap. Under the same frequency, d 1 is larger than d 2 is, and the characteristic impedance of d 1 is also larger than that of d 2. According to Multipactor software, the characteristic impedance of a product is constant, the frequency increases and the structure gap increases with the increase of multipactor threshold voltage. If the testing frequency and the minimum gap are constant, the multipactor threshold power of a structure increases with the decrease of characteristic impedance. The different parts of the transmission electron microscope mode resonator have different characteristic impedances, specially at the end of the inner cylinder of the resonator. The minimum characteristic impedance of the gap in resonators with constant outside parameters

Progress In Electromagnetics Research Letters, Vol. 39, 2013 129 (a) b (b) b d2 d1 ha-2mm h a a (c) (d) Figure 1. (a) Low multipactor-risk coaxial resonator structure. (b) Convention all coaxial resonator structure. (c) Cross section of the structure in (a). (d) Cross section of the structure in (b). can be reduced by changing the structure of the resonator, which in turn improves the multipactor threshold power of the entire filter. The square outer cavity is replaced by a circle outer cavity to reduce the effect of unloaded Q. 3. ELECTRICAL DESIGN To compare multipactor threshold power of the two types of coaxial resonators in Fig. 1, two types of third-order filters with the same performance were designed. More than three filters of each type had been manufactured. It should be noted that all filters have the same outside parameters. The filter design begins with the generation of a suitable prototype. The coupling matrix of the third-order Chebyshev prototype with 0.01 db ripple response is presented as M01 = M34 =

130 Yu et al. 0 db S21-20 db -40 db S11-60 db 1.20 GHz 1.25 GHz 1.30 GHz Figure 2. Simulation results of the two types of third-order filters via HFSS. Table 1. Experimental results of filter. Parameters Designed Measured Centre frequency 1.25 GHz 1.25 1.255 GHz Operation band 10 MHz 10.3 MHz Insertion loss 0.4 db 0.36 db Loss Variation 0.2 db 0.18 db Rx/Tx VSWR 1.2 1.19 db 1.13755 and M 12 = M 23 = 1.10102. The center frequency is at 1.25 GHz, and the bandwidth is 10 MHz. The design has been validated by 3D full-wave simulations. The physical dimensions of the entire filter were also checked. Return loss is found to be more than 20 db with an insertion loss of less than 0.4 db. Simulation results of the two types of filters are shown in Fig. 2. 4. HIGH POWER HANDLING CAPABILITY In order to predict high power handling capability, the analysis for PIM and multipactor should be performed. Therefore, the filter should be manufactured by proper material with the minimum number of contact junctions and no tuning screws. The filters of this paper with different coaxial resonators were machined from aluminum alloy, and then silver plated. The filters didn t have any frequency tuning screw. The peak voltages of two kind filters were calculated by HFSS and the numbers of peak voltages are summarized as shown in Table 2. The SC structure has the least peak voltage. When the input power is same, lower peak voltage means higher multipactor threshold.

Progress In Electromagnetics Research Letters, Vol. 39, 2013 131 Table 2. Analysis of peak voltage. Structure Frequency Gap Peak Voltage (V/W) Fig. 1(a) 1.25 GHz 3.45 mm 81.37 Fig. 1(b) 1.25 GHz 6 mm 148.69 5. EXPERIMENTAL RESULTS Theoretical results and measured results are shown in Table 1. It can be seen that experimental results accord very well with theoretical design. A very small shift of central frequency is attributed to the absence of a frequency tuning screw. Next, we examine the multipactor risk of the two resonator structure in Fig. 1. The peak voltages of the two types of filters were calculated by using high-frequency structure simulator (HFSS). The peak voltages is shown in Table 2, in which a low peak voltage means a high multipactor threshold. It is clear that the proposed advanced structure in Fig. 1(a) has low multipactor risk compared to the conventional structure in Fig. 1(b). To validate the theoretical results, experiment has been carried out and the measurement results is demonstrated in Table 3. Obviously, experimental results accords well with simulation results. Table 3. Experimental results of multipactor threshold power. Structure Fig. 1(a) Fig. 1(b) Measured Results 70 W 150 W 6. CONCLUSION In this paper, a low multipactor-risk coaxial resonator structure is proposed and experimentally demonstrated. It is found that the multipactor threshold of the coaxial resonator may be improved by reducing the characteristic impedance of the minimum gap. This can be achieved by changing the structure of the inner conductor. The multipactor threshold is improved nearly 3 db when the proposed coaxial resonator structure is applied to the L-band filter. Experimental results accords very well with the predicted characteristics.

132 Yu et al. REFERENCES 1. Hatch, A. and H. Williams, The secondary electron resonance mechanism of low-pressure high-frequency gas breakdown, IEEE Journal of Applied Physics, Vol. 25, 417 423, 1954. 2. Kudsia, C., R. Cameron, and W.-C. Tang, Innovations in microwave filters and multiplexing networks for communication satellite systems, IEEE Transactions on Microwave Theory and Techniques, Vol. 40, 1133 1149, Jun. 1992. 3. Yu, M. and A. Atia, Workshop WMH: Filter II: Practical aspects of microwave filter design and realization, Proceedings of IEEE International Microwave Symposium, Honolulu, Hawaii, Jun. 2007. 4. Yu, M., Power-handing capability for RF filters, Microwave Magazines, Vol. 8, 88 97, Oct. 2007. 5. Space Engineering: Multipacting Design and Test, Vol. ECSS- 20-01A, ESA-ESTEC, Editor, ESA Publication Division, The Netherlands, May 2003. 6. Anza, S., C. Vicente, D. Raboso, J. Gil, B. Gimeno, and V. E. Boria, Enhanced prediction of multipaction breakdown in passive waveguide components including space charge effects, IEEE MTT-S International Microwave Symposium Digest, 1095 1098, Jun. 2008. 7. Yun, S. H., M. S. Uhm, and I. B. Yom, Design of the multipaction free high power Ka-band diplexer with an E-plane T-junction, Asia-Pacific Communications, 582 585, 2005. 8. Pereira, F. Q., V. Boria, B. Gimeno, D. C. Rebenaque, J. P. Garcia, A. A. Melcon, J. H. Gonzalez, D. Schmitt, D. Raboso, C. Ernst, and I. H. Carpintero, Investigation of multipaction phenomena in passive waveguide filters for space applications, IEEE MTT-S International Microwave Symposium Digest, 246 249, 2006. 9. Tienda, C., A. M. Pérez, C. Vicente, A. Coves, G. Torregrosa, J. F. Sánchez, R. Barco, B. Gimeno, and V. E. Boria, Multipactor analysis in coaxial waveguides, Proc. 13th IEEE Melecon, 195 198, Málaga, Spain, 2006. 10. Perez, A., et al., Prediction of multipactor breakdown thresholds in coaxial transmission lines for travelling, standing, and mixed waves, IEEE Transactions on Plasma Science, Vol. 37, No. 10, 2031 2040, Oct. 2009.