DOI: /j.aquabot Published: 01/11/2016. Peer reviewed version. Cyswllt i'r cyhoeddiad / Link to publication

Similar documents
Optical shift register based on an optical flip-flop memory with a single active element Zhang, S.; Li, Z.; Liu, Y.; Khoe, G.D.; Dorren, H.J.S.

Aalborg Universitet. Composition: 3 Piano Pieces. Bergstrøm-Nielsen, Carl. Creative Commons License CC BY-NC 4.0. Publication date: 2017

Syddansk Universitet. Rejoinder Noble Prize effects in citation networks Frandsen, Tove Faber ; Nicolaisen, Jeppe

King s Research Portal

Aalborg Universitet. The Dimension of Seriousness in Moral Education Wiberg, Merete. Publication date: 2007

Kodak Ektapro HS Motion Analyser

Consonance perception of complex-tone dyads and chords

Syddansk Universitet. The data sharing advantage in astrophysics Dorch, Bertil F.; Drachen, Thea Marie; Ellegaard, Ole

attached to the fisheries research Institutes and

Aalborg Universitet. Publication date: Document Version Early version, also known as pre-print. Link to publication from Aalborg University

Danish independent film, or how to make films without public funding Hansen, Kim Toft

Book Review: Treatise of International Criminal Law, Vol. i: Foundations and General Part, Oxford University Press, Oxford, 2013, written by Kai Ambos

Compact multichannel MEMS based spectrometer for FBG sensing

Room acoustics computer modelling: Study of the effect of source directivity on auralizations

Citation for published version (APA): Knakkergård, M. (2010). Michel Chion: Film, a sound art. MedieKultur, 48,

A wavelet-based approach to the discovery of themes and sections in monophonic melodies Velarde, Gissel; Meredith, David

BIOS 3010: Ecology, Dr Stephen Malcolm

Aalborg Universitet. The Usability Laboratory at Cassiopeia Kjeldskov, Jesper; Skov, Mikael; Stage, Jan. Publication date: 2008

General Course information for. Primate Biology

Complete bibliography: Erving Goffman s writings. Persson, Anders. Published: Link to publication

Reduced complexity MPEG2 video post-processing for HD display

SOME MATERIALS ON BIOLOGY AVAILABLE AT THE MESA COLLEGE LIBRARY

Frequently Asked Questions about Rice University Open-Access Mandate

Ousmane Sembene: An Aesthetic Appreciation in the Light of HD

Oceanography Global Biogeochemical Systems. The Literature Search. Kevin M. Roddy 21 September 2007

From Idea to Realization - Understanding the Compositional Processes of Electronic Musicians Gelineck, Steven; Serafin, Stefania

FINDING RESOURCES FROM YOUR READING LIST. Guide 2

Historical contribution to the LiCCo programme Suzanne Noël - History of Coastal Risks - Research and Training Department: History University of

College Libraries and Open Access: Expanding access to scholarly literature without breaking your budget

MLA STYLE IN-TEXT CITATIONS

THE JOURNAL OF POULTRY SCIENCE: AN ANALYSIS OF CITATION PATTERN

RESEARCH PAPERS ENGLISH COMPOSITION

Edinburgh Research Explorer

IJARE - Six Years On: An Editor's Report

Suggested Publication Categories for a Research Publications Database. Introduction

CSE Style: Sample Bibliographic Entries (8 th edition)

^a Place of publication: e.g. Rome (Italy) ; Oxford (UK) ^b Publisher: e.g. FAO ; Fishing News Books

NoodleTools Express is a website that helps you with your citations (APA, MLA, or Chicago).

Error resilient H.264/AVC Video over Satellite for low Packet Loss Rates

American Psychological Association (APA) Documentation Style

Best Practice. for. Peer Review of Scholarly Books

(This document is not intended to be a verbatim transcript.) ===============================================================

Disputing about taste: Practices and perceptions of cultural hierarchy in the Netherlands van den Haak, M.A.

May 26 th, Lynelle Briggs AO Chair Planning and Assessment Commission

Sample Analysis Design. Element2 - Basic Software Concepts (cont d)

Bio 259: Comparative Vertebrate Anatomy

Ethics in Research Cathy Constable and Steve Constable Geophysics Research Discussion Week 3: Authorship

INSTRUCTIONS FOR AUTHORS (i)introduction

APPLICATION OF POWER SWITCHING FOR ALTERNATIVE LAND CABLE PROTECTION BETWEEN CABLE LANDING STATION AND BEACH MAN HOLE IN SUBMARINE NETWORKS

EPUB, PDF Wild Oceans: A Pop-up Book With Revolutionary Technology Download Free

BACK TO THE ORIGINAL: A GLANCE INCIDENCES OF WEB CITATIONS IN SOUTH AFRICAN ELECTRONIC LAW JOURNALS FROM 2005 TO 2012

CALL FOR PAPERS. standards. To ensure this, the University has put in place an editorial board of repute made up of

Communicating Science. Communicating Science. Structuring and Writing a paper

Author Instructions for Environmental Control in Biology

Journal of Phenomenological Psychology. Scope. Ethical and Legal Conditions. Online Submission. Instructions for Authors

Winterbourne Nursery & Infant School

FORMAT & SUBMISSION GUIDELINES FOR DISSERTATIONS UNIVERSITY OF HOUSTON CLEAR LAKE

ECOLOGIA BALKANICA - INSTRUCTIONS TO AUTHORS. General information

UvA-DARE (Digital Academic Repository) Film sound in preservation and presentation Campanini, S. Link to publication

British Sugar Beet Review

MLA Citations & Works Cited, 8 th Edition, 2016 Update. In-Text Citations. In-text citations for sources with a single author

COMMUNICATIONS OUTLOOK 1999

The Consequences of Citing Hedged Statements in Scientific Research Articles

INFORMATION-RESOURCES AND REFERENCE MANAGEMENT

Instructions to Authors

Paper Proposal Instructions

Instructions to Authors

AMD+ Testing Report. Compiled for Ultracomms 20th July Page 1

MHS LIBRARY RESOURCE GUIDE. Science Edition 1.0

Citations, Quotations and Plagiarism

The comments/suggestions for further improvement of the Bulletin are also welcome which may be send to:

T A N E VOLUME 9 AUCKLAND UNIVERSITY FIELD CLUB THE JOURNAL OF THE. Printed by The University Of Auckland. Bindery and Publishing Department

Guidance on the preparation of retrospective Statements of Outstanding Universal Value for World Heritage Properties July 2010

Some features of children s composing in a computer-based environment. Figure 1. Screenshot of the MelodyMaker application

Page 1 of 5 AUTHOR GUIDELINES OXFORD RESEARCH ENCYCLOPEDIA OF NEUROSCIENCE

Records of the Hawaii Biological Survey

1. Paper Selection Process

Running a Journal.... the right one

Chapter Six - References

ICRP REPORT ON COMPLAINT BY MR BARRY CHIPMAN TIMBER COMMUNITIES AUSTRALIA 7.30 REPORT : 5 JUNE 2007

Rousseau on the Nature of Nature and Political Philosophy

Where can I find the referencing style guide I need to follow?

TMT Conference. London, 7 th June 2006

EDITORIAL POLICY. Open Access and Copyright Policy

Editorial Policy. 1. Purpose and scope. 2. General submission rules

Judy Lee-ann Duncan DNCJUD001

Leicestershire Amphibian and Reptile Network

Title of the Paper (16 pt. Times New Roman, Bold, Centered)

Aalborg Universitet. Composition - GENERAL INTRODUCTION Bergstrøm-Nielsen, Carl. Publication date: 2015

Unit 2: Research Methods Table of Contents

Author Guidelines Journal Goal Accepted Genres of Submissions Drama Fiction Memoir Nonfiction Poetry Scholarship and Research

ICOMOS ENAME CHARTER

Ethical Issues and Concerns in Publication of Scientific Outputs

Introduction to the Library s Website

Applying Diachronic Citation Analysis to Ongoing Research Program Evaluations

Author Guidelines. Editorial policy

Underwater Technology Guidelines for Authors

New flicker weighting curves for different lamp types based on the lamp light spectrum Cai, R.; Blom, J.H.; Myrzik, J.M.A.; Kling, W.L.

time, but it is also triangular. We say that the west pediment is concrete, but that

Instructions for submitting a paper for the VIII WORLD BAMBOO CONGRESS

Transcription:

PRIFYSGOL BANGOR / BANGOR UNIVERSITY Herbivory on freshwater and marine macrophytes Bakker, Elisabeth S.; Wood, Kevin A.; Pages Fauria, Jordi; (Ciska) Veen, G.F. ; Christianen, Marjolin J.A.; Santamaria, Luis; Nolet, Bart A.; Hilt, Sabine Aquatic Botany DOI: 10.1016/j.aquabot.2016.04.008 Published: 01/11/2016 Peer reviewed version Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Bakker, E. S., Wood, K. A., Pages Fauria, J., (Ciska) Veen, G. F., Christianen, M. J. A., Santamaria, L.,... Hilt, S. (2016). Herbivory on freshwater and marine macrophytes: A review and perspective. Aquatic Botany, 135, 18-36. DOI: 10.1016/j.aquabot.2016.04.008 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 09. Mar. 2019

1 Herbivory)on)freshwater)and)marine)macrophytes:)a)review)and)perspective) 2 3 4 5 ElisabethS.Bakker a,kevina.wood b,jordif.pagès c,g.f.(ciska)veen d,marjolijnj.a.christianen e, LuisSantamaría f,barta.nolet g,andsabinehilt h 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 a DepartmentofAquaticEcology,NetherlandsInstituteofEcology(NIOOYKNAW), Droevendaalsesteeg10,6708PBWageningen,TheNetherlands,l.bakker@nioo.knaw.nl b Wildfowl&WetlandsTrust,Slimbridge,Gloucestershire,GL27BT,UnitedKingdom, kevin.wood@wwt.org.uk c SchoolofOceanSciences,BangorUniversity,MenaiBridge,Anglesey,LL595AB,UnitedKingdom, j.pages@bangor.ac.uk d DepartmentofTerrestrialEcology,NetherlandsInstituteofEcology(NIOOYKNAW), Droevendaalsesteeg10,6708PBWageningen,TheNetherlands,c.veen@nioo.knaw.nl e GroningenInstituteforEvolutionaryLifeSciences,UniversityofGroningen,P.O.Box11103,9700CC Groningen,TheNetherlands,Marjolijn.Christianen@gmail.com f SpatialEcologyGroup,DepartmentofWetlandEcology,DoñanaBiologicalStation(EBDYCSIC),C/ Américovespucios/n,IsladelaCartuja,E41092Sevilla,Spain,luis.santamaria@ebd.csic.es 1

25 26 27 28 29 30 31 32 g DepartmentofAnimalEcology,NetherlandsInstituteofEcology(NIOOYKNAW),Droevendaalsesteeg 10,6708PBWageningen,TheNetherlands,b.nolet@nioo.knaw.nl h LeibnizYInstituteofFreshwaterEcologyandInlandFisheries,Müggelseedamm301,12587Berlin, Germany,hilt@igbYberlin.de 33 34 35 36 Correspondingauthor:ElisabethS.Bakker,DepartmentofAquaticEcology,NetherlandsInstituteof Ecology(NIOOYKNAW),Droevendaalsesteeg10,6708PBWageningen,TheNetherlands, l.bakker@nioo.knaw.nl 37 38 39 40 Authorcontributions:ESB,KAW,SHandBAN:developingideaandstructureofthepaper;ESB,KAW, GFVandJFP:dataanalysisandgraphics;ESB,KAW,JFP,GFV,MJAC,LS,BANandSHcontributedto writingofthemanuscript 41 2

3 Abstract 42 43 Untilthe1990s,herbivoryonaquaticvascularplantswasconsideredtobeofminorimportance,and 44 thepredominantviewwasthatfreshwaterandmarinemacrophytesdidnottakepartinthefood 45 web:theirprimaryfatewasthedetritivorouspathway.inthelast25years,asubstantialbodyof 46 evidencehasdevelopedthatshowsthatherbivoryisanimportantfactorintheecologyofvascular 47 macrophytesacrossfreshwaterandmarinehabitats.herbivoresremoveonaverage40y48%ofplant 48 biomassinfreshwaterandmarineecosystems,whichistypically5y10timesgreaterthanreportedfor 49 terrestrialecosystems.thismaybeexplainedbythelowerc:nstoichiometryfoundinsubmerged 50 plants.herbivoresaffectplantabundanceandspeciescompositionbygrazingandbioturbationand 51 therewithalterthefunctioningofaquaticecosystems,includingbiogeochemicalcycling,carbon 52 stocksandprimaryproduction,transportofnutrientsandpropagulesacrossecosystemboundaries, 53 habitatforotherorganismsandthelevelofshorelineprotectionbymacrophytebeds. 54 Withongoingglobalenvironmentalchange,herbivoreimpactsarepredictedtoincrease.Thereare 55 pressingneedstoimproveourmanagementofundesirableherbivoreimpactsonmacrophytes(e.g. 56 leadingtoanecosystemcollapse),andtheconflictsbetweenpeopleassociatedwiththeimpactsof 57 charismaticmegayherbivores.whilesimultaneously,thelongytermfutureofmaintainingbothviable 58 herbivorepopulationsandplantbedsshouldbeaddressed,asbothbelongincompleteecosystems 59 andhavecoyevolvedintheselongbeforetheincreasinginfluenceofman.betterintegrationofthe 60 freshwater,marine,andterrestrialherbivoryliteratureswouldgreatlybenefitfutureresearch 61 efforts. 62 63 64 Keywords:*climate*change,*conservation,*ecosystem*functions,*grazing,*seagrass,*stoichiometry* 65

66 1.! Introduction:)25)years)of)research)on)herbivory)on)macrophytes 67 68 1.1Setting*the*scene* 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 In the 1990s two seminal papers appeared in Aquatic Botany that urged for a complete changeintheparadigmthathadbeendominatingmacrophyteecology.despitesomeearlyworkon theimpactofwaterbirdsonfreshwaterandmarineangiosperms(juppandspence,1977;jacobset al.,1981),untilthen,herbivoryonaquaticvascularplantswasconsideredtobeofminorimportance, and the predominant view was that freshwater and marine macrophytes did not take part in the foodweb(e.g.shelford(1918)andtheirprimaryfatewasthedetritivorouspathway(polunin,1984; DuarteandCebrian,1996).Butin1991,Lodgearguedthat,contrarytoconventionalwisdom,live freshwatermacrophytesareengagedinaquaticfoodwebs.in1998,cebrianandduartehighlighted that,whileseagrassessufferedmodestherbivoryratesonaverage,suchrateswerehighlyvariable, andtheimportanceofseagrassyherbivoreinteractionsshouldnotbediscounted.followingonfrom these two papers, Lodge (1998) provided further evidence for the important role of herbivores in freshwater habitats, as compared to other biomes; and Valentine and Heck (1999) demonstrated thatgrazingonseagrassesiswidespreadintheworld'soceans. Together,theselandmarkpapersputmacrophyteherbivoryonthemap.Sincethen,there has been a strong increase in the amount of studies that investigated herbivory on freshwater macrophytes and seagrasses. In this study, we review what we have learned in the 25 years that followedtheappearanceoflodge(1991).furthermore,weidentifynewtopicsthathaveemerged overthistime.thesenewtopicsincludethefastchangesthatmayoccurinmacrophyteyherbivore relationships with the ongoing global environmental change, as well as the potential conflicts betweenherbivoreconservationandherbivoreimpactsonaquaticecosystems.finally,wediscuss how we can improve our understanding of herbivore impacts and what tools may help us in 4

91 92 93 94 achieving this. Following the approach of the seminal papers listed above, we focus primarily on aquaticangiosperms(submerged,floatingandemergent)andaddressbothfreshwaterandmarine ecosystems. 95 1.2Why*thinking*about*herbivory*on*macrophytes*has*changed*over*the*last*25*years 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 The paradigm shift in our perception of macrophyte herbivory, from being considered negligibletobeingacknowledgedasakeyfactorshapingbenthicecosystems,isnotonlycausedby anincreaseinscientificinterestfosteredbytheselandmarkpapers:theeffectofherbivorybecame alsomoreconspicuousoverthelast25years.thereasonsforthisaremethodological,anthropogenic andecological. Methodologicalimprovementsforestimatingherbivoryincludedobservationmethods,such as bite mark counts (Cebrian and Duarte, 1998), experimental approaches, such as herbivore exclusions(seepooreetal.(2012)andwoodetal.(2016)forsynthesesofmarineandfreshwater habitats, including macroyalgae) and direct methods, including video bite counts or isotopic signatures(seetable4fordetails). Anthropogeniceffectsincludedincreasesinthedensitiesofaquaticandmarineherbivoresas a result of increased protection, predator removal, food subsidies from agriculture, and the introductionofexoticherbivores(estesetal.,2011).forexample,steepincreasesinherbivoryrates have been reported for sea turtles in the Arabian Sea and Indonesia (Kelkar et al., 2013b, a), (Christianenetal.,2014),forherbivorousfishintheMediterranean(Pagesetal.,2012)andforgeese in Northwestern Europe and North America (Jefferies et al., 2003; Van Eerden et al., 2005). However,itshouldbenotedthatdespiterecentlocalincreasesinherbivory,whichhaveattracted attention to the role of herbivores in benthic ecosystems, over longer time frames in particularly speciesoflargeherbivoreshaveexperiencedstrongglobaldeclines(jackson,1997;mccauleyetal., 2015;Bakkeretal.2016b). 5

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 Furthermore, the recent spread of exotic herbivores had major consequences for macrophyteestablishmentandsurvivalin many areas worldwide.for example,tropical lessepsian rabbitfishes (Siganus* spp.) cause overgrazing of macroalgae and seagrasses at the Eastern Mediterranean (Verges et al., 2014b), chubs and rabbit fishes (Kyphosus* spp. and Siganus* spp., Siganidae)overgrazeAustralianandJapanesekelpforests(Vergesetal.,2014a),NorthYAmericanredY swamp crayfish (Procambarus* clarkii) have depleted submerged plant meadows in shallow lakes acrosseurope(rodriguezetal.,2003;gherardiandacquistapace,2007;vanderwaletal.,2013), andintentionalintroductionsofgrasscarp(ctenopharyngodon*idella)havebeenconsideredathreat tonativemacrophytes(wittmannetal.,2014). EcologicaleffectsarerelatedtotheoligotrophicationofmanyEuropeanfreshwatersystems, whichresultedintheirreycolonizationwithsubmergedmacrophytes(jeppesenetal.,2005).inmany systems,however,theimpactofaquaticherbivoressufficedtohaltorreversesuchrecolonization (KörnerandDugdale,2003;Hilt,2006;Bakkeretal.,2013;Hiltetal.,2013;Eigemannetal.,2016). 2.! Quantitative)impacts)of)herbivores)in)aquatic)systems 132 2.1.!Quantitative*impact*of*herbivores*on*plant*biomass*across*ecosystems* 133 134 135 136 137 138 139 140 AgrowingbodyofprimaryresearchhasdemonstratedherbivoreYinducedchangesinoneor moremeasuresofmacrophyteabundance,includingbiomass,twoydimensionalcover,volume,and individualdensity(kirschetal.,2002;marklundetal.,2002;tomasetal.,2005;pradoetal.,2007; Christianenetal.,2012;Pagesetal.,2012;Woodetal.,2012a;Kelkaretal.,2013b,a;Christianenet al.,2014;bakkeretal.,2016b).thesestudies,synthesizedinseveralreviews(cyrandpace,1993; ValentineandDuffy,2006;Gruneretal.,2008;Pooreetal.,2012),confirmedherbivoresaskey driversofbenthicecosystemsaroundtheworld.theoverwhelmingmajorityofstudiesreporteda reductioninmacrophyteabundanceasaresultofherbivory.indeed,arecentmetayanalysisof326 6

7 experimentsinwhichfreshwaterherbivoreswereexcludedfoundthatherbivoryreduced 141 macrophytebiomassby47.2±3.4%(average±ci)(woodetal.,2016).ofthese,300experiments 142 reportedareductioninmacrophytebiomass,while26experimentsreportedpositiveeffectsorno 143 changes.similarly,ametayanalysisongrazingimpactsonmarinemacrophytesfoundthatherbivores 144 reducemacrophyteabundance(bothsubmergedangiospermsandmacroyalgae)by68%onaverage 145 (Pooreetal.,2012). 146 Despitetheirhistoricaldisregard,theremovalofvascularplantbiomassbyherbivoresis,onaverage, 147 muchlargerinaquaticthaninterrestrialecosystems.themostrecentmetayanalysesavailablefor 148 terrestrial,freshwaterandmarinehabitats(turcotteetal.,2014;woodetal.,2016)showthat 149 medianbiomassremovalbyherbivoresis4y8%interrestrialecosystems,whileitis44y48%in 150 freshwaterand40y44%inmarineecosystems(fig1ayc).thus,herbivoresremoveonaverage5y10 151 timesmorevascularplantbiomassinaquaticecosystemsthaninterrestrialones. 152 Yet,theimpactofherbivoresonvascularplantbiomassremovalismuchmorevariableinaquatic 153 thaninterrestrialecosystems,anditrangesasbroadlyasbetween0and100%ofbiomassremoval 154 (Fig1aYc).Underlyingexplanationsforthelargerangeofherbivoreeffectsinaquaticecosystemsare 155 stillunknown.potentialmechanismsinvolvebottomyupeffects,suchasvariationinplant 156 productivity,nutritionalquality,stoichiometry,resistanceandtolerancetograzing(cebrianetal., 157 2009);andtopYdowneffects,suchasvariationinherbivoreabundance,feedingefficiency,size, 158 taxonomy,mobility,metabolismandpredatoreffects(boreretal.,2005). 159 160 2.2.!BottomEup*effects:*the*plant s*perspective* 161 2.2.1.! Primary*productivity*and*herbivory*rates) 162 Studiesinaquaticsystemstraditionallyfocussedonprimaryproductionofphytoplanktoninpelagic 163 habitats,andonlyrecentlylittoralareasreceivedmoreattention(vadeboncoeuretal.,2002; 164

165 166 167 168 169 170 171 172 173 174 175 176 Brothersetal.,2013).TheoreticalpredictionsbasedonLotkaYVolterramodelssuggestthatgrazing shouldincreasewithprimaryproductivity(gruneretal.,2008),becauseasplantsproducemore tissuesordosoatfasterrates,herbivorescanincreasetheirratesofconsumption.thisprediction reliesintheassumptionthatherbivoryratesarebottomyupregulatedbytheavailabilityofplant tissues.empiricalevidenceishoweverconflicting.ametayanalysisbycyrandpace(1993)concluded thatherbivoryincreaseswithprimaryproductioninbothterrestrialandaquaticsystems.however,a morerecentmetayanalysisfoundnosignificanteffectofproductivityonherbivory(orinteraction strength)inaquaticsystems(e.g.(boreretal.,2005)).infact,itiswidelyrecognizedthatfoodquality anddefencesalsohavemajoreffectsonherbivoreperformancethatmightmaskanyherbivoryy productivityrelationship.usingaplantgrowthmodel,hiddingetal.(2016)suggestedthatherbivore grazingeffectsonmacrophytesbecomeimportantabovecertainthresholdsinperiphytonshading andthusreducedproductionofplants. 177 ) 178 2.2.2.! Plant*stoichiometry* 179 180 181 182 183 184 185 186 187 188 189 Differencesinherbivoryratesacrossplanttaxahavealsobeenattributedtodifferencesin plant quality, as perceived by herbivores (Lodge, 1991; Cronin et al., 2002). Generally, there is a positive relationship between the nitrogen content in the plant s tissue and its consumption by herbivores(cebrianandlartigue,2004).thispatternholdsbothwithinandacrossecosystems(elser et al., 2000; Cebrian and Lartigue, 2004; Cebrian et al., 2009). Hence, it has been suggested that higherherbivoreconsumptionratesinaquaticplantsmightbeexplainedbytheirhigherqualityas food arisingfromthelackofcarbonyrichstructuralcompoundsthatstrengthencellwalls,increase resistance to herbivores, and reduce digestibility in terrestrial plants (Gruner et al., 2008). Unfortunately, most comparisons between aquatic and terrestrial systems undertaken to date restrictedtheirestimatesofaquaticherbivorytophytoplanktonconsumption,thusgivinglimitedor noinformationontheconsumptionofaquaticmacrophytes(elseretal.,2000).comparingherbivory 8

190 191 192 rateson,andfoodquality(e.g.,nitrogencontent)of,aquaticandterrestrialvascularplantswouldbe more informative, because they have a close phylogenetic affinity and most differences could be attributedtotheecosystemstheyinhabit(hay,1991;grossandbakker,2012;burkepile,2013). 193 194 195 196 197 198 199 200 201 202 203 204 205 AcompilationofdataonC:Nratiosofvascularplantsinterrestrial,freshwaterandmarine ecosystems reveals that they differ strongly between these systems (Fig 1dYf). Median C:N ratio decreased strongly from terrestrial vascular plants (25Y30) and marine macrophytes (24Y28) to freshwater macrophytes (12Y16) (Fig 1dYf). The high N content (thus low C:N ratio) of freshwater macrophytesmayindicateahigherqualitytoherbivores,potentiallyexplainingthehighherbivory ratesfoundinfreshwatersystems.takingintoaccountthevariationingrowthformsthatoccursin aquaticecosystemsmakesthispatternstronger(fig2ayd).herbivoryratesareloweronemergent macrophytes (median freshwater = 36Y48%; median marine = 24Y36%) than on submerged macrophytes(medianfreshwaterandmarine=48y60%)inbothfreshwaterandmarineecosystems (Fig2a,b).ThesedifferencesfitcloselytheC:Nratioofthedifferentplantgrowthforms,asemergent macrophytes have higher C:N ratios (median freshwater = 28Y32; median marine = 24Y28) than submerged macrophytes (median freshwater = 8Y12; median marine = 20Y24), particularly in freshwaterecosystems(fig2c,d). 206 207 208 209 210 211 212 213 214 Our data compilation indicates that differences in plant quality between terrestrial plants and macrophytes show close links to variation in herbivory rates. Submerged plants need less structural components, resulting in higher N content and higher rates of herbivory. In contrast, herbivory rates and N content of emergent macrophytes are similar to those found in terrestrial plants(fig1a,1d,2ayd).althoughncontentisacknowledgedasanimportantdeterminantofplant qualitytoherbivores,othernutrientsandsecondarycompoundsmayalsoinfluenceit.forexample, freshwater macrophytes and seagrassess have antiyherbivore defenses (Verges et al., 2008; Gross andbakker,2012),whichmaycauselow palatabilityy eveninhighlynutritiousspecies.phenolics, terpenoidsandnitrogenatedcompoundscanbeefficientdeterrentsofaquaticherbivores,although 9

215 216 217 218 219 220 221 222 223 deterrence of generalist herbivores often comes at the cost of higher preference by specialised consumers(vergesetal.,2007).interestingly,infreshwatersystems,theconcentrationsofphenolic compounds decrease from emergent to floating to submerged plants (Smolders et al., 2000), suggestingnotonlyhighernutritionalquality,butalsolessdefendedtissues,resultingingenerally higherpalatabilityofsubmergedplants.however,thisissuestilldeservesmoreresearch,sincemost work has focused on macroyalgae (e.g. (Hay, 1996)). Besides the differences between ecosystems discussedabove,spatialandtemporalvariationinherbivoryatpopulationandindividualyplantlevel has also been linked to plant quality (C:N, % N) and to the presence of antiyherbivore defences (HackerandBertness,1995;Preen,1995;Vergesetal.,2007;Pradoetal.,2010). 224 225 2.3.!TopEdown*effects:*the*herbivore s*perspective* 226 2.3.1.! Herbivore*density* 227 228 229 230 231 232 233 234 235 236 237 238 Withinindividualherbivorespecies,herbivoreimpactonaquaticplantabundanceispositively relatedtoherbivoredensity(stottandrobson,1970;valentineandheck,1991;woodetal.,2012a; Kelkaretal.,2013b).However,analysesofherbivoreimpactsacrossmultipleherbivorespecieshave foundnorelationshipbetweenherbivoredensityandmacrophyteabundance,probablyduetothe confoundingeffectsofinterspecificdifferencesinherbivoreecology(marklundetal.,2002;woodet al.,2012a).forexample,amongplantyeatingwaterfowl,substantialdifferencesexistinmeanadult bodymass(fromthe24gofocellatedcrake,micropygia*schomburgkii,tothe12,000goftrumpeter swan,cygnus*buccinator),whichisknowntoinfluencethespecies dietandtheabsolutequantityof vegetationconsumed(woodetal.,2012a).consequently,whenherbivoredensitieswereestimated asbiomassdensities(thusaccountingforinterspecificdifferencesinindividualbodymass),a significantnegativerelationshipbetweenherbivorebiomassdensityandmacrophyteabundancewas detected(woodetal.,2012a;woodetal.,2016).onlyatrelativelylowherbivoredensitieswere 10

11 positivechangesinplantabundancereported,suggestingthatinaquaticsystemsgreaterherbivore 239 densitiesoverwhelmplantcompensatorygrowthresponses(woodetal.,2016). 240 * 241 2.3.2.! Size,*mobility*and*taxonomy*of*herbivores* 242 Byvirtueoftheirsize,largeterrestrialherbivoresarecriticalagentsofchangeandmaintenanceof 243 theecosystemstheyinhabit(owenysmith,1988;bakkeretal.,2016a).inaquaticenvironments,large 244 herbivoreshavealsobeenidentifiedaskeyspecies(mccauleyetal.,2015),oftenconsidered 245 ecosystemengineers(e.g.(bakkeretal.,2016b)).itisnotsurprising,thus,thatarecentmetayanalysis 246 foundsignificantlystrongerimpactsofmacrograzers(fishes,urchinsandlargemolluscs)than 247 mesograzers(amphipods,isopodsandsmallmolluscs)onmarinemacrophytes(algae,seagrassesand 248 saltmarshes)(pooreetal.,2012). 249 AnotherrecentmetaYanalysisbyWoodetal(2016)foundsubstantialbetweenYtaxadifferencesin 250 effectsofherbivoresontheabundanceoffreshwaterandmarinemacrophytes.echinoderms, 251 molluscs,andfishhadrelativelylargeimpactsonplants,whileinsectsandbirdshadrelativelylow 252 impacts.thereasonforthesedifferencesmaybethemobilityandhabitatpreferencesofeachof 253 thesegroups.fullyaquaticspeciesthatliveunderwaterpermanently,havebeenshowntoproduce 254 thegreatestimpactsonaquaticplants(bakkeretal.,2016b),whilefacultativeaquaticgrazers,such 255 asinsectsandbirds,spreadtheiractivitymorebetweendifferentecosystems(thankstotheirhigh 256 mobility),thusspreadingalsotheirimpactbetweensuchecosystems.woodetal.(2016)also 257 pointedoutthefactthatsomeherbivores(suchasechinoderms,crayfishandmolluscs)have 258 restrictedmobilityandproduceintenseimpactsduetotheirbulkgrazingstrategies,sincethey 259 consumemultipletissuestypesandspecies,thusaffectingagreaterproportionofaplantcommunity 260 (Lodgeetal.,1998). 261 262

12 2.3.3.! Herbivory*and*omnivory* 263 Mostanimalsthatconsumeaquaticplantsareomnivores,veryfewarestrictherbivores. 264 Thereisapositiverelationshipbetweenbodysizeanddegreeofherbivoryinaquaticomnivores:the 265 largertheconsumer,themoreimportantplantconsumption(granivoryandfolivory,particularlythe 266 latter)isintheirdiet(clementsetal.,2009;woodetal.,2012a).hence,percapita,largeherbivores 267 havethelargestimpactonplantabundancethroughgrazing.thehighlevelofgeneralisticfeeding 268 andomnivoryofaquaticplantconsumersmayberelatedtothehigherimpactofherbivoryon 269 aquaticplants,becauseitmayrelaxtheeffectofdirectdensitydependenceonconsumers:whenever 270 consumersovergrazeplants,theycanswitchtoalternativefoodsources(algae,detritusoranimal 271 prey)withinornearbythewaterbody(greyandjackson,2012).furthermore,inaquaticsystems, 272 largeherbivoresandomnivoresoftenfeedonbothabovegroundandbelowgroundplantmaterial, 273 whichmaymultiplytheirimpactonplants,duetothedepletionofundergroundplantresourcesfor 274 regrowth. 275 HerbivoreimpactmayalsobeenhancedbynonYconsumptiveeffects,whicharedocumented 276 tobesevereinfreshwaterandmarinemacrophytes,e.g.bioturbation(lodge,1991).byinitiating 277 barepatches,herbivorescancreatefocalpointsforfurthererosionofmacrophytemeadowsby 278 wavesinshallowareas(christianenetal.,2013).trampling,fecaldepositionandincreasingnutrient 279 concentrationsmayalsoplayarole.whilstpreviousauthorshavecautionedagainsttheassumption 280 thatherbivoreeffectsonplantsrepresentexclusivelygrazinglossesduetoconsumption(mitchell 281 andwass,1996b),manystudiescontinuetoignoretherolesofnonyconsumptiveeffects. 282 283 2.4.!Latitude* 284 Potentialvarianceinherbivoreimpactsonplantabundanceacrossdifferentlatitudeshasbeena 285 topicofgrowinginterestamongecologists.however,theevidenceforaroleoflatitudinaleffectsis 286

13 limited.forexample,inmacrophytefeedingassayscarriedoutbymorrisonandhay(2012),onlyone 287 outofthreecrayfishspeciesshowedapreferenceassociatedwithlatitude(apreferenceforhigher 288 latitudeplants).schemskeetal.(2009)arguedthat,acrossallecosystems,herbivoreimpactsare 289 greateratlowerlatitudes.incontrast,ametayanalysisbygruneretal.(2008)reportedanincreasein 290 herbivoreeffectsathigherlatitudesinfreshwaterecosystems,butnotinmarineecosystems.three 291 morerecentmetayanalyseswithlargersamplesizesfoundnoevidenceoflatitudinalgradientsin 292 herbivoreimpactsonaquaticmacrophyteabundances,someincludingbothvascularplantsand 293 macroyalgae(molesetal.,2011;pooreetal.,2012;woodetal.,2016). 294 295 3.! Ecosystem)consequences)of)herbivory 296 Withtheestablishmentofherbivoryasaanimportantfactorregulatingplantabundance,Lodge 297 (1991)endedhisreviewwiththeconclusionthat thefunctionalimportanceofgrazingremains 298 largelyuntested.indeed,thishasbeenanemergingfieldofresearchoverthelast25years,with 299 particularprogressoverthelast5years.bytheirpresence,herbivoresmayinducedirectchangesin 300 plantdynamicsandindirecteffectsonecosystemfunctioning(fig.3).theeffectsofmarine 301 herbivoresmayincludestimulatedproductionofseagrass(valentineetal.,1997;moranand 302 Bjorndal,2005;Vonketal.,2008b;Christianenetal.,2012),changesinseagrassmeadowstructure 303 (Laletal.,2010),andthereductionofthefluxoforganicmatterandnutrientstosedimentsand 304 plants(byshortcircuitingthedetritalcycle;(thayeretal.,1982;vonketal.,2008a)ortheirexportto 305 nearbyhabitats(christianenetal.,2012).insaltmarshesandaquaticecosystems,anadditional 306 effectofherbivoresisthereturnofnutrientsthroughfaecesandurine(bazelyandjefferies,1985; 307 Hiketal.,1991;Franketal.,2000),thoughinseagrassgrazedbyturtlesthiseffectisreducedby 308 nutrienttransporttoturtlerestingareas(christianenetal.,2012). 309 310

14 3.1Plant*abundance*and*species*composition*and*diversity 311 Whilethelargelynegativeimpactsofherbivoresonmacrophyteabundancehavebeenwell 312 documentedthroughshortytermexclosurestudies,thepersistenceofsucheffectsitisoftenless 313 clear.inparticular,highlyymobileherbivoressuchaswaterfowlcancauselargereductionsinplant 314 abundancebeforeswitchingtoungrazedsites(woodetal.,2012b).ecosystemresponsesto 315 fluctuatinggrazingpressurehavereceivedlittleattentiontodate.however,thereissomeevidence 316 thatrepeatedepisodesofgrazingovertime,suchasbybreedingcoloniesofsnowgeese(chen* 317 caerulescens)inwetlands,cancausesustainedlongytermshiftsinspeciescompositionanddeclines 318 inplantabundance(kerbesetal.,1990).wherenonyselective,generalistherbivoresfeedonmixed 319 assemblagesofmacrophyte,herbivorescanincreasespeciesevennessbyreducingtheabundanceof 320 dominantcompetitorsrelativetosubydominantmacrophytespecies(hiddingetal.,2010b;woodet 321 al.,2012b).however,whentheyfavorcertainsubordinateplantspeciesoverthedominant,theycan 322 reduceeveness(hiddingetal.2010a). 323 Herbivoryintropicalseagrasses(e.g.byseaurchinsandgreenturtles)caninfluencespecies 324 composition(vonketal.,2008b;kelkaretal.,2013b;hernandezandvantussenbroek,2014),but 325 oftenincontrastingways.intropicalmultispeciesmeadows,slowgrowingclimaxseagrassspecies 326 (Thalassia*hemprichii)werepromotedbysmallherbivores(urchins),whileinmoreintensivelygrazed 327 meadowsspeciesdifferenceinherbivore sgrazingpreferencesresultedinthedominanceoffast 328 growingpioneerspecies(kelkaretal.,2013b).largergrazersthatconsumebelowgroundplantparts 329 andcreatebaresedimentpatches,suchasgreenturtlesanddugongs,alsointroducespecies 330 heterogeneitybysettingbackspeciessuccessioningrazedplots(aragonesetal.,2006;christianenet 331 al.,2013). 332 333 3.2Ecosystem*functions*and*services*of*aquatic*herbivores 334

15 3.2.1.*Seed*and*propagule*dispersal 335 Besidestheirdirecteffectsontheirfoodplants,aquaticherbivoresprovideakeyserviceforaquatic 336 ecosystems:thepassivedispersalofabroadvarietyofaquaticorganisms,includingthe 337 aforementionedfoodplants,aswellasmanyothertaxaattachedorassociatedtothem(figuerola 338 andgreen,2002a;brochetetal.,2010a;vanleeuwenetal.,2012).dispersalbymostinlandywater 339 herbivorescontributestotheredistributionofindividualswithinsinglewetlandsandamongnearby 340 ones;whilewaterbirds(mostnotably,migratoryspecies)arethemainvectoroflongydistance 341 dispersalamongwetlandssituatedatseparatedwatersheds,fromregionaltocontinentalscales 342 (Vianaetal.,2013b;Vianaetal.,inpress).Amongwaterbirds,thefrequencyandscaleoflongY 343 distancedispersaleventsisknowntovarywiththevector smorphology,todependonthemigratory 344 strategyandtoscalenegativewithbodymass(greenandfiguerola,2005;vianaetal.,2013b;viana 345 etal.,2013a).inthemarineenvironment,bioticdispersalbyherbivores(seaturtles,ducksandfish) 346 hasbeenreportedforseagrasses(sumoskiandorth,2012)andpassivetransportofotherorganisms 347 isalsoknowntooccur(e.g.sessileinvertebratestransportedbyseaturtlesandcrabs(winston, 348 2012).Theoppositeprocessmayalsotakeplace e.g.anecdotalevidencesuggeststhatgreenturtle 349 hatchlingsusekelpraftsforpassivedispersal(carrandmeylan,1980). 350 Interrestrialsystems,animalYmediateddispersalisoftenfacilitatedbyrewardsencasingthe 351 propagulesorattachedtotheseeds(suchasfruits,elaiosomesandsomepods).incontrast,aquatic 352 plantseedstypicallylackrewards;hence,theirdispersalismediatedbytheingestionofplant 353 vegetativepartsbyherbivores( foliageinthefruit,sensujanzen(1984)),theoccasionalsurvivalof 354 seedsingestedbygranivores(e.g.teals(brochetetal.,2010b))ortheaccidentalingestionofseeds 355 bycarnivores/omnivores(notablyfilteryfeeders,suchasflamingoesandshovelers(verhoeven,1980; 356 Figuerolaetal.,2003).Thisdifferenceresultsinmajordifferencesinselectionpressures,whichcan 357 betracedtodifferencesinpredominantseedtraits(table1).aquaticplantseedsaretypicallysmall, 358 whichfacilitatestheiringestionmixedwiththefoliage,theirsurvivaltogutpassage,andaprolonged 359

16 gutypassagetimesresultinginlongerdispersaldistances(muellerandvandervalk,2002; 360 CharalambidouandSantamaria,2005;Soonsetal.,2008;Figuerolaetal.,2010).Largerseedsoften 361 havethickandimpermeablecoats,necessarytowithstandtheirseverescarificationinwaterbirdguts 362 (whichtendtoretainselectivelysuchlargerseeds(kleyheeg,2015)andtheseverephysicoychemical 363 treatmentexertedbytheirguts(figuerolaetal.,2002;santamariaetal.,2002).suchcoattypes 364 oftenresultinstrongphysicaldormancies,whichmaypostponeseedgerminationuntilingestionbya 365 potentialdispersalvectorhastakenplace(e.g.inseedscollectedfromthesedimentbankby 366 granivoresandfilterfeeders(figuerolaetal.,2003).invertebratepropagulesdispersedbywaterfowl 367 typicallyshowsimilartraits:smallsize,onetoseveralprotectivecoats,anddelayedorstochastic 368 hatching(charalambidouandsantamaria,2002).insomecases,theencasementofrestingeggsin 369 themother sbodymayprovidebothprotectionagainsttheirdigestionandarewardtopotential 370 dispersers havingthusafunctionanalogoustothatofplantfruits,whosefunctionalandadaptive 371 valueofsuchatraitremainstobestudied. 372 Externaldispersalmaytakeplaceattachedtotheanimal sfurorplumage,oradheredtomudy 373 stainedsurfacesinthebodyorfeet(figuerolaandgreen,2002b;frischetal.,2007).available 374 evidencesuggests,however,thatitislessfrequentthaninternaldispersal(brochetetal.,2010b). 375 Onceagain,smallpropagulesaremuchmorelikelytobecomeattachedoradhered,andremainin 376 suchsituationlongenoughforlongydistancedispersaltooccur.othertraitsthathavebeengenerally 377 assumedtofacilitateexternaldispersal,suchasflatshapesandsuitablesurfacestructures(hooks, 378 thorns,hairs),areknowntooccurinplantandinvertebratepropagules(e.g.vivianysmithandstiles 379 (1994)).Asabove,theirfunctionalandadaptivevalueremainstobestudied. 380 Propaguledispersal,particularlyoverlongdistances,influencesthepopulation,geneticand 381 communitystructureofaquaticorganisms(vianaetal.,2014).hence,itisbroadlyregardedasakey 382 ecosystemserviceprovidedbyaquaticherbivores.itseffectis,however,moreevidentwhensuch 383 immigrantsencounteremptyniches(e.g.colonizationofdisturbed,neworrestoredwetlands)than 384

17 whentheyfaceresidentgenotypesorspecies,establishedbeforetheirarrival(louetteandde 385 Meester,2005).Insuchcases,theimmigrant sestablishmentmaybeprecludedbybioticresistance 386 arisingfromintrayandinteryspecificcompetition,mortalitycausedbynaturalenemiesand 387 environmentalfiltering(e.g.habitatchangescausedbyotherspecies).eventhen,theprocessof 388 propaguledispersalrepresentsakeyelementofecosystemresilience particularlyininlandwaters, 389 whicharefragmentedandisolatedbynature.suchresiliencemayprovevital,inthenearfuture,for 390 ecosystemadaptationtoglobalchange byfacilitatingrapidrangeshiftsandthereadjustmentof 391 geneticstructure(e.g.locallyyadaptedgenotypes)causedbytheacceleratingchangesin 392 environmentalconditionsassociatedtoglobalwarming,landusechangesandtheperturbationof 393 globalnutrientcycles(amezagaetal.,2002;röckstrometal.,2009;robledoyarnuncioetal.,2014). 394 Propaguledispersalbyaquaticherbivoresmayalsoentailnegativeeffectsfornativespeciesand 395 ecosystemswhenitmediatesthearrivalandspreadofalienspecies(reynoldsetal.,2015).examples 396 includebothplantandinvertebratespecies(charalambidouetal.,2003;brochetetal.,2009;munoz 397 etal.,2013),althoughtheeffectofdispersalonhumanymediateddispersalisoftenpredominantor 398 difficulttodisentangle(weiszandyan,2010;vanleeuwenetal.,2013).itisalsoworthnotingthat, 399 despitetheirpotentialroleasseeddispersers,aquaticherbivoresmayalsoreducethefrequencyof 400 propaguledispersalbyreducingpropaguleproduction duetotheconsumptionofplantvegetative 401 parts(e.g.(woodetal.,2012a;darnellanddunton,2015))andtheinvertebratesattachedor 402 associatedtothem. 403 404 3.2.2*Biogeochemical*cycling* 405 Grazingandbioturbationbyaquaticherbivorescanhavedirectandindirecteffectson 406 biogeochemicalcycling.inoligotrophicsystems,grazingbysmallerherbivorescanhavepositive 407 effectsbyconservingnutrientswithinthemeadowandclosingthecyclingofnutrientsfromleaf 408 material.leafmaterialcanbeshredded(seaurchins,(vonketal.,2008b)),burrowed(alpheid 409

18 shrimp,(vonketal.,2008a))orexcretedaftergrazing(fish,(kirschetal.,2002)),thusstimulating 410 nutrientretention.largerherbivoressuchasgreenturtlesanddugongsmaytravelbetweendifferent 411 habitatsandstimulateexportofnutrientsbetweenforaging(seagrass)andresting(coralreefs)areas 412 (Christianenetal.,2012). 413 Byforagingandrestinginterrestrialandaquaticenvironments,herbivoresprovideaquaticYterrestrial 414 linkages,transportingcarbon,nutrientsandcontaminantsfromlandtowater(forinstance 415 hippopotamushippopotamus*amphibius*(subaluskyetal.,2015),waterbirds(hahnetal.,2008; 416 Chaichanaetal.,2010)orlargesavannaherbivores(Moss,2015)orvice*versa(forinstancebymoose 417 Alces*sp.(Bumpetal.,2009)).Ithasrecentlybeensuggestedthatthedeclineinlargeherbivore 418 densitiesandtheextinctionoflatepleistocenemegafaunacausedastrongreductioninthecapacity 419 oftransportofphosphorusfromnutrienthotspots,suchasstreamsorfloodplains,towardsless 420 fertileinlandareas(doughtyetal.,2016).longdistancetravelofmigratoryherbivoresalso 421 contributestotransportofnutrientsacrosssitesofvaryingfertility(bauerandhoye,2014). 422 Inseagrassmeadows,grazingbymesoherbivorescanincreaseproductivityandpossiblycarbon 423 sequestration.howeverbelowygroundgrazing(e.g.bydensepopulationsofgreenturtles)orother 424 factorsofdisturbanceintheseagrassrootmatcancausereleaseofancientcarbon,whichmay 425 contributetoincreasedglobalwarming(macreadieetal.,2015).similarly,earlyseasonbelowy 426 groundforagingbypinkyfootedgeese(anser*brachyrhynchus)issufficienttostronglyreducecsink 427 strengthandsoilcstocksofarctictundra(vanderwaletal.,2007).recentstudiesaretherefore 428 stressingthatitiscriticaltomaintainintactpredatorpopulationsthatcontrollargeherbivore 429 densitiestopreventgrazeraggregation,protectcarbonstocksandavoidseagrassmeadowcollapse 430 (Atwoodetal.,2015).Inasubtropicalseagrassecosystem,largepredators(e.g.tigersharks)induce 431 plantspeciesshiftsbychangingtheforagingtacticsoflargegrazers,suchasturtleanddugongs 432 (Heithausetal.,2007).Underlowpredationrisk,dugongsandseaturtlesforagedbyexcavating 433

434 435 nutrientyrichrhizomesofseagrasses.underhighpredationrisks,theychangedtheirforagingtactics, whichstimulatedslowygrowingpioneerspeciesandenhancedcarbonstocks. 436 437 438 439 440 441 Aquaticherbivorescanalsoenhancemethaneemissionthroughthedamageofemergentplant stems(greylaggeese(anser*anser)(dingemansetal.,2011);grasshoppers(petruzzellaetal.,2015)). ThestemsofemergentmacrophyteshavewellYdevelopedlacunarsystemsforgastransport;hence, brokenstemsmayactlike chimneys,providinganopenconnectionbetweenthesedimentandthe atmospherethatbypassesthewaterlayer.ontheotherhand,herbivorescanreducemethane emissionthroughbioturbationandremovalofsubmergedplantbeds(bodelieretal.,2006). 442 443 3.2.3*Coastal*protection 444 445 446 447 448 449 450 451 Seagrasses,mangrovesandsaltmarshesofferimportantcoastalprotectionandsediment stabilizationservices.forseagrassesthisfunctionisgenerallyattributedtoseagrasscanopy properties(hendriksetal.,2010)andcouldbealteredbyherbivory.althoughintensivelygrazed seagrassmeadowshavebeenshowntomaintaintheircapacityforeffectivesedimentstabilization, thisfunctiondegradeswhenherbivoresswitchtobelowgroundgrazing,whichcausesdecreasedbed elevation,erosionandreducedcoastalprotection(christianenetal.,2013).similarly,livestock grazingcanlowersaltmarshes accretionrates(nolteetal.,2015),weakeningtheresilienceand coastalprotectionfunctionofthesesystems. 452 453 3.2.4*Habitat*for*other*organisms* 454 455 456 Macrophytesplayanimportantroleinstructuringaquaticcommunitiesbecausetheyprovide physicalstructure,increasehabitatcomplexityandheterogeneity,affectoxygenandnutrient concentrationsandproviderefugefrompredation(carpenterandlodge,1986;jeppesenetal., 19

20 1998).Macrophytesalsoreleasedissolvedorganiccarbon(DOC)whichcanbeusedbymicrobesin 457 theperiphytonorplankton(findlayetal.,1986).therefore,byconsumingmacrophytes,herbivores 458 maydeterioratethehabitatforotherorganisms.fishproductivitywasfoundtobelowerinseagrass 459 meadowsgrazedbygreenturtles(arthuretal.,2013)andaftermeadowcollapsecausedby 460 overgrazing(reportedforturtlesin(christianenetal.,2013).similarly,herbivorousfishes,dugongs, 461 geeseandotherwaterbirdshavebeenfoundtodrasticallyreduceinvertebratebiomassinseagrass 462 meadowsandsaltmarshes(marklundetal.,2002;sherfyandkirkpatrick,2003;skilleteretal.,2007; 463 Pagesetal.,2012).Impactsoninvertebratesmayoccurevenwheretheproportionalreductionof 464 vegetationislow(bortolusetal.,1998). 465 466 3.2.5.Primary*production* 467 Submergedandemergentmacrophytescansignificantlycontributetotheprimaryproductionof 468 aquaticecosystems(blindowetal.,2006;brothersetal.,2013).thisholdsespeciallyforsmalllakes 469 whichrepresentapproximately99%ofalllakes(downingetal.,2006;verpoorteretal.,2014).direct 470 studiesontheeffectofherbivoryonaquaticplantgrowthandproductionarescarcebecause 471 quantificationoftheimpactofgrazingratesonplantproductionrequirescoupledmeasurementsof 472 ageydependentgrazinglossandturnoverrateofplanttissue(sandyjensenetal.,1994).ingeneral, 473 fastturnoveroftheplanttissue(i.e.highspecificgrowthrate)cancompensateforintenseherbivory 474 undernonylimitingresourceconditions(sandyjensenandjacobsen,2002).cherry&gough(2009) 475 foundthatnymphaea*odoratamaytoleratemoderatelevelsofherbivorybyreallocatingbiomass 476 andresourcesaboveground.onthecontrary,standsofmyriophyllum*spicatumretracttheir 477 resourcestobelowgroundpartsafterdefoliationbyaquaticcaterpillars(milerandstraile,2010). 478 Waterhyacinths(Eichhornia*crassipes)werealsofoundtofullycompensateforlowlevelsof 479 continuousdefoliation,regardlessofnutrientavailability(sotiandvolin,2010).inseagrass 480 ecosystems,reportedeffectsoflargeherbivoreswerepositiveforintermediatedensitiesofgreen 481

21 turtles(e.g.anincreasedtolerancetoeutrophication),andnegativeforhighdensitiesofgreen 482 turtles(e.g.switchtobelowgroundgrazingcausingmeadowcollapse)(christianenetal.,2012; 483 Christianenetal.,2013).Similarly,moderatelevelsofsimulatedfishherbivorystimulatedseagrassin 484 primaryproduction(i.e.compensatorygrowth),whileveryhighlevelsofherbivorydecreasedit 485 (Vergesetal.,2008). 486 AtwholeYecosystemlevel,herbivoryonsubmergedmacrophytesmayhavedifferenteffectsongross 487 primaryproduction(gpp).ifherbivoryresultsinashiftfromclearywatertoturbidconditions(see 488 below),gppcanbeexpectedtodecline,atleastunderintermediateconcentrationsoftotal 489 phosphorus(brothersetal.,2013).ontheotherhand,largegrazersthatremoveoldseagrassleaves 490 coveredinephiphytesandhavebeenreportedtoincreaseprimaryproduction(valentineetal., 491 1997;MoranandBjorndal,2005;Christianenetal.,2012). 492 493 3.2.6.Regime*shifts 494 Shalloweutrophiclakesandlowlandriversmayexistintwoalternativestablesteadystates,aclearY 495 waterstatedominatedbysubmergedmacrophytesandaturbid,phytoplanktonydominatedstate 496 (Schefferetal.,1993;Hiltetal.,2011;Hilt,2015).Indeeperlakes,submergedmacrophytesmayalso 497 contributetothestabilisationofclearywaterconditions(hiltetal.,2010;sachseetal.,2014).shifts 498 betweenclearywaterandturbidstateshavebeenattributedtochangesinnutrientloading,inthe 499 abundanceofzooplanktivorousfish(e.g.bybiomanipulation)and/orinmacrophytecover(scheffer 500 etal.,1993;sondergaardetal.,2007;bakkeretal.,2010).herbivoryonmacrophytesmayalsoplaya 501 significantroleforshiftingmacrophyteydominatedsystemsintotheturbidstate,orpreventingthe 502 shiftfromturbidyintoclearywaterconditions.mitchell&wass(1996a)concludedthatthe 503 cumulativeeffectofwaterfowlgrazingconsumptionwassmallbutmightbecomecriticalwhenother 504 conditionsformacrophytegrowthbecomelimiting(duee.g.tolightlimitationcausedbyhighwater 505 turbidity).arecentmodelingstudyindeedshowedthatherbivoryonmacrophytesoftenbecomes 506

22 importantincombinationwithadditionalstressbyperiphytonshading(hiddingetal.,2016). 507 Herbivorybybirdsandfishmaythustriggerthelossofsubmergedvegetationunderhighnutrient 508 loading(vandonkandotte,1996;paiceetal.,inpress),possiblyincombinationwithotherstress 509 factors.similarly,afterreductionsinnutrientloading,herbivorousbirds)mayinhibittheexpected 510 recoveryofmacrophytes(lauridsenetal.,1993;søndergaardetal.,1996;hilt,2006). 511 512 513 4.! Perspectives:)historical)and)future)changes)in)herbivore)grazing)pressure) 514 Herbivoremanagementandglobalenvironmentalchange,includingwaterlevelfluctuations, 515 eutrophication,temperatureriseandinvasivespecies,feedbackonherbivorenumbers,herbivore 516 distributionandgrazingpressure. 517 518 4.1*Changes*in*herbivore*assemblages*over*time* 519 Thereisagrowingbodyofevidencethatherbivoreassemblageshavevariedovertimeconsiderably 520 intheirdiversityandabundance,andarelikelytocontinuetovaryinthefuture.throughouthuman 521 history,peoplehaveexploitedmanyaquaticherbivorespecies,includingwaterfowl,sirenians, 522 beavers,andmuskrats,forfood,recreation,andanimalproductssuchasskins,furs,feathers,and 523 oils(domning,1982;kitchenerandconroy,1997).humanoverexploitationhashadcatastrophic 524 effectsonmanyherbivorepopulations,withawiderangeofspeciesexperiencingreduced 525 populationsizesandgeographicranges,andevenextinction(jessen,1970;turveyandrisley,2006). 526 Profoundhistoricalchangesinherbivoreassemblageswereparticularlyevidentinshallowseasand 527 coastalhabitats,wherethediversityanddistributionsofmammalianmegayherbivores(sirenians 528 suchasmanateesanddugongs)werereducedheavilyduetohuntingbyhumans(whitehead,1978; 529 Jackson,1997;TurveyandRisley,2006;McCauleyetal.,2015).Freshwatersystemshavealsoseen 530

23 thelossofmanylargeybodiedherbivorespecies,inparticularmammals(moss,2015;bakkeretal., 531 2016b).Additionally,duringthetwentiethcenturyarangeofsemiYaquaticherbivorespecies 532 switchedfromaquatictoterrestrialfeeding,particularlyduringwinter(laubek,1995),further 533 reducingherbivoreabundanceanddiversitywithinaquaticsystems.suchhabitatshiftshavebeen 534 mostwidelydocumentedforavianherbivoressuchasspeciesofswans,geese,ducksandrails 535 (Jefferiesetal.,2003;VanEerdenetal.,2005).Thesubstantialeffectsofhumansonaquatic 536 herbivoresmeantthatthetwentiethcenturyrepresentedalowpointforherbivoreabundanceand 537 diversityacrossaquaticsystems.indeed,wefinditinterestingtonotethatearlierauthorsdrewtheir 538 conclusionsontheapparentunimportanceofplantyherbivoreinteractionsinaquaticecosystems 539 basedonresearchconductedduringaperiodinwhichaquaticherbivoreswererelativelyscarce.for 540 Carribeancoastalecosystemsithasevenbeendocumentedthatthesewereseverelydegradedlong 541 beforeecologistsbegantostudythem,throughthedecimationoflargevertebratesincludinggreen 542 turtlesandmanateesbyabouttheyear1800(jackson1997). 543 Stricterhuntingregulationsandconservationeffortsinthesecondhalfofthetwentiethcenturyhave 544 facilitatedrecoveriesintherangeandpopulationsizesofmanykeyaquaticherbivorespecies(nolet 545 androsell,1998).anexampleistheeurasianbeaver(castor*fiber),reducedbyoverhuntingatthe 546 beginningofthetwentiethcenturytoc.1200individualsineightisolatedpopulationsacrosseurope 547 (NoletandRosell,1998;HalleyandRosell,2002).Followinggreaterlegalprotectionsfromhunting, 548 theeurasianbeaverunderwentsustainedpopulationrecoveryandhasreyestablishedpopulationsin 549 allareaswithinitsformernaturalrange(withtheexceptionofportugal,italy,andthesouthern 550 Balkans),withatotalpopulationofatleast1.04millionindividuals(Halleyetal.,2012).Manyspecies 551 ofherbivorouswaterfowlintemperateregionshavemadesimilarrecoveries(bellrose,1976;ankney, 552 1996).Ofthe21goosespecies(Anserspp.andBrantaspp.)forwhoselongYtermpopulationtrendsin 553 Europeareknown,16speciesarecurrentlyincreasing(Foxetal.,2010).Recentchangesin 554 agriculturalpracticeshaveresultedingreaterterrestrialfoodavailabilityforoverwintering 555 waterfowl,withlargerspeciesbenefitingmoreintermsofpopulationgrowth(jefferiesetal.,2003; 556

24 VanEerdenetal.,2005).Althoughmanyreptilianherbivoresremainendangered,certainspecies 557 suchasthegreenturtle(chelonia*mydas)haverecentlyshownsignsofpopulationrecoveryin 558 responsetothreedecadesofconservationefforts(chaloupkaetal.,2008). 559 Therecoveryofspeciesofaquaticherbivoreshasbeenaidedbytherecentinterestinrewilding 560 ecosystems(donlanetal.,2006).thekeyrolesthatextinctorextirpatedlargeherbivoresplayedin 561 thestructureandfunctioningofterrestrialecosystemshasreceivedgrowingrecognitionfrom 562 researchers(donlanetal.,2006;sandometal.,2014;bakkeretal.,2016a;doughtyetal.,2016). 563 Recently,ithasbeenproposedthatlargeherbivoresmayhaveplayedequallyYimportantrolesin 564 regulatingthestructureandfunctioningofaquaticecosystems(moss,2015;bakkeretal.,2016b). 565 Speciesofaquaticherbivorewhichcanactasecosystemengineers,suchasthebeaver,aretypically 566 primecandidatesforrewildingprojectsduetothewiderecosystembenefitsthatresultfromsuch 567 engineering(collenandgibson,2001).therecentfindingthatbeaver screationofpondsincreased 568 thediversityofherbivorouswaterfowlwithinthelandscapeindicatesthatnaturalrecolonizationand 569 rewildingmayresultinwiderchangestoherbivoreassemblagesthanthetargetspeciesalone, 570 throughthefacilitationofdifferentherbivoretaxa(nummiandholopainen,2014). 571 Therecoveryofpredatorpopulations,vianaturalrecoveryandconservationefforts,canalsoaffect 572 plantyherbivoreinteractions(estesetal.,2011).evidencefromterrestrialandmarinesystemsshows 573 thatherbivoreimpactsonplantscanbereducedaspredatornumbersrecover,becausepredators 574 notonlylowerherbivoreabundancethroughdirectconsumption,butalsoalterherbivore 575 distributionsandreducegrazingintensitythroughindirecteffectsofpredatoravoidancebehavior 576 ( landscapeoffear sensu(madinetal.,2011;kuijperetal.,2013).similarresultscouldbefoundfor 577 interactionsbetweenpredators,herbivores,andmacrophytesinaquaticsystems,butlittleresearch 578 hasbeencarriedouttodate.forexample,arecentstudyfoundthatgreenturtle(chelonia*mydas) 579 habitatusereflectedtradeyoffsbetweenfoodresources,bodycondition,andriskofpredationby 580 tigersharks(galeocerdo*cuvier)inseagrassbeds(heithausetal.,2007).adeclineintigershark 581

25 numbersmaythusresultinastrongincreaseofgreenturtlegrazingonseagrassbeds,potentially 582 resultinginaseagrassbedcollapse(heithausetal.,2014). 583 584 4.2*Exotic*herbivore*species* 585 ThespreadofnonYnativespecieshasbeenakeydriveroftemporalchangesinaquaticherbivore 586 assemblagesinrecentdecades.awiderangeofherbivoretaxahaveestablishedinvasivepopulations 587 knowntoimpactonnativemacrophytes.wellydocumentedexamplesincludebirdssuchasthemute 588 swaninnorthamerica(tatuetal.,2007),mammalssuchasthemuskratineurope(danell,1979; 589 Sarneeletal.,2014),fishessuchasthelessepsianrabbitfishesintheMediterranean(Vergesetal., 590 2014a),molluscssuchasthegoldenapplesnailinAsia(Carlssonetal.,2004),andcrustaceanssuch 591 asredswampcrayfishineurope(gherardiandacquistapace,2007;vanderwaletal.,2013).despite 592 attemptstopreventspeciestransferandestablishmentthroughimprovedbiosecurity,ratesof 593 invasionremainatahistorichigh(cohenandcarlton,1998;jacksonandgrey,2013). 594 595 4.3*Climate*change*and*temperature*rise* 596 Futureenvironmentalchangeisalsopredictedtoalterherbivoreassemblages.Inparticular,climateY 597 drivenfactorssuchasseaylevelriseandchangesinvegetationphenologyandabundancehavethe 598 potentialtoalterwhere,whenandhowmuchherbivoresfeed,andthushavethepotentialtoalter 599 plantyherbivoreinteractionsacrossaquaticsystems(stillmanetal.,2015).forexample,northward 600 shiftsinwinteringrangeinresponsetowarminghavebeenrecordedforseveralwaterfowlspecies, 601 includingsemiyaquaticherbivoreslikegreylaggeese(ramoetal.,2015).furthermore,food 602 requirementschangewithtemperature.withincreasingtemperatures,theenergyrequirementsof 603 temperateectothermanimalsincreaseandtheyconsumemorefood.furthermore,theymaychange 604 theirdietinresponsetotemperature,whichhasconsequencesforthedegreeofplantconsumption. 605

26 Omnivorousfishincreasetheirrelativeconsumptionofplantmaterialwithincreasingtemperatures 606 (Prejs,1984;BehrensandLafferty,2007,2012),apatternthatisrecentlyalsofoundincopepods 607 feedingonseston(boersmaetal.,2016).forendothermsthispatternmaybetheopposite,astheir 608 energyrequirementsdecreasewithincreasingtemperatures,butthishypothesisawaitsempirical 609 testing.warmertemperaturesmayalsoinducehigherperiphytonshadingofmacrophytes(mahdyet 610 al.,2015),makingthemmorepronetoherbivory(hiddingetal.,2016). 611 612 4.4*Herbivore*impacts*under*human*control 613 Whereherbivoreimpactsonmacrophytesaffecthumanactivities,suchasconservation,recreation, 614 andaquaculture,theymaybeviewedasundesirable.inmostcasesitshouldbenotedthatproblems 615 causedbyherbivoresareoftenthedirectorindirectconsequenceofearlierhumanactions.for 616 instance,ongoingeutrophicationoflakesreducestheresilienceofsubmergedplantbedstograzing 617 duetoincreasedshadingbyperiphytonwhichprofitsfromthenutrientloading(hiddingetal.,2016), 618 andreyestablishmentofsubmergedvegetationcanbeinhibitedbygrazersaswell(hauxwelletal., 619 2004).Thecombinedhuntingoflargepredatorsandthecreationofmarineprotectedreserves,as 620 theplacewherelargeherbivoresaresafe,haslocallyresultedinverystronggrazingpressureon 621 seagrassbedsbygreenseaturtles(christianenetal.2014). 622 Suchherbivoreimpactscanleadtoconflictsbetweenpeopleinterestedinherbivorewelfareand 623 conservation,andthoseinterestedintheactivitybeingaffectedbytheherbivore(redpathetal., 624 2015).Todate,conflictshavearisenduetoovergrazingbyreptilian,mammalian,andavian 625 herbivores(table2).incontrast,wecouldfindnoevidenceofconflictsassociatedwithinvertebrate 626 herbivory,whichmayreflectdifferencesinhumanvaluesratherthanecologicalimpact.indeed, 627 evidencefromarecentmetayanalysisshowedthatvertebrateherbivoresdonothaveconsistently 628 greaterimpactsonmacrophytesthaninvertebrateherbivores(woodetal.,2016).vertebrate 629 herbivoressuchaswaterfowl,turtles,andsireniansareoftenconsideredcharismatic,andattempts 630

27 tomanagetheirnumbers,behaviourordistributionsarelikelytoattractmoreoppositionfrom 631 conservationandwelfaregroupsthanthemanagementofinvertebrateherbivores(bremnerand 632 Park,2007;Small,2012).Consequently,itcanbedifficulttoimplementmanagementtoalleviatethe 633 effectsofovergrazing(coluccyetal.,2001). 634 Despitetheseconflicts,notallherbivoreimpactsonmacrophytesareviewedasnegativebypeople. 635 Herbivoreshaveproventobeeffectivebiocontrolagentstohelpreduceanderadicateundesirable 636 macrophytes,suchasoverabundantorinvasivespecies(newman,2004;cudaetal.,2008).awide 637 rangeofherbivorebiocontrolagentshavebeenusedglobally(table3).biocontrolofmacrophytes 638 throughherbivoryhasreceivedgrowinginterestfromresearchersandmanagers,particularlyas 639 somebiotypesofinvasivemacrophytes(e.g.hydrilla*verticillata)havedevelopedresistanceto 640 commonlyyusedherbicides(cudaetal.,2008).moretargetedbiocontrolcanbeachievedby 641 invertebrateherbivores,whichtypicallyshowgreaterspecificityformacrophytespeciesrelativeto 642 vertebrateherbivores(lodge,1991;newman,1991).sincewilson(1964)arguedthat noinsects 643 haveyetbeenusedforthebiologicalcontrolofaquaticweeds,awiderangeofspeciesof 644 coleopteran,lepidopteran,anddipteranbiocontrolagentshavebeenusedsuccessfully(newman, 645 2004;Cudaetal.,2008).Boththeconflictsrelatedtoovergrazing,andtheuseofherbivoresas 646 biocontrolagents,showtheimportanceofimprovingourunderstandingplantyherbivore 647 interactions.forexample,understandingthedensityydependenceofherbivoreimpactson 648 macrophyteabundancecaninformthedensitiesofbiocontrolagentsrequiredtoreduce 649 overabundantmacrophytes(cudaetal.,2008),orallowlakemanagerstopredicttheresponseof 650 macrophytestochangesinwildherbivoredensity(woodetal.,2012a). 651 652 5.! How)to)improve)understanding)of)herbivore)impacts 653 5.1*BottomEup*versus*topEdown*control*across*environmental*gradients* 654

28 Lodge(1991)endedhisreviewwiththeconclusionthat Tounderstandtheinfluenceofherbivory 655 (relativetootherbioticandabioticfactors)onmacrophytepopulationsandassemblages,extensive 656 comparisonsofgrazingdamageacrossenvironmentalgradientsandacrossmacrophyteandgrazer 657 speciesmustbemade. WhereasmetaYanalyseshaveprovidedvaluableinsightintheimpactof 658 differentherbivoresbothonangiospermsandmacroyalgae(pooreetal.,2012;woodetal.,2016), 659 andtherelationshipbetweenmacrophytepalatabilityandherbivoreimpactreceivedincreasing 660 attentionduringthelastdecade,thevariationintheintensityandimpactsofherbivoryalong 661 environmentalgradientshasbeenscantlyexplored.bakkerandnolet(2014)suggestedthat 662 herbivoreimpactmayincreaseatnutrientyrichconditions,duetoacombinationofhigherplant 663 palatabilityandlowertolerancetograzingdamagecausedbyadditionalstressfactors(suchas 664 reducedlightavailabilityduetoperiphytonshading(hiddingetal.,2016).inanexperimentalpond 665 system,herbivorybymallardsprovedtohavestrongerimpactonsubmergedmacrophytesunder 666 eutrophicthanunderoligotrophicconditions.wearenotaware,however,ofanyfieldtestsforthis 667 theory.alternatively,herbivoresmayfacilitatesubmergedmacrophyteswithincreasing 668 eutrophication,forexamplewhenmoderatedensitiesofsmallgrazerssuchasfreshwatersnailsclean 669 submergedplantsfromepiphytes,whichbecomesmoreimportantundereutrophicconditions 670 (Bakkeretal.,2013).Also,whenintensegrazingstimulatestheformationofnewshoots,whichare 671 notyetcolonizedbyepiphytes,largegrazerssuchasgreenseaturtles,cancompensatethenegative 672 effectofeutrophicationforseagrassgrowthtoacertainextent(christianenetal.,2012). 673 674 5.2*Integrating*marine*and*freshwater*studies* 675 Traditionally,freshwatermacrophytesandseagrasseshavelargelybeenstudiedseparately.Todate, 676 theliteratureonfreshwaterandmarineherbivoreimpactshavenotbeenintegrated,andhave 677 largelydevelopedseparatelydespitetheobviousareasofoverlap.ifcrossysystemcomparisonswere 678 beingmade,thesewereoftenmarineyterrestrialorfreshwateryterrestrialcomparisonsandcan 679

29 includebothvascularplantsandalgae(hay,1991;elseretal.,2000;burkepile,2013).thisis 680 unfortunatebecause,leavingafewobviousdifferencesapart(suchasthehighersalinityand 681 connectivityofmarinesystems),theecologyofmarineandinlandywatervascularmacrophytes 682 showsveryfewdifferences.yet,integrativeworkonfreshwaterandmarinevascularmacrophytes 683 stillawaitsitsmoment. 684 685 5.2*Herbivore*assemblages:*towards*functional*groups* 686 687 Forabetterunderstandingofherbivoreimpact,researchersshouldconsiderthewholecommunity 688 ofherbivores,whichcompeteandfacilitateeachother.thishasalreadybeendoneforterrestrial 689 systemslongago(mcnaughton,1985),butexamplesforaquaticsystemsarerare.onesuchexample 690 istheherbivorecommunityinashallowfreshwaterlakethatforagesonpondweedbeds,consisting 691 mainlyofpotamogeton*pectinatus.thesproutingplantsarebeinggrazedbyresidentwaterfowl 692 specieslikemuteswans(cygnus*olor),mallards(anas*platyrhynchos),gadwall(anas*strepera)and 693 coots(fulica*atra).theintensityandtimingofgrazingdeterminehowmuchaboveygroundplant 694 materialisremainingandgrowing(hootsmans,1999).attheendofthesummer,belowyground 695 tubersarebeingformeddependingontheamountofaboveygroundplantmaterial(vanwijk,1988). 696 Thus,moreand,notably,earlierwaterfowlgrazinginsummerresultsinlesstuberbiomassinautumn 697 (Klaassenetal.,2006;Gyimesietal.,2011).Inautumn,tubersarebeingdepletedbymigratoryswans 698 (Bewick sswanscygnus*columbianus)anddivingducks(mainlytuftedducksaythya*fuligulaand 699 pochardsaythya*ferina)untilagrazingthreshold(noletetal.,2001).thedivingducksbenefitfrom 700 thetramplingactivityoftheswans,withoutnegativelyaffectingtheswans intakerate;thistherefore 701 classifiesascommensalism(gyimesietal.,2012).inaccordancewithasequentialpopulationmodel 702 (Jonzénetal.,2002),highesttuberbiomassandinparticulartuberproductionwasgenerallyfoundat 703 sitesforageddowntointermediatethresholdsinthepreviousautumn.inthissystemapositive 704

30 feedbackbetweentubergrazingandtuberproductionresultedfromareductioninselfyshadingora 705 decreaseinneighbourcompetition(nolet,2004). 706 707 Together,theinteractionswithinherbivorecommunitieswilldeterminetheeffectofherbivore 708 diversity,atopicrarelytoucheduponinaquaticvascularplantbeds(butseemarinemacroyalgaeand 709 seagrasssystems,e.g(duffyetal.,2003;burkepile,2013).whereasallinteractionsatthespecies 710 levelareinteresting,awayforwardcanbetogeneralizebeyondspeciesbygroupingherbivoresin 711 guildsorfunctionalgroupsandworkingoutwhichtraitsbestexplaintheirrelativeeffects.suchtraits 712 couldincludebodysize,diet(herbivoryyomnivory),habitat(terrestrialyaquaticlinkages),migratory 713 strategy(sedentaryversusmigratory)andmovementecology(foragingranges).recently,grouping 714 oflargesavannaherbivoresprovedtobeusefultounderstandtheirecosystemimpacts(hempsonet 715 al.,2015).similarly,theecosystemfunctionsofaquaticlargeherbivoresmaybeunderstoodfrom 716 theirhabitatuse,inparticularhowdependentontheaquaticsystemstheyareincombinationwith 717 theirmovementecology(bakkeretal.,2016b). 718 719 5.3Tools*to*study*herbivore*impacts 720 Practically,thehighvarianceinestimatesofmacrophyteabundance,evenwithinasinglestudy 721 system,canmakeherbivoreeffectsdifficulttodetectinaquaticsystemswithoutlargesamplesizes 722 (Woodetal.,2012b).However,numerousmethodshavebeendevelopedandemployedtodetect 723 and/orquantifyherbivoryonmacrophytesandseagrasses(table4).themostdirectapproachfor 724 detectionandquantificationofeffectsisatechniqueknownastethering(kirschetal.,2002;tomas 725 etal.,2005;pradoetal.,2007;pagesetal.,2014).withthistechniqueitispossibletoestimatethe 726 biomass(orcmofleaf)eatendaily,i.e.directherbivoryrates(seetable4).anotherdirectapproach 727 todetectandquantifyherbivoreeffectsareinsituexclosurecageswithsubsequentbiomass 728 measurementsinyandoutside. 729

31 Otherlessdirectherbivorydetectionandquantificationmethodsfocusingonmacrophytesinclude 730 visualestimationsofleafdamageandmeasurementsofmacrophyteperformanceacrossnaturallyy 731 occuringspatialortemporalgradientsinherbivoreassemblageproperties(e.g.density)(table4). 732 Aerialphotographstakenfromdrones(Brandtetal.,2015),echoYsounding(Jägeretal.,2004)and 733 remotesensing(silvaetal.,2008)mayincreasinglybeingusedinthefutureforlargerscale 734 quantificationsofmacrophyteconsumptionbyherbivores.attheherbivoreside,underwatervideos, 735 aquariumfeedingexperiments,molecularmarkers,stableisotopesignatures,gutandfaeces 736 analyses,andwholeylakefishtelemetryhavebeenapplied(table4). 737 Finally,mechanisticmodelsallowassessmentsofherbivoryoverlargerspatialandtemporalscales 738 thanfieldybasedmethods,e.g.longytermpredictionsoffutureherbivory.theyinitiallyneedtobe 739 testedagainstfielddatatodemonstrateaccuracyandhavebeendevelopedforboth,theherbivores 740 andtheplants(table4).recently,aplantgrowthmodelsforaspecificmacrophytespecieshasbeen 741 usedtodetectasynergybetweenherbivoryandshadingbyperiphytonasadditionalstressor 742 (Hiddingetal.,2016).Simulationmodelsofherbivoreforagingcanbeusefultoolstopredictforaging 743 impacts,andteststrategiesforgrazingmanagement(woodetal.,2014a;noletetal.,2016). 744 745 6.! Conclusions) 746 Overthelast25years,asubstantialbodyofevidencehasdevelopedthatshowsthatherbivoryisan 747 importantfactorintheecologyofmacrophytesacrossfreshwaterandmarinehabitats.compilingthe 748 mostrecentdata,weconcludethatherbivoreimpactsinfreshwaterandmarineecosystemsare 749 typically5y10timesgreaterthanthosereportedforterrestrialecosystems.thiscorrespondswith 750 lowerc:nstoichiometryofsubmergedaquaticplants.furthermore,aquatichabitatsare 751 characterizedbylargevariationingrazingpressure.considerablechangeshaveoccurred,andare 752 predictedtooccur,inherbivorediversityandabundance,withwideimplicationsforthecomposition 753 anddynamicsofmacrophytecommunities,aswellasforthestructureandfunctioningofaquatic 754

755 756 757 758 759 ecosystems.therearepressingneedstoimproveourmanagementofundesirableherbivoreimpacts onmacrophytes(e.g.leadingtoanecosystemcollapse),andtheconflictsbetweenpeopleassociated withtheimpactsofcharismaticmegayherbivores.whilesimultaneously,thelongytermfutureof maintainingbothviableherbivorepopulationsandplantbedsshouldbeaddressed,asbothbelongin completeecosystemsandhavecoyevolvedintheselongbeforetheincreasinginfluenceofman. 760 761 762 763 764 MostresearchtodatehasfocusedontheshortYtermimpactsofherbivoresonmacrophyte abundanceandcommunitycomposition.tounderstandtherolesofherbivoresmorefullyweneed toconsidertheirlongerytermimpactsandtheroleofherbivoryinthe(coy)evolutionofboth macrophyteandherbivorespecies.furthermore,abetterintegrationofthefreshwater,marine,and terrestrialherbivoryliteratureswouldgreatlybenefitfutureresearchefforts. 765 766 767 Acknowledgements) 768 769 770 JFPacknowledgesfinancialsupportfromtheWelshGovernmentandHigherEducationFunding CouncilforWalesthroughtheSêrCymruNationalResearchNetworkforLowCarbon,Energyand Environment. 771 772 773 774 775 32

33 Literature) 776 777 Allsopp,W.H.L.,1960.Themanatee:ecologyanduseforweedcontrol.Nature188,762. 778 Amezaga,J.M.,Santamaria,L.,Green,A.J.,2002.BioticwetlandconnectivityYsupportinganew 779 approachforwetlandpolicy.actaoecol.23,213y222. 780 Ankney,C.D.,1996.Anembarrassmentofriches:Toomanygeese.J.WildlifeManage.60,217Y223. 781 Aragones,L.V.,Lawler,I.R.,Foley,W.J.,Marsh,H.,2006.Dugonggrazingandturtlecropping:grazing 782 optimizationintropicalseagrasssystems?oecologia149,635y647. 783 Arthur,R.,Kelkar,N.,Alcoverro,T.,Madhusudan,M.D.,2013.Complexecologicalpathwaysunderlie 784 perceptionsofconflictbetweengreenturtlesandfishersinthelakshadweepislands.biol. 785 Conserv.167,25Y34. 786 Atkinson,M.J.,Smith,S.V.,1983.CYNYPratiosofbenthicmarineplants.Limnol.Oceanogr.28,568Y 787 574. 788 Atwood,T.B.,Connolly,R.M.,Ritchie,E.G.,Lovelock,C.E.,Heithaus,M.R.,Hays,G.C.,Fourqurean, 789 J.W.,Macreadie,P.I.,2015.Predatorshelpprotectcarbonstocksinbluecarbonecosystems. 790 NatureClimateChange5,1038Y1045. 791 Bakker,E.S,Dobrescu,I.,Straile,D.,Holmgren,M.,2013.Testingthestressgradienthypothesisin 792 herbivorecommunities:facilitationpeaksatintermediatenutrientlevels.ecology94,1776y 793 1784. 794 Bakker,E.S.,Gill,J.L.,Johnson,C.N.,Vera,F.W.M.,Sandom,C.J.,Asner,G.P.,Svenning,J.C.,2016a. 795 CombiningpaleoYdataandmodernexclosureexperimentstoassesstheimpactofmegafauna 796 extinctionsonwoodyvegetation.p.natl.acad.sci.usa113,847y855. 797 Bakker,E.S.,Nolet,B.A.,2014.ExperimentalevidenceforenhancedtopYdowncontroloffreshwater 798 macrophyteswithnutrientenrichment.oecologia176,825y836. 799

34 Bakker,E.S.,Pagès,J.F.,Arthur,R.,Alcoverro,T.,2016b.Assessingtheroleoflargeherbivoresinthe 800 structuringandfunctioningoffreshwaterandmarineangiospermecosystems.ecography39, 801 162Y179. 802 Bakker,E.S.,Sarneel,J.M.,Gulati,R.D.,Liu,Z.W.,vanDonk,E.,2013.Restoringmacrophytediversity 803 inshallowtemperatelakes:bioticversusabioticconstraints.hydrobiologia710,23y37. 804 Bakker,E.S.,VanDonk,E.,Declerck,S.A.J.,Helmsing,N.R.,Hidding,B.,Nolet,B.A.,2010.Effectof 805 macrophytecommunitycompositionandnutrientenrichmentonplantbiomassandalgal 806 blooms.basicappl.ecol.11,432y439. 807 Barends,F.,2002.TheMuskrat(Ondatra*zibethicus):expansionandcontrolintheNetherlands.Lutra 808 45,97Y104. 809 Bauer,S.,Hoye,B.J.,2014.Migratoryanimalscouplebiodiversityandecosystemfunctioning 810 Worldwide.Science344,54Y+. 811 Bazely,D.R.,Jefferies,R.L.,1985.GoosefecesYasourceofnitrogenforplantYgrowthinagrazedsaltY 812 marsh.j.appl.ecol.22,693y703. 813 Behrens,M.D.,Lafferty,K.D.,2007.Temperatureanddieteffectsonomnivorousfishperformance: 814 implicationsforthelatitudinaldiversitygradientinherbivorousfishes.can.j.fish.aquat.sci. 815 64,867Y873. 816 Behrens,M.D.,Lafferty,K.D.,2012.GeographicVariationinthedietofOpaleye(Girella*nigricans) 817 withrespecttotemperatureandhabitat.plosone7,e45901. 818 Bellrose,F.C.,1976.Thecomebackofthewoodduck.WildlifeSoc.B.4,107Y110. 819 Bennett,S.,Bellwood,D.R.,2011.Latitudinalvariationinmacroalgalconsumptionbyfishesonthe 820 GreatBarrierReef.Mar.Ecol.YProg.Ser.426,241YU269. 821 Blindow,I.,Hargeby,A.,Meyercordt,J.,Schubert,H.,2006.Primaryproductionintwoshallowlakes 822 withcontrastingplantformdominance:aparadoxofenrichment?limnol.oceanogr.51, 823 2711Y2721. 824

35 Bodelier,P.L.E.,Stomp,M.,Santamaria,L.,Klaassen,M.,Laanbroek,H.J.,2006.AnimalYplantYmicrobe 825 interactions:directandindirecteffectsofswanforagingbehaviourmodulatemethane 826 cyclingintemperateshallowwetlands.oecologia149,233y244. 827 Boersma,M.,Mathew,K.A.,Niehoff,B.,Schoo,K.L.,FrancoYSantos,R.M.,Meunier,C.L.,2016. 828 Temperaturedrivenchangesinthedietpreferenceofomnivorouscopepods:nomoremeat 829 whenit'shot?ecol.lett.19,45y53. 830 Borer,E.T.,Seabloom,E.W.,Shurin,J.B.,Anderson,K.E.,Blanchette,C.A.,Broitman,B.,Cooper,S.D., 831 Halpern,B.S.,2005.Whatdeterminesthestrengthofatrophiccascade?Ecology86,528Y537. 832 Bortolus,A.,Iribarne,O.O.,Martinez,M.M.,1998.Relationshipbetweenwaterfowlandtheseagrass 833 Ruppia*maritimainasouthwesternAtlanticcoastallagoon.Estuaries21,710Y717. 834 Bownes,A.,2014.SuitabilityofaleafYminingfly,Hydrelliasp.,forbiologicalcontroloftheinvasive 835 aquaticweed,hydrilla*verticillatainsouthafrica.biocontrol59,771y780. 836 Bownes,A.,Hill,M.P.,Byrne,M.J.,2010.Evaluatingtheimpactofherbivorybyagrasshopper, 837 Cornops*aquaticum(Orthoptera:Acrididae),onthecompetitiveperformanceandbiomass 838 accumulationofwaterhyacinth,eichhornia*crassipes(pontederiaceae).biol.control53,297y 839 303. 840 Brandt,E.C.,Petersen,J.E.,Grossman,J.J.,Allen,G.A.,Benzing,D.H.,2015.Relationshipsbetween 841 spatialmetricsandplantdiversityinconstructedfreshwaterwetlands.plosone10, 842 e0135263. 843 Bremner,A.,Park,K.,2007.PublicattitudestothemanagementofinvasivenonYnativespeciesin 844 Scotland.Biol.Conserv.139,306Y314. 845 Brochet,A.L.,GauthierYClerc,M.,Guillemain,M.,Fritz,H.,Waterkeyn,A.,Baltanas,A.,Green,A.J., 846 2010a.Fieldevidenceofdispersalofbranchiopods,ostracodsandbryozoansbyteal(Anas* 847 crecca)inthecamargue(southernfrance).hydrobiologia637,255y261. 848

36 Brochet,A.L.,Guillemain,M.,Fritz,H.,GauthierYClerc,M.,Green,A.J.,2009.Theroleofmigratory 849 ducksinthelongydistancedispersalofnativeplantsandthespreadofexoticplantsin 850 Europe.Ecography32,919Y928. 851 Brochet,A.L.,Guillemain,M.,Fritz,H.,GauthierYClerc,M.,Green,A.J.,2010b.Plantdispersalbyteal 852 (Anas*crecca)intheCamargue:duckgutsaremoreimportantthantheirfeet.Freshw.Biol. 853 55,1262Y1273. 854 Brothers,S.M.,Hilt,S.,Meyer,S.,Kohler,J.,2013.Plantcommunitystructuredeterminesprimary 855 productivityinshallow,eutrophiclakes.freshw.biol.58,2264y2276. 856 Bump,J.K.,Tischler,K.B.,Schrank,A.J.,Peterson,R.O.,Vucetich,J.A.,2009.Largeherbivoresand 857 aquaticyterrestriallinksinsouthernborealforests.j.anim.ecol.78,338y345. 858 Burkepile,D.E.,2013.Comparingaquaticandterrestrialgrazingecosystems:isthegrassreally 859 greener?oikos122,306y312. 860 Carlsson,N.O.L.,Brönmark,C.,Hansson,L.A.,2004.Invadingherbivory:Thegoldenapplesnailalters 861 ecosystemfunctioninginasianwetlands.ecology85,1575y1580. 862 Carpenter,S.R.,Lodge,D.M.,1986.Effectsofsubmersedmacrophytesonecosystemprocesses. 863 Aquat.Bot.26,341Y370 864 Carr,A.,Meylan,A.B.,1980.EvidenceofpassivemigrationofgreenturtlehatchlingsinSargassium. 865 Copeia,366Y368. 866 Cebrian,J.,Duarte,C.M.,1998.Patternsinleafherbivoryonseagrasses.Aquat.Bot.60,67Y82. 867 Cebrian,J.,Lartigue,J.,2004.Patternsofherbivoryanddecompositioninaquaticandterrestrial 868 ecosystems.ecol.monogr.74,237y259. 869 Cebrian,J.,Shurin,J.B.,Borer,E.T.,Cardinale,B.J.,Ngai,J.T.,Smith,M.D.,Fagan,W.F.,2009. 870 Producernutritionalqualitycontrolsecosystemtrophicstructure.PLoSOne4,e4929. 871 Chaichana,R.,Leah,R.,Moss,B.,2010.Birdsaseutrophicatingagents:anutrientbudgetforasmall 872 lakeinaprotectedarea.hydrobiologia646,111y121. 873

37 Chaloupka,M.,Bjorndal,K.A.,Balazs,G.H.,Bolten,A.B.,Ehrhart,L.M.,Limpus,C.J.,Suganuma,H., 874 Troeeng,S.,Yamaguchi,M.,2008.Encouragingoutlookforrecoveryofaonceseverely 875 exploitedmarinemegaherbivore.globalecol.biogeogr.17,297y304. 876 Charalambidou,I.,Ketelaars,H.A.M.,Santamaria,L.,2003.Endozoochorybyducks:influenceof 877 developmentalstageofbythotrephesdiapauseeggsondispersalprobability.divers.distrib. 878 9,367Y374. 879 Charalambidou,I.,Santamaria,L.,2002.Waterbirdsasendozoochorousdispersersofaquatic 880 organisms:areviewofexperimentalevidence.actaoecol.23,165y176. 881 Charalambidou,I.,Santamaria,L.,2005.Fieldevidenceforthepotentialofwaterbirdsasdispersers 882 ofaquaticorganisms.wetlands25,252y258. 883 Cherry,J.A.,Gough,L.,2009.TradeYoffsinplantresponsestoherbivoryinfluencetrophicroutesof 884 productioninafreshwaterwetland.oecologia161,549y557. 885 Christianen,M.J.A.,Govers,L.L.,Bouma,T.J.,Kiswara,W.,Roelofs,J.G.M.,Lamers,L.P.M.,van 886 Katwijk,M.M.,2012.Marinemegaherbivoregrazingmayincreaseseagrasstolerancetohigh 887 nutrientloads.j.ecol.100,546y560. 888 Christianen,M.J.A.,Herman,P.M.J.,Bouma,T.J.,Lamers,L.P.M.,vanKatwijk,M.M.,vanderHeide, 889 T.,Mumby,P.J.,Silliman,B.R.,Engelhard,S.L.,deKerk,M.V.,Kiswara,W.,vandeKoppel,J., 890 2014.Habitatcollapseduetoovergrazingthreatensturtleconservationinmarineprotected 891 areas.p.r.soc.bybiol.sci.281,20132890. 892 Christianen,M.J.A.,vanBelzen,J.,Herman,P.M.J.,vanKatwijk,M.M.,Lamers,L.P.M.,vanLeent, 893 P.J.M.,Bouma,T.J.,2013.LowYcanopyseagrassbedsstillprovideimportantcoastal 894 protectionservices.plosone8,e62413. 895 Clayton,J.S.,1996.AquaticweedsandtheircontrolinNewZealandlakes.LakeReserv.Manage.12, 896 477Y486. 897 Clements,K.D.,Raubenheimer,D.,Choat,J.H.,2009.Nutritionalecologyofmarineherbivorous 898 fishes:tenyearson.funct.ecol.23,79y92. 899

38 Cloern,J.E.,Canuel,E.A.,Harris,D.,2002.Stablecarbonandnitrogenisotopecompositionofaquatic 900 andterrestrialplantsofthesanfranciscobayestuarinesystem.limnol.oceanogr.47,713y 901 729. 902 Coetzee,J.A.,Byrne,M.J.,Hill,M.P.,2007.ImpactofnutrientsandherbivorybyEccritotarsus* 903 catarinensisonthebiologicalcontrolofwaterhyacinth,eichhornia*crassipes.aquat.bot.86, 904 179Y186. 905 Cohen,A.N.,Carlton,J.T.,1998.Acceleratinginvasionrateinahighlyinvadedestuary.Science279, 906 555Y558. 907 Collen,P.,Gibson,R.J.,2001.Thegeneralecologyofbeavers(Castorspp.),asrelatedtotheir 908 influenceonstreamecosystemsandriparianhabitats,andthesubsequenteffectsonfishya 909 review.rev.fishbiol.fisher.10,439y461. 910 Coluccy,J.M.,Drobney,R.D.,Graber,D.A.,Sheriff,S.L.,Witter,D.J.,2001.Attitudesofcentral 911 MissouriresidentstowardlocalgiantCanadageeseandmanagementalternatives.Wildlife 912 Soc.Bull.29,116Y123. 913 Creed,R.P.,Sheldon,S.P.,1993.TheeffectoffeedingbyaNorthAmericanweevil,Euhrychiopsis* 914 lecontei,oneurasianwatermilfoil(myriophyllum*spicatum).aquat.bot.45,245y256. 915 Cronin,G.,Lodge,D.M.,Hay,M.E.,Miller,M.,Hill,A.M.,Horvath,T.,Bolser,R.C.,Lindquist,N.,Wahl, 916 M.,2002.Crayfishfeedingpreferencesforfreshwatermacrophytes:Theinfluenceofplant 917 structureandchemistry.j.crust.biol.22,708y718. 918 Cuda,J.P.,Charudattan,R.,Grodowitz,M.J.,Newman,R.M.,Shearer,J.F.,Tamayo,M.L.,Villegas,B., 919 2008.Recentadvancesinbiologicalcontrolofsubmersedaquaticweeds.J.Aquat.Plant 920 Manage.46,15Y32. 921 Cyr,H.,Pace,M.L.,1993.Magnitudeandpatternsofherbivoryinaquaticandterrestrialecosystems. 922 Nature361,148Y150. 923 Danell,K.,1979.ReductionofaquaticvegetationfollowingthecolonizationofaNorthernSwedish 924 Lakebythemuskrat,Ondatra*zibethica.Oecologia38,101Y106. 925

39 Darnell,K.M.,Dunton,K.H.,2015.Consumptionofturtlegrassseedsandseedlingsbycrabsinthe 926 westerngulfofmexico.mar.ecol.yprog.ser.520,153y163. 927 DeKluijver,A.,Ning,J.,Liu,Z.,Jeppesen,E.,Gulati,R.D.,Middelburg,J.J.,2015.Macrophytesand 928 periphytoncarbonsubsidiestobacterioplanktonandzooplanktoninashalloweutrophiclake 929 intropicalchina.limnol.oceanogr.60,375y385. 930 Dingemans,B.J.J.,Bakker,E.S.,Bodelier,P.L.E.,2011.Aquaticherbivoresfacilitatetheemissionof 931 methanefromwetlands.ecology92,1166y1173. 932 Domning,D.P.,1982.CommercialexploitationofmanateesTrichechusinBrazilcirca1785 1973.Biol. 933 Conserv.22,101Y126. 934 Donlan,C.J.,Berger,J.,Bock,C.E.,Bock,J.H.,Burney,D.A.,Estes,J.A.,Foreman,D.,Martin,P.S., 935 Roemer,G.W.,Smith,F.A.,Soule,M.E.,Greene,H.W.,2006.Pleistocenerewilding:An 936 optimisticagendafortwentyyfirstcenturyconservation.am.nat.168,660y681. 937 Dorenbosch,M.,Bakker,E.S.,2012.Effectsofcontrastingomnivorousfishonsubmerged 938 macrophytebiomassintemperatelakes:amesocosmexperiment.freshw.biol.57,1360y 939 1372. 940 DosSantos,V.M.,Matheson,F.E.,Pilditch,C.A.,Elger,A.,2012.Isblackswangrazingathreatto 941 seagrass?indicationsfromanobservationalstudyinnewzealand.aquat.bot.100,41y50. 942 Doughty,C.E.,Roman,J.,Faurby,S.,Wolf,A.,Haque,A.,Bakker,E.S.,Malhi,Y.,DunningJr.,J.B., 943 Svenning,J.C.,2016.Globalnutrienttransportinaworldofgiants.P.Natl.Acad.SciUSA113, 944 868Y873. 945 Downing,J.A.,Prairie,Y.T.,Cole,J.J.,Duarte,C.M.,Tranvik,L.J.,Striegl,R.G.,McDowell,W.H., 946 Kortelainen,P.,Caraco,N.F.,Melack,J.M.,Middelburg,J.J.,2006.Theglobalabundanceand 947 sizedistributionoflakes,ponds,andimpoundments.limnol.oceanogr.51,2388y2397. 948 Duarte,C.M.,1990.Seagrassnutrientcontent.Mar.Ecol.YProg.Ser.67,201Y207. 949 Duarte,C.M.,Cebrian,J.,1996.Thefateofmarineautotrophicproduction.Limnol.Oceanogr.41, 950 1758Y1766. 951

40 Duffy,J.E.,Richardson,J.P.,Canuel,E.A.,2003.Grazerdiversityeffectsonecosystemfunctioningin 952 seagrassbeds.ecol.lett.6,637y645. 953 Eigemann,F.,Mischke,U.,Hupfer,M.,Hilt,S.,2016.Biologicalindicatorstrackdifferentialresponse 954 ofpelagicandlittoralareastonutrinetloadreductioningermanlakes.ecol.indic.61,905y 955 910. 956 Elser,J.J.,Fagan,W.F.,Denno,R.F.,Dobberfuhl,D.R.,Folarin,A.,Huberty,A.,Interlandi,S.,Kilham, 957 S.S.,McCauley,E.,Schulz,K.L.,Siemann,E.H.,Sterner,R.W.,2000.Nutritionalconstraintsin 958 terrestrialandfreshwaterfoodwebs.nature408,578y580. 959 Estes,J.A.,Terborgh,J.,Brashares,J.S.,Power,M.E.,Berger,J.,Bond,W.J.,Carpenter,S.R.,Essington, 960 T.E.,Holt,R.D.,Jackson,J.B.C.,Marquis,R.J.,Oksanen,L.,Oksanen,T.,Paine,R.T.,Pikitch, 961 E.K.,Ripple,W.J.,Sandin,S.A.,Scheffer,M.,Schoener,T.W.,Shurin,J.B.,Sinclair,A.R.E., 962 Soule,M.E.,Virtanen,R.,Wardle,D.A.,2011.Trophicdowngradingofplanetearth.Science 963 333,301Y306. 964 Figuerola,J.,Charalambidou,I.,Santamaria,L.,Green,A.J.,2010.Internaldispersalofseedsby 965 waterfowl:effectofseedsizeongutpassagetimeandgerminationpatterns. 966 Naturwissenschaften97,555Y565. 967 Figuerola,J.,Green,A.J.,2002a.Dispersalofaquaticorganismsbywaterbirds:areviewofpast 968 researchandprioritiesforfuturestudies.freshw.biol.47,483y494. 969 Figuerola,J.,Green,A.J.,2002b.Howfrequentisexternaltransportofseedsandinvertebrateeggsby 970 waterbirds?astudyindonana,swspain.arch.hydrobiol.155,557y565. 971 Figuerola,J.,Green,A.J.,2005.Effectsofpremigratoryfastingonthepotentialforlongdistance 972 dispersalofseedsbywaterfowl:anexperimentwithmarbledteal.revuedecologieylaterre 973 EtLaVie60,283Y287. 974 Figuerola,J.,Green,A.J.,Santamaria,L.,2002.Comparativedispersaleffectivenessofwigeongrass 975 seedsbywaterfowlwinteringinsouthywestspain:quantitativeandqualitativeaspects.j. 976 Ecol.90,989Y1001. 977

41 Figuerola,J.,Green,A.J.,Santamaria,L.,2003.Passiveinternaltransportofaquaticorganismsby 978 waterfowlindonana,southywestspain.glob.ecol.biogeogr.12,427y436. 979 Findlay,S.,Carlough,L.,Crocker,M.T.,Gill,H.K.,Meyer,J.L.,Smith,P.J.,1986.Bacterialgrowthon 980 macrophyteleachateandfateofbacterialproduction.limnol.oceanogr.31,1335y1341. 981 Fourqurean,J.W.,Jones,R.D.,Zieman,J.C.,1993.Processesinfluencingwatercolumnnutrient 982 characteristicsandphosphoruslimitationofphytoplanktonbiomassinfloridabayfl,usay 983 inferencesformspatialdistributions.estuar.coast.shelfs.36,295y314. 984 Fourqurean,J.W.,Manuel,S.,Coates,K.A.,Kenworthy,W.J.,Smith,S.R.,2010.Effectsofexcluding 985 seaturtleherbivoresfromaseagrassbed:overgrazingmayhaveledtolossofseagrass 986 meadowsinbermuda.mar.ecol.yprog.ser.419,223y232. 987 Fox,A.D.,Ebbinge,B.S.,Mitchell,C.,Heinicke,T.,Aarvark,T.,Colhoun,K.,Clausen,P.,Dereliev,S., 988 Farago,S.,Koffijberg,K.,Kruckenberg,H.,Loonen,M.J.J.E.,Madsen,J.,Mooij,J.,Musil,P., 989 Nilsson,L.,Pihl,S.,vanderJeugd,H.,2010.Currentestimatesofgoosepopulationsizesin 990 westerneurope,agapanalysisandanassessmentoftrends.ornissvecica20,115y127. 991 France,R.L.,1996.Stableisotopicsurveyoftheroleofmacrophytesinthecarbonflowofaquatic 992 foodwebs.vegetatio124,67y72. 993 Franceschini,M.C.,deNeiff,A.P.,Galassi,M.E.,2010.Isthebiomassofwaterhyacinthlostthrough 994 herbivoryinnativeareasimportant?aquat.bot.92,250y256. 995 Frank,D.A.,Groffman,P.M.,Evans,R.D.,Tracy,B.F.,2000.Ungulatestimulationofnitrogencycling 996 andretentioninyellowstoneparkgrasslands.oecologia123,116y121. 997 Frisch,D.,Green,A.J.,Figuerola,J.,2007.Highdispersalcapacityofabroadspectrumofaquatic 998 invertebratesviawaterbirds.aquat.sci.69,568y574. 999 Gherardi,F.,Acquistapace,P.,2007.InvasivecrayfishinEurope:theimpactofProcambarusclarkiion 1000 thelittoralcommunityofamediterraneanlake.freshw.biol.52,1249y1259. 1001 Gosling,L.M.,Baker,S.J.,1989.TheeradicationofmuskratsandcoypusfromBritain.Biol.J.Linn.Soc. 1002 38,39Y51. 1003

42 Green,A.J.,Figuerola,J.,2005.RecentadvancesinthestudyoflongYdistancedispersalofaquatic 1004 invertebratesviabirds.divers.distrib.11,149y156. 1005 Grey,J.,Jackson,M.C.,2012.'Leavesandeatsshoots':directterrestrialfeedingcansupplement 1006 invasiveredswampcrayfishintimesofneed.plosone7,e42575. 1007 Gross,E.M.,Bakker,E.S.,2012.TheroleofplantsecondarymetabolitesinfreshwatermacrophyteY 1008 herbivoreinteractions:limitedorunexploredchemicaldefences?.in:iason,g.r.,dicke,m., 1009 Hartley,S.E.(Eds.),TheEcologyofPlantSecondaryMetabolites:FromGenestoGlobal 1010 Processes.CambridgeUniversityPress,BritishEcologicalSociety,pp.154Y169. 1011 Gross,E.M.,Johnson,R.L.,Hairston,N.G.,2001.Experimentalevidenceforchangesinsubmersed 1012 macrophytespeciescompositioncausedbytheherbivoreacentria*ephemerella* 1013 (Lepidoptera).Oecologia127,105Y114. 1014 Gruner,D.S.,Smith,J.E.,Seabloom,E.W.,Sandin,S.A.,Ngai,J.T.,Hillebrand,H.,Harpole,W.S.,Elser, 1015 J.J.,Cleland,E.E.,Bracken,M.E.S.,Borer,E.T.,Bolker,B.M.,2008.AcrossYsystemsynthesisof 1016 consumerandnutrientresourcecontrolonproducerbiomass.ecol.lett.11,740y755. 1017 Gyimesi,A.,deVries,P.P.,deBoer,T.,Nolet,B.A.,2011.Reducedtuberbanksoffennelpondweed 1018 duetosummergrazingbywaterfowl.aquat.bot.94,24y28. 1019 Gyimesi,A.,vanLith,B.,Nolet,B.A.,2012.CommensalforagingwithBewick sswanscygnus*bewickii 1020 doublesinstantaneousintakerateofcommonpochardsaythya*ferina.ardea100,55y62. 1021 Hacker,S.D.,Bertness,M.D.,1995.AherbivoreparadoxYwhysaltYmarshaphidsliveonpoorYquality 1022 plants.am.nat.145,192y210. 1023 Hahn,S.,Bauer,S.,Klaassen,M.,2008.Quantificationofallochthonousnutrientinputinto 1024 freshwaterbodiesbyherbivorouswaterbirds.freshw.biol.53,181y193. 1025 Halley,D.,Rosell,F.,Saveljev,A.,2012.PopulationanddistributionofEurasianBeaver(Castor*fiber). 1026 Balt.For.18,168Y175. 1027 Halley,D.J.,Rosell,F.,2002.Thebeaver'sreconquestofEurasia:status,populationdevelopmentand 1028 managementofaconservationsuccess.mammalrev.32,153y178. 1029

43 Hangelbroek,H.H.,Ouborg,N.J.,Santamaria,L.,Schwenk,K.,2002.Clonaldiversityandstructure 1030 withinapopulationofthepondweedpotamogetonpectinatusforagedbybewick'sswans. 1031 Mol.Ecol.11,2137Y2150. 1032 Hanlon,S.G.,Hoyer,M.V.,Cichra,C.E.,Canfield,D.E.,2000.Evaluationofmacrophytecontrolin38 1033 Floridalakesusingtriploidgrasscarp.J.Aquat.PlantManage.38,48Y54. 1034 Hanson,K.C.,Cooke,S.J.,Suski,C.D.,Niezgoda,G.,Phelan,F.J.S.,Tinline,R.,Philipp,D.P.,2007. 1035 Assessmentoflargemouthbass(Micropterus*salmoides)behaviourandactivityatmultiple 1036 spatialandtemporalscalesutilizingawholeylaketelemetryarray.hydrobiologia582,243y 1037 256. 1038 Hauxwell,J.,Osenberg,C.W.,Frazer,T.K.,2004.Conflictingmanagementgoals:Manateesand 1039 invasivecompetitorsinhibitrestorationofanativemacrophyte.ecol.appl.14,571y586. 1040 Havel,J.E.,Bruckerhoff,L.A.,Funkhouser,M.A.,Gemberling,A.R.,2014.Resistancetodesiccationin 1041 aquaticinvasivesnailsandimplicationsfortheiroverlanddispersal.hydrobiologia741,89y 1042 100. 1043 Hay,M.E.,1991.MarineterrestrialcontrastsintheecologyofplantYchemicaldefensesagainst 1044 herbivores.trendsecol.evol.6,362y365. 1045 Hay,M.E.,1996.Marinechemicalecology:What'sknownandwhat'snext?J.Exp.Mar.Biol.Ecol. 1046 200,103Y134. 1047 Heithaus,M.R.,Alcoverro,T.,Arthur,R.,Burkholder,D.A.,Coates,K.A.,Christianen,M.J.,Kelkar,N., 1048 Manuel,S.A.,Wirsing,A.J.,Kenworthy,W.J.,FourqureanJ.W.,2014.Seagrassesintheageof 1049 seaturtleconservationandsharkoverfishing.frontiersinmarinescience1,28. 1050 Heithaus,M.R.,Frid,A.,Wirsing,A.J.,Dill,L.M.,Fourqurean,J.W.,Burkholder,D.,Thomson,J., 1051 Bejder,L.,2007.StateYdependentriskYtakingbygreenseaturtlesmediatestopYdowneffects 1052 oftigersharkintimidationinamarineecosystem.j.anim.ecol.76,837y844. 1053 Hempson,G.P.,Archibald,S.,Bond,W.J.,2015.AcontinentYwideassessmentoftheformand 1054 intensityoflargemammalherbivoryinafrica.science350,1056y1061. 1055

44 Hendriks,I.E.,Bouma,T.J.,Morris,E.P.,Duarte,C.M.,2010.Effectsofseagrassesandalgaeofthe 1056 CaulerpafamilyonhydrodynamicsandparticleYtrappingrates.Mar.Biol.157,473Y481. 1057 Hernandez,A.L.M.,vanTussenbroek,B.I.,2014.Patchdynamicsandspeciesshiftsinseagrass 1058 communitiesundermoderateandhighgrazingpressurebygreenseaturtles.mar.ecol.y 1059 Prog.Ser.517,143Y157. 1060 Hernandez,M.C.,Sacco,J.,Walsh,G.C.,2011.BiologyandhostpreferenceoftheplanthopperTaosa* 1061 longula(hemiptera:dictyopharidae),acandidateforbiocontrolofwaterhyacinth.biocontrol 1062 Sci.Techn.21,1079Y1090. 1063 Hidding,B.,Bakker,E.S.,Hootsmans,M.J.M.,Hilt,S.,2016.Synergybetweenshadingandherbivory 1064 triggersmacrophytelossandregimeshiftsinaquaticsystems.oikos,doi: 1065 10.1111/oik.03104. 1066 Hidding,B.,Bakker,E.S.,Keuper,F.,deBoer,T.,deVries,P.P.,Nolet,B.A.,2010.Differencesin 1067 toleranceofpondweedsandcharophytestovertebrateherbivoresinashallowbaltic 1068 estuary.aquat.bot.93:123y128. 1069 Hidding,B.,Meirmans,P.G.,Klaassen,M.,deBoer,T.,Ouborg,N.J.,Wagemaker,C.A.M.,Nolet,B.A., 1070 2014.Theeffectofherbivoresongenotypicdiversityinaclonalaquaticplant.Oikos123, 1071 1112Y1120. 1072 Hidding,B.,Nolet,B.A.,deBoer,T.,deVries,P.P.,Klaassen,M.,2010.AboveYandbelowYground 1073 vertebrateherbivorymayeachfavouradifferentsubordinatespeciesinanaquaticplant 1074 community.oecologia162,199y208. 1075 Hik,D.S.,Sadul,H.A.,Jefferies,R.L.,1991.Effectsofthetimingofmultiplegrazingsbygeeseonnet 1076 abovegroundprimaryproductionofswardsofpuccinellia*phryganodes.j.ecol.79,715y730. 1077 Hilt,S.,2006.RecoveryofPotamogeton*pectinatusL.standsinashalloweutrophiclakeunder 1078 extremegrazingpressure.hydrobiologia570,95y99. 1079 Hilt,S.,2015.RegimeshiftsbetweenmacrophytesandphytoplanktonYconceptsbeyondshallow 1080 lakes,unravellingstabilizingmechanismsandpracticalconsequences.limnetica34,467y480. 1081

45 Hilt,S.,Henschke,I.,Rucker,J.,Nixdorf,B.,2010.Cansubmergedmacrophytesinfluenceturbidity 1082 andtrophicstateindeeplakes?suggestionsfromacasestudy.j.environ.qual.39,725y733. 1083 Hilt,S.,Kohler,J.,Adrian,R.,Monaghan,M.T.,Sayer,C.D.,2013.Clear,crashing,turbidandbackY 1084 longytermchangesinmacrophyteassemblagesinashallowlake.freshw.biol.58,2027y2036. 1085 Hilt,S.,Kohler,J.,Kozerski,H.P.,vanNes,E.H.,Scheffer,M.,2011.Abruptregimeshiftsinspaceand 1086 timealongriversandconnectedlakesystems.oikos120,766y775. 1087 Hootsmans,M.J.M.,1999.ModellingPotamogeton*pectinatus:forbetterorforworse.Hydrobiologia 1088 415,7Y11. 1089 Jackson,J.B.C.,1997.ReefssinceColumbus.CoralReefs16,S23YS32. 1090 Jackson,M.C.,Grey,J.,2013.AcceleratingratesoffreshwaterinvasionsinthecatchmentoftheRiver 1091 Thames.Biol.Invas.15,945Y951. 1092 Jacobs,R.P.W.M.,DenHartog,C.,Braster,B.F.,Carriere,F.C.1981.GrazingoftheseagrassZostera* 1093 noltiibybirdsatterschelling(dutchwaddensea).aquat.bot.10,241y259. 1094 Jäger,P.,Pall,K.,Dumfahrt,E.,2004.Amethodofmappingmacrophytesinlargelakeswithregardto 1095 therequirementsofthewaterframeworkdirective.limnologica34,140y146. 1096 Janzen,D.H.,1984.Dispersalofsmallseedsbybigherbivores:foliageisthefruit.Am.Nat.123,338Y 1097 353. 1098 Jefferies,R.L.,Rockwell,R.F.,Abraham,K.F.,2003.Theembarrassmentofriches:agriculturalfood 1099 subsidies,highgoosenumbers,andlossofarcticwetlandsyacontinuingsaga.environ.rev. 1100 11,193Y232. 1101 Jeppesen,E.,Søndergaard,M.,Jensen,J.P.,Havens,K.E.,Anneville,O.,Carvalho,L.,Coveney,M.F., 1102 Deneke,R.,Dokulil,M.T.,Foy,B.,Gerdeaux,D.,Hampton,S.E.,Hilt,S.,Kangur,K.,Kohler,J., 1103 Lammens,E.,Lauridsen,T.L.,Manca,M.,Miracle,M.R.,Moss,B.,Noges,P.,Persson,G., 1104 Phillips,G.,Portielje,R.,Schelske,C.L.,Straile,D.,Tatrai,I.,Willen,E.,Winder,M.,2005.Lake 1105 responsestoreducednutrientloadingyananalysisofcontemporarylongytermdatafrom35 1106 casestudies.freshw.biol.50,1747y1771. 1107

46 Jeppesen,E.,Søndergaard,M.,Søndergaard,M.,Christoffersen,K.,1998,Thestructuringroleof 1108 submergedmacrophytesinlakes.springer. 1109 Jessen,R.L.,1970.MallardpopulationtrendsandhuntinglossesinMinnesota.J.WildlifeManage.34, 1110 93Y105. 1111 Jonzén,N.,Nolet,B.A.,Santamaría,L.,Svensson,M.G.E.,2002.Seasonalherbivoryandmortality 1112 compensationinaswanypondweedsystem.ecol.model.147,209y219. 1113 Jupp,B.J.,Spence,D.H.N.,1977.Limitationsofmacrophytesinaeutrophiclake,LochLeven:II.Wave 1114 action,sedimentsandwaterfowlgrazing.j.ecol.65,431y446. 1115 Kelkar,N.,Arthur,R.,Marba,N.,Alcoverro,T.,2013a.Greenturtleherbivorydominatesthefateof 1116 seagrassprimaryproductioninthelakshadweepislands(indianocean).mar.ecol.yprog.ser. 1117 485,235Y243. 1118 Kelkar,N.,Arthur,R.,Marba,N.,Alcoverro,T.,2013b.Greenerpastures?HighYdensityfeeding 1119 aggregationsofgreenturtlesprecipitatespeciesshiftsinseagrassmeadows.j.ecol.101, 1120 1158Y1168. 1121 Kerbes,R.H.,Kotanen,P.M.,Jefferies,R.L.,1990.DestructionofwetlandhabitatsbyLesserSnow 1122 GeeseYAkeystonespeciesonthewestYcoastofHudsonYBay.J.Appl.Ecol.27,242Y258. 1123 King,R.A.,Gornall,R.J.,Preston,C.D.,Croft,J.M.,2002.PopulationdifferentiationofPotamogeton* 1124 pectinatusinthebalticseawithreferencetowaterfowldispersal.mol.ecol.11,1947y1956. 1125 Kirsch,K.D.,Valentine,J.F.,Heck,K.L.,2002.ParrotfishgrazingonturtlegrassThalassia*testudinum: 1126 evidencefortheimportanceofseagrassconsumptioninfoodwebdynamicsoftheflorida 1127 KeysNationalMarineSanctuary.Mar.Ecol.YProg.Ser.227,71Y85. 1128 Kitchener,A.C.,Conroy,J.W.H.,1997.ThehistoryoftheEurasianbeaverCastor*fiberinScotland. 1129 Mamm.Rev.27,95Y108. 1130 Klaassen,R.H.G.,Nolet,B.A.,Bankert,D.,2006.MovementofforagingTundraSwansexplainedby 1131 spatialpatternincrypticfooddensities.ecology87,2244y2254. 1132

47 Kleyheeg,E.,2015,Seeddispersalbyageneralistduck:ingestion,digestionandtransportationby 1133 mallards(anas*platyrhynchos).universityofutrecht. 1134 Körner,S.,Dugdale,T.,2003.IsroachherbivorypreventingreYcolonizationofsubmerged 1135 macrophytesinashallowlake?hydrobiologia506,497y501. 1136 Körner,S.,Schreiber,E.S.G.,Walz,N.,2002.HerbivoryonsubmergedmacrophytesYwho'stoblame? 1137 Verh.Internat.Ver.Limnol.28,967Y970. 1138 Kuijper,D.P.J.,deKleine,C.,Churski,M.,vanHooft,P.,Bubnicki,J.,Jedrzejewska,B.,2013.Landscape 1139 offearineurope:wolvesaffectspatialpatternsofungulatebrowsinginbialowiezaprimeval 1140 Forest,Poland.Ecography36,1263Y1275. 1141 Lal,A.,Arthur,R.,Marba,N.,Lill,A.W.T.,Alcoverro,T.,2010.Implicationsofconservinganecosystem 1142 modifier:increasinggreenturtle(chelonia*mydas)densitiessubstantiallyaltersseagrass 1143 meadows.biol.conserv.143,2730y2738. 1144 Laubek,B.,1995.HabitatusebyWhooperSwansCygnus*cygnusandBewick'sSwansCygnus* 1145 columbianus*bewickiiwinteringindenmark:increasingagriculturalconflicts.wildfowl46,8y 1146 15. 1147 Lauridsen,T.L.,Jeppesen,E.,Andersen,F.O.,1993.Colonizationofsubmergedmacrophytesin 1148 shallowfishmanipulatedlakevæng:impactofsedimentcompositionandwaterfowlgrazing. 1149 Aquat.Bot.46,1Y15. 1150 Letson,M.A.,Makarewicz,J.C.,1994.Anexperimentaltestofthecrayfish(Orconectesimmunis)asa 1151 controlmechanismforsubmersedaquaticmacrophytes.lakereserv.manage.10,127y132. 1152 Lodge,D.M.,1991.HerbivoryonfreshYwatermacrophytes.Aquat.Bot.41,195Y224. 1153 Lodge,D.M.,Cronin,G.,VanDonk,E.,Froelich,A.J.,1998,Impactofherbivoryonplantstandingcrop: 1154 comparisonsamongbiomes,betweenvascularandnonyvascularplants,andamong 1155 freshwaterherbivoretaxa.in:jeppesen,e.,søndergaard,m.,christoffersen,k.(eds.),the 1156 structuringroleofsubmergedmacrophytesinlakes.springeryverlag,newyork,pp.149y174. 1157

48 Louette,G.,DeMeester,L.,2005.Highdispersalcapacityofcladoceranzooplanktoninnewly 1158 foundedcommunities.ecology86,353y359. 1159 Macreadie,P.I.,TrevathanYTackett,S.M.,Skilbeck,C.G.,Sanderman,J.,Curlevski,N.,Jacobsen,G., 1160 Seymour,J.R.,2015.Lossesandrecoveryoforganiccarbonfromaseagrassecosystem 1161 followingdisturbance.p.r.soc.bybiol.sci.282,20151537. 1162 Mader,E.,vanVierssen,W.,Schwenk,K.,1998.Clonaldiversityinthesubmergedmacrophyte 1163 PotamogetonpectinatusL.inferredfromnuclearandcytoplasmicvariation.Aquat.Bot.62, 1164 147Y160. 1165 Madin,E.M.P.,Madin,J.S.,Booth,D.J.,2011.Landscapeoffearvisiblefromspace.ScientificReports 1166 1,14. 1167 Mahdy,A.,Hilt,S.,Filiz,N.,Beklioglu,M.,Hejzlar,J.,Ozkundakci,D.,Papastergiadou,E., 1168 Scharfenberger,U.,Sorf,M.,Stefanidis,K.,Tuvikene,L.,Zingel,P.,Søndergaard,M., 1169 Jeppesen,E.,Adrian,R.,2015.Effectsofwatertemperatureonsummerperiphytonbiomass 1170 inshallowlakes:apanyeuropeanmesocosmexperiment.aquat.sci.77,499y510. 1171 Mao,Z.G.,Gu,X.H.,Zeng,Q.F.,Gu,X.K.,Li,X.G.,Wang,Y.P.,2014.Productionsourcesandfoodweb 1172 ofamacrophyteydominatedregioninlaketaihu,basedongutcontentsandstableisotope 1173 analyses.j.greatlakesres.40,656y665. 1174 Marklund,O.,Sandsten,H.,Hansson,L.A.,Blindow,I.,2002.Effectsofwaterfowlandfishon 1175 submergedvegetationandmacroinvertebrates.freshw.biol.47,2049y2059. 1176 McCauley,D.J.,Pinsky,M.L.,Palumbi,S.R.,Estes,J.A.,Joyce,F.H.,Warner,R.R.,2015.Marine 1177 defaunation:animallossintheglobalocean.science347,247y+. 1178 McNaughton,1985.EcologyofaGrazingEcosystem:TheSerengeti.Ecol.Monogr.55,260Y294. 1179 Mendonca,R.,Kosten,S.,Lacerot,G.,Mazzeo,N.,Roland,F.,Ometto,J.P.,Paz,E.A.,Bove,C.P., 1180 Bueno,N.C.,Gomes,J.H.C.,Scheffer,M.,2013.Bimodalityinstableisotopecomposition 1181 facilitatesthetracingofcarbontransferfrommacrophytestohighertrophiclevels. 1182 Hydrobiologia710,205Y218. 1183

49 Miler,O.,Straile,D.,2010.Howtocopewithasuperiorenemy?Plantdefencestrategiesinresponse 1184 toannualherbivoreoutbreaks.j.ecol.98,900y907. 1185 Mitchell,S.F.,Wass,R.T.,1996a.Grazingbyblackswans(Cygnus*atratusLatham),physicalfactors, 1186 andthegrowthandlossofaquaticvegetationinashallowlake.aquat.bot.55,205y215. 1187 Mitchell,S.F.,Wass,R.T.,1996b.Quantifyingherbivory:Grazingconsumptionandinteraction 1188 strength.oikos76,573y576. 1189 Moles,A.T.,Bonser,S.P.,Poore,A.G.B.,Wallis,I.R.,Foley,W.J.,2011.Assessingtheevidencefor 1190 latitudinalgradientsinplantdefenceandherbivory.funct.ecol.25,380y388. 1191 Moran,K.L.,Bjorndal,K.A.,2005.Simulatedgreenturtlegrazingaffectsstructureandproductivityof 1192 seagrasspastures.mar.ecol.prog.ser.305,235y247. 1193 Morrison,W.E.,Hay,M.E.,2012.ArelowerYlatitudeplantsbetterdefended?Palatabilityof 1194 freshwatermacrophytes.ecology93,65y74. 1195 Moss,B.,2015.Mammals,freshwaterreferencestates,andthemitigationofclimatechange. 1196 Freshw.Biol.60,1964Y1976. 1197 Mueller,M.H.,vanderValk,A.G.,2002.Thepotentialroleofducksinwetlandseeddispersal. 1198 Wetlands22,170Y178. 1199 Munoz,J.,Amat,F.,Green,A.J.,Figuerola,J.,Gomez,A.,2013.Birdmigratoryflywaysinfluencethe 1200 phylogeographyoftheinvasivebrineshrimpartemia*franciscanainitsnativeamerican 1201 range.peerj1,unspe200. 1202 Newman,R.M.,1991.HerbivoryanddetrivoryonfreshwatermacrophytesbyinvertebratesYa 1203 review.j.n.am.benth.soc.10,89y114. 1204 Newman,R.M.,2004.BiologicalcontrolofEurasianwatermilfoilbyaquaticinsects:basicinsights 1205 fromanappliedproblem.arch.hydrobiol.159,145y184. 1206 Nichols,T.C.,2014.TenyearsofresidentCanadaGoosedamagemanagementinaNewJerseytidal 1207 freshwaterwetland.wildlifesoc.bull.38,221y228. 1208

50 Nolet,B.A.,2004.OvercompensationandgrazingoptimisationinaswanYpondweedsystem?Freshw. 1209 Biol.49,1391Y1399. 1210 Nolet,B.A.,Gyimesi,A.,Klaassen,R.H.G.,2006.PredictionofbirdYdaycarryingcapacityonastaging 1211 site:atestofdepletionmodels.j.anim.ecol.75,1285y1292. 1212 Nolet,B.A.,Gyimesi,A.,vanKrimpen,R.R.D.,deBoer,W.F.,Stillman,R.A.,2016.Predictingeffectsof 1213 waterregimechangesonwaterbirds:insightsfromstagingswans.plosone11,e0147340. 1214 Nolet,B.A.,Langevoord,O.,Bevan,R.M.,Engelaar,K.R.,Klaassen,M.,Mulder,R.J.W.,VanDijk,S., 1215 2001.Spatialvariationintuberdepletionbyswansexplainedbydifferencesinnetintake 1216 rates.ecology82,1655y1667. 1217 Nolet,B.A.,Rosell,F.,1998.ComebackofthebeaverCastor*fiber:Anoverviewofoldandnew 1218 conservationproblems.biol.conserv.83,165y173. 1219 Nolte,S.,Esselink,P.,Bakker,J.P.,Smit,C.,2015.Effectsoflivestockspeciesandstockingdensityon 1220 accretionratesingrazedsaltmarshes.estuar.coast.shelfs.152,109y115. 1221 Nummi,P.,Holopainen,S.,2014.WholeYcommunityfacilitationbybeaver:ecosystemengineer 1222 increaseswaterbirddiversity.aquat.conserv.24,623y633. 1223 Olsen,Y.S.,Valiela,I.,2010.EffectofsedimentnutrientenrichmentandgrazingonTurtleGrass 1224 Thalassia*testudinuminJobosBay,PuertoRico.EstuariesCoasts33,769Y783. 1225 OwenYSmith,R.N.,1988,Megaherbivores:theinfluenceofverylargebodysizeonecology. 1226 CambridgeUniversityPress,Cambridge. 1227 Pages,J.F.,Farina,S.,Gera,A.,Arthur,R.,Romero,J.,Alcoverro,T.,2012.Indirectinteractionsin 1228 seagrasses:fishherbivoresincreasepredationrisktoseaurchinsbymodifyingplanttraits. 1229 Funct.Ecol.26,1015Y1023. 1230 Pages,J.F.,Gera,A.,Romero,J.,Alcoverro,T.,2014.Matrixcompositionandpatchedgesinfluence 1231 plantyherbivoreinteractionsinmarinelandscapes.funct.ecol.28,1440y1448. 1232 Paice,R.L.,Chambers,J.M.,Robson,B.J.,2016.Outcomesofsubmergedmacrophyterestorationina 1233 shallowimpounded,eutrophicriver.hydrobiologiadoi10.1007/s10750y015y2441y8. 1234

51 Panov,V.E.,Caceres,C.,2007.Roleofdiapauseindispersalofaquaticinvertebrates.Diapausein 1235 AquaticInvertebratesTheoryandHumanUse.Springer,Netherlands. 1236 Perry,D.,Perry,G.,2008.Improvinginteractionsbetweenanimalrightsgroupsandconservation 1237 biologists.conserv.biol.22,27y35. 1238 Petruzzella,A.,Guariento,R.D.,Gripp,A.d.R.,Marinho,C.C.,FigueiredoYBarros,M.P.,Esteves,F.d.A., 1239 2015.Herbivoredamageincreasesmethaneemissionfromemergentaquaticmacrophytes. 1240 Aquat.Bot.127,6Y11. 1241 Polunin,N.V.C.,1984.Thedecompositionofemergentmacrophytesinfreshwater.AdvancesinEcol. 1242 Res.14,115Y166. 1243 Poore,A.G.B.,Campbell,A.H.,Coleman,R.A.,Edgar,G.J.,Jormalainen,V.,Reynolds,P.L.,Sotka,E.E., 1244 Stachowicz,J.J.,Taylor,R.B.,Vanderklift,M.A.,Duffy,J.E.,2012.Globalpatternsintheimpact 1245 ofmarineherbivoresonbenthicprimaryproducers.ecol.lett.15,912y922. 1246 Prado,P.,Romero,J.,Alcoverro,T.,2010.Nutrientstatus,plantavailabilityandseasonalforcing 1247 mediatefishherbivoryintemperateseagrassbeds.mar.ecol.yprog.ser.409,229y239. 1248 Prado,P.,Tomas,F.,Alcoverro,T.,Romero,J.,2007.ExtensivedirectmeasurementsofPosidonia* 1249 oceanicadefoliationconfirmtheimportanceofherbivoryintemperateseagrassmeadows. 1250 Mar.Ecol.YProg.Ser.340,63Y71. 1251 Preen,A.,1995.ImpactsofDugongforagingonseagrasshabitatsYobservationalandexperimental 1252 evidenceforcultivationgrazing.mar.ecol.yprog.ser.124,201y213. 1253 Prejs,A.,1984.Herbivorybytemperatefreshwaterfishesanditsconsequences.Environ.Biol.Fish. 1254 10,281Y296. 1255 Ramo,C.,Amat,J.A.,Nilsson,L.,Schricke,V.,RodriguezYAlonso,M.,GomezYCrespo,E.,Jubete,F., 1256 Navedo,J.G.,Masero,J.A.,Palacios,J.,Boos,M.,Green,A.J.,2015.LatitudinalYrelated 1257 variationinwinteringpopulationtrendsofgreylaggeese(anser*anser)alongtheatlantic 1258 flyway:aresponsetoclimatechange?plosone10,e0140181. 1259

52 Redpath,S.M.,Gutierrez,R.J.,Wood,K.A.,Young,J.C.,2015.Conflictsinconservation:navigating 1260 towardssolutions.cambridgeuniversitypress,cambridge,uk. 1261 Reynolds,C.,Miranda,N.A.F.,Cumming,G.S.,2015.Theroleofwaterbirdsinthedispersalofaquatic 1262 alienandinvasivespecies.divers.distrib.21,744y754. 1263 RobledoYArnuncio,J.J.,Klein,E.K.,MullerYLandau,H.C.,Santamaría,L.,2014.Space,timeand 1264 complexityinplantdispersalecology.movementecol.2,16. 1265 Röckstrom,J.,Steffen,W.,Noone,K.,Persson,A.,Chapin,F.S.,Lambin,E.F.,Lenton,T.M.,Scheffer, 1266 M.,Folke,C.,Schellnhuber,H.J.,Nykvist,B.,deWit,C.A.,Hughes,T.,vanderLeeuw,S., 1267 Rodhe,H.,Sorlin,S.,Snyder,P.K.,Costanza,R.,Svedin,U.,Falkenmark,M.,Karlberg,L., 1268 Corell,R.W.,Fabry,V.J.,Hansen,J.,Walker,B.,Liverman,D.,Richardson,K.,Crutzen,P., 1269 Foley,J.A.,2009.Asafeoperatingspaceforhumanity.Nature461,472Y475. 1270 Rodriguez,C.F.,Becares,E.,FernandezYAlaez,M.,2003.ShiftfromcleartoturbidphaseinLake 1271 Chozas(NWSpain)duetotheintroductionofAmericanredswampcrayfish(Procambarus* 1272 clarkii).hydrobiologia506,421y426. 1273 Ross,E.,1971.BiologicalcontrolofpondweedswithChineseGeese.HawaiiFarmSci.20,11Y12. 1274 Rushing,W.N.,1973.WaterhyacinthresearchinPuertoRico.HyacinthContr.J.13,48Y54. 1275 Sachse,R.,Petzoldt,T.,Blumstock,M.,Moreira,S.,Patzig,M.,Rueker,J.,Janse,J.H.,Mooij,W.M., 1276 Hilt,S.,2014.ExtendingoneYdimensionalmodelsfordeeplakestosimulatetheimpactof 1277 submergedmacrophytesonwaterquality.environ.modell.softw.61,410y423. 1278 SandYJensen,K.,Jacobsen,D.,2002.Herbivoryandgrowthinterrestrialandaquaticpopulationsof 1279 amphibiousstreamplants.freshw.biol.47,1475y1487. 1280 SandYJensen,K.,Jacobsen,D.,Duarte,C.M.,1994.Herbivoryandresultingplantdamage.Oikos69, 1281 545Y549. 1282 Sandom,C.J.,Ejrnaes,R.,Hansen,M.D.D.,Svenning,J.C.,2014.Highherbivoredensityassociated 1283 withvegetationdiversityininterglacialecosystems.p.natl.acad.sci.usa111,4162y4167. 1284

53 Santamaria,L.,Charalambidou,I.,Figuerola,J.,Green,A.J.,2002.Effectofpassagethroughduckgut 1285 ongerminationoffennelpondweedseeds.arch.hydrobiol.156,11y22. 1286 Sarneel,J.M.,Huig,N.,Veen,G.F.,Rip,W.,Bakker,E.S.,2014.Herbivoresenforcesharpboundaries 1287 betweenterrestrialandaquaticecosystems.ecosystems17,1426y1438. 1288 Scharnweber,K.,Syvaranta,J.,Hilt,S.,Brauns,M.,Vanni,M.J.,Brothers,S.,Kohler,J.,KnezevicYJaric, 1289 J.,Mehner,T.,2014.WholeYlakeexperimentsrevealthefateofterrestrialparticulateorganic 1290 carboninbenthicfoodwebsofshallowlakes.ecology95,1496y1505. 1291 Scheffer,M.,Hosper,S.H.,Meijer,M.YL.,Moss,B.,Jeppesen,E.,1993.Alternativeequilibriain 1292 shallowlakes.trendsecol.evol.8,275y279. 1293 Schemske,D.W.,Mittelbach,G.G.,Cornell,H.V.,Sobel,J.M.,Roy,K.,2009.Istherealatitudinal 1294 gradientintheimportanceofbioticinteractions?annu.rev.ecol.evol.s.40,245y269. 1295 Schwartz,D.P.,Maughan,O.E.,Gebhart,G.E.,1986.EffectivenessofBlueTilapiaasaweedYcontrol 1296 agentinponds.progressivefishyculturist48,259y263. 1297 Shelford,V.E.,1918,Conditionsofexistence.In:Ward,H.B.,Whipple,G.C.(Eds.),FeshwaterBiology. 1298 JohnWiley,NewYork,pp.21Y60. 1299 Sherfy,M.H.,Kirkpatrick,R.L.,2003.InvertebrateresponsetosnowgooseherbivoryonmoistYsoil 1300 vegetation.wetlands23,236y249. 1301 Silva,T.S.F.,Costa,M.P.F.,Melack,J.M.,Novo,E.M.L.M.,2008.Remotesensingofaquaticvegetation: 1302 theoryandapplications.environ.monit.assess.140,131y145. 1303 Skilleter,G.A.,Wegscheidl,C.,Lanyon,J.M.,2007.EffectsofgrazingbyamarinemegaYherbivoreon 1304 benthicassemblagesinasubtropicalseagrassbed.mar.ecol.prog.ser.351,287y300. 1305 Small,E.,2012.ThenewNoah'sArk:beautifulandusefulspeciesonly.Part2.Thechosenspecies. 1306 Biodiversity13,37Y53. 1307 Smolders,A.J.P.,Vergeer,L.H.T.,vanderVelde,G.,Roelofs,J.G.M.,2000.Phenoliccontentsof 1308 submerged,emergentandfloatingleavesofaquaticandsemiyaquaticmacrophytespecies: 1309 whydotheydiffer?oikos91,307y310. 1310

54 Solomon,C.T.,Carpenter,S.R.,Clayton,M.K.,Cole,J.J.,Coloso,J.J.,Pace,M.L.,VanderZanden,M.J., 1311 Weidel,B.C.,2011.Terrestrial,benthic,andpelagicresourceuseinlakes:resultsfroma 1312 threeyisotopebayesianmixingmodel.ecology92,1115y1125. 1313 Søndergaard,M.,Bruun,L.,Lauridsen,T.,Jeppesen,E.,Madsen,T.V.,1996.Theimpactofgrazing 1314 waterfowlonsubmergedmacrophytes:insituexperimentsinashalloweutrophiclake. 1315 Aquat.Bot.53,73Y84. 1316 Søndergaard,M.,Jeppesen,E.,Lauridsen,T.L.,Skov,C.,VanNes,E.H.,Roijackers,R.,Lammens,E., 1317 Portielje,R.,2007.Lakerestoration:successes,failuresandlongYtermeffects.J.Appl.Ecol. 1318 44,1095Y1105. 1319 Soons,M.B.,vanderVlugt,C.,vanLith,B.,Heil,G.W.,Klaassen,M.,2008.Smallseedsizeincreases 1320 thepotentialfordispersalofwetlandplantsbyducks.j.ecol.96,619y627. 1321 Soti,P.G.,Volin,J.C.,2010.Doeswaterhyacinth(Eichhornia*crassipes)compensateforsimulated 1322 defoliation?implicationsforeffectivebiocontrol.biol.control54,35y40. 1323 Stillman,R.A.,Wood,K.A.,Gilkerson,W.,Elkinton,E.,Black,J.M.,Ward,D.H.,Petrie,M.,2015. 1324 Predictingeffectsofenvironmentalchangeonamigratoryherbivore.Ecosphere6,art.114. 1325 Stott,B.,Robson,T.O.,1970.Efficiencyofgrasscarp(Ctenopharyngodon*idella*Val)incontrolling 1326 submergedwaterweeds.nature226,870y&. 1327 Subalusky,A.L.,Dutton,C.L.,RosiYMarshall,E.J.,Post,D.M.,2015.Thehippopotamusconveyorbelt: 1328 vectorsofcarbonandnutrientsfromterrestrialgrasslandstoaquaticsystemsinsubysaharan 1329 Africa.Freshw.Biol.60,512Y525. 1330 Sumoski,S.E.,Orth,R.J.,2012.BioticdispersalineelgrassZostera*marina.Mar.Ecol.YProg.Ser.471, 1331 1Y10. 1332 Tatu,K.S.,Anderson,J.T.,Hindman,L.J.,Seidel,G.,2007.Muteswans'impactonsubmergedaquatic 1333 vegetationinchesapeakebay.j.wildlifemanage.71,1431y1439. 1334 Thayer,G.W.,Engel,D.W.,Bjorndal,K.A.,1982.EvidenceforshortYcircuitingofthedetrituscycleof 1335 seagrassbedsbythegreenturtle,chelonia*mydas.j.exp.mar.biol.ecol.62,173y183. 1336

55 Tomas,F.,Turon,X.,Romero,J.,2005.SeasonalandsmallYscalespatialvariabilityofherbivory 1337 pressureonthetemperateseagrassposidonia*oceanica.mar.ecol.yprog.ser.301,95y107. 1338 Turcotte,M.M.,Davies,T.J.,Thomsen,C.J.M.,Johnson,M.T.J.,2014.Macroecologicaland 1339 macroevolutionarypatternsofleafherbivoryacrossvascularplants.p.r.soc.bybiol.sci.y 1340 BiologicalSciences281,20140555. 1341 Turvey,S.T.,Risley,C.L.,2006.ModellingtheextinctionofSteller'sseacow.Biol.Lett.2,94Y97. 1342 Vadeboncoeur,Y.,VanderZanden,M.J.,Lodge,D.M.,2002.Puttingthelakebacktogether: 1343 Reintegratingbenthicpathwaysintolakefoodwebmodels.Bioscience52,44Y54. 1344 Valentine,J.F.,Duffy,J.E.,2006,Thecentralroleofgrazinginseagrassecology.In:Larkum,A.W.D., 1345 Orth,R.J.,Duarte,C.M.(Eds.),Seagrasses:Biology,EcologyandConservation.Springer,pp. 1346 463Y501. 1347 Valentine,J.F.,Heck,K.L.,1991.TheroleofseaYurchingrazinginregulatingsubtropicalseagrass 1348 meadowsyevindencefromfieldmanipulationsinthenortherngulfofmexico.j.exp.mar. 1349 Biol.Ecol.154,215Y230. 1350 Valentine,J.F.,Heck,K.L.,1999.Seagrassherbivory:evidenceforthecontinuedgrazingofmarine 1351 grasses.mar.ecol.yprog.ser.176,291y302. 1352 Valentine,J.F.,Heck,K.L.,Busby,J.,Webb,D.,1997.Experimentalevidencethatherbivoryincreases 1353 shootdensityandproductivityinasubtropicalturtlegrass(thalassia*testudinum)meadow. 1354 Oecologia112,193Y200. 1355 VanderPijl,L.,1982,Principlesofdispersal.SpringerYVerlag,Berlin. 1356 VanderWal,J.E.M.,Dorenbosch,M.,Immers,A.K.,Forteza,C.V.,Geurts,J.J.M.,Peeters,E.,Koese,B., 1357 Bakker,E.S.,2013.Invasivecrayfishthreatenthedevelopmentofsubmergedmacrophytesin 1358 lakerestoration.plosone8,e78579. 1359 VanderWal,R.,Sjogersten,S.,Woodin,S.J.,Cooper,E.J.,Jonsdottir,I.S.,Kuijper,D.,Fox,T.A.D., 1360 Huiskes,A.D.,2007.SpringfeedingbypinkYfootedgeesereducescarbonstocksandsink 1361 strengthintundraecosystems.globalchangebiology13,539y545. 1362

56 VanDonk,E.,Otte,A.,1996.Effectsofgrazingbyfishandwaterfowlonthebiomassandspecies 1363 compositionofsubmergedmacrophytes.hydrobiologia340,285y290. 1364 VanEerden,M.R.,Drent,R.H.,Stahl,J.,Bakker,J.P.,2005.Connectingseas:westernPalaearctic 1365 continentalflywayforwaterbirdsintheperspectiveofchanginglanduseandclimate.glob. 1366 ChangeBiol.11,894Y908. 1367 VanLeeuwen,C.H.A.,Huig,N.,VanderVelde,G.,VanAlen,T.A.,Wagemaker,C.A.M.,Sherman, 1368 C.D.H.,Klaassen,M.,Figuerola,J.,2013.Howdidthissnailgethere?Severaldispersalvectors 1369 inferredforanaquaticinvasivespecies.freshw.biol.58,88y99. 1370 VanLeeuwen,C.H.A.,VanderVelde,G.,vanLith,B.,Klaassen,M.,2012.Experimentalquantification 1371 oflongdistancedispersalpotentialofaquaticsnailsinthegutofmigratorybirds.plosone7, 1372 e32292. 1373 VanNes,E.H.,Scheffer,M.,vandenBerg,M.S.,Coops,H.,2003.Charisma:aspatialexplicit 1374 simulationmodelofsubmergedmacrophytes.ecol.modell.159,103y116. 1375 VanWijk,R.J.,1988.EcologicalstudiesonPotamogeton*pectinatusL.I.Generalcharacteristics, 1376 biomassproductionandlifecyclesunderfieldconditions.aquat.bot.31,211y258. 1377 VanderZanden,H.B.,Bjorndal,K.A.,Bolten,A.B.,2013.Temporalconsistencyandindividual 1378 specializationinresourceusebygreenturtlesinsuccessivelifestages.oecologia173,767y 1379 777. 1380 Veen,G.F.,Sarneel,J.M.,Ravensbergen,L.,Huig,N.,vanPaassen,J.,Rip,W.,Bakker,E.S.,2013. 1381 Aquaticgrazersreducetheestablishmentandgrowthofriparianplantsalongan 1382 environmentalgradient.freshw.biol.58,1794y1803. 1383 Verges,A.,Becerro,M.A.,Alcoverro,T.,Romero,J.,2007.Variationinmultipletraitsofvegetative 1384 andreproductiveseagrasstissuesinfluencesplantyherbivoreinteractions.oecologia151, 1385 675Y686. 1386 Verges,A.,Perez,M.,Alcoverro,T.,Romero,J.,2008.Compensationandresistancetoherbivoryin 1387 seagrasses:inducedresponsestosimulatedconsumptionbyfish.oecologia155,751y760. 1388

57 Verges,A.,Steinberg,P.D.,Hay,M.E.,Poore,A.G.B.,Campbell,A.H.,Ballesteros,E.,Heck,K.L.,Booth, 1389 D.J.,Coleman,M.A.,Feary,D.A.,Figueira,W.,Langlois,T.,Marzinelli,E.M.,Mizerek,T., 1390 Mumby,P.J.,Nakamura,Y.,Roughan,M.,vanSebille,E.,SenGupta,A.,Smale,D.A.,Tomas, 1391 F.,Wernberg,T.,Wilson,S.K.,2014a.Thetropicalizationoftemperatemarineecosystems: 1392 climateymediatedchangesinherbivoryandcommunityphaseshifts.p.r.soc.bybiol.sci. 1393 281,20140846. 1394 Verges,A.,Tomas,F.,Cebrian,E.,Ballesteros,E.,Kizilkaya,Z.,Dendrinos,P.,Karamanlidis,A.A., 1395 Spiegel,D.,Sala,E.,2014b.Tropicalrabbitfishandthedeforestationofawarmingtemperate 1396 sea.j.ecol.102,1518y1527. 1397 Verhoeven,J.T.A.,1980.TheecologyofRuppiaYdominatedcommunitiesinwesternYEurope.3. 1398 Aspectsofproduction,consumptionanddecomposition.Aquat.Bot.8,209Y253. 1399 Verpoorter,C.,Kutser,T.,Seekell,D.A.,Tranvik,L.J.,2014.AglobalinventoryoflakesbasedonhighY 1400 resolutionsatelliteimagery.geophys.res.lett.41,6396y6402. 1401 Viana,D.S.,Figuerola,J.,Schwenk,K.,Manca,M.,Hobæk,A.,Mjelde,M.,Preston,C.D.,Gornall,R.J., 1402 Croft,J.M.,King,R.A.,Green,A.J.,Santamaría,L.,2016.Assemblymechanismsdetermining 1403 highspeciesturnoverinaquaticcommunitiesoverregionalandcontinentalscales.ecography 1404 39,281Y288. 1405 Viana,D.S.,Santamaria,L.,Michot,T.C.,Figuerola,J.,2013a.AllometricscalingoflongYdistanceseed 1406 dispersalbymigratorybirds.am.nat.181,649y662. 1407 Viana,D.S.,Santamaria,L.,Michot,T.C.,Figuerola,J.,2013b.Migratorystrategiesofwaterbirds 1408 shapethecontinentalyscaledispersalofaquaticorganisms.ecography36,430y438. 1409 Viana,D.S.,Santamaria,L.,Schwenk,K.,Manca,M.,Hobaek,A.,Mjelde,M.,Preston,C.D.,Gornall, 1410 R.J.,Croft,J.M.,King,R.A.,Green,A.J.,Figuerola,J.,2014.Environmentandbiogeography 1411 driveaquaticplantandcladoceranspeciesrichnessacrosseurope.freshw.biol.59,2096y 1412 2106. 1413

58 VivianYSmith,G.,Stiles,E.W.,1994.DispersalofsaltYmarshseedsonthefeetandfeathersof 1414 waterfowl.wetlands14,316y319. 1415 Vonk,J.A.,Kneer,D.,Stapel,J.,Asmus,H.,2008a.Shrimpburrowintropicalseagrassmeadows:An 1416 importantsinkforlitter.estuar.coast.shelfs.79,79y85. 1417 Vonk,J.A.,Pijnappels,M.H.J.,Stapel,J.,2008b.InsituquantificationofTripneustes*gratillagrazing 1418 anditseffectsonthreecoyoccurringtropicalseagrassspecies.mar.ecol.prog.ser.360,107y 1419 114. 1420 Weisz,E.J.,Yan,N.D.,2010.Relativevalueoflimnological,geographic,andhumanusevariablesas 1421 predictorsofthepresenceofbythotrepheslongimanusincanadianshieldlakes.can.j.fish. 1422 Aquat.Sci.67,462Y472. 1423 Wheeler,G.S.,Center,T.D.,2001.ImpactofthebiologicalcontrolagentHydrellia*pakistanae(Diptera 1424 :Ephydridae)onthesubmersedaquaticweedHydrilla*verticillata(Hydrocharitaceae).Biol. 1425 Control21,168Y181. 1426 Wheeler,G.S.,Van,T.K.,Center,T.D.,1998.HerbivoreadaptationstoalowYnutrientfood:Weed 1427 biologicalcontrolspecialistspodoptera*pectinicornis(lepidoptera:noctuidae)fedthe 1428 floatingaquaticplantpistia*stratiotes.environ.entomol.27,993y1000. 1429 Whitehead,P.J.P.,1978.AncientrecordsofthepresenceoftheCaribbeanmanateeTrichechus* 1430 manatusinbrazil.actaamazonica8,497y506. 1431 Wilson,F.,1964.Biologicalcontrolofweeds.Annu.Rev.Entomol.9,225Y&. 1432 Wilson,H.R.,Harms,R.H.,Damron,B.L.,1977.Potentialofgeeseincontrolandutilizationofwater 1433 hyacinths.poultrysci.56,1360y1361. 1434 Winston,J.E.,2012.Dispersalinmarineorganismswithoutapelagiclarvalphase.Integr.Comp.Biol. 1435 52,447Y457. 1436 Wittmann,M.E.,Jerde,C.L.,Howeth,J.G.,Maher,S.P.,Deines,A.M.,Jenkins,J.A.,Whitledge,G.W., 1437 Burbank,S.R.,Chadderton,W.L.,Mahon,A.R.,Tyson,J.T.,Gantz,C.A.,Keller,R.P.,Drake, 1438 J.M.,Lodge,D.M.,2014.GrasscarpintheGreatLakesregion:establishmentpotential,expert 1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 perceptions,andreyevaluationofexperimentalevidenceofecologicalimpact.can.j.fish. Aquat.Sci.71,992Y999. Wood,K.A.,O'Hare,M.T.,McDonald,C.,Searle,K.R.,Daunt,F.,Stillman,R.T.,2016.Herbivore regulationofplantabundanceinaquaticecosystems.biologicalreviewsdoi: 10.1111/brv.12272. Wood,K.A.,Stillman,R.A.,Clarke,R.T.,Daunt,F.,O'Hare,M.T.,2012a.Theimpactofwaterfowl herbivoryonplantstandingcrop:ametayanalysis.hydrobiologia686,157y167. Wood,K.A.,Stillman,R.A.,Clarke,R.T.,Daunt,F.,O'Hare,M.T.,2012b.Understandingplant communityresponsestocombinationsofbioticandabioticfactorsindifferentphasesofthe plantgrowthcycle.plosone7,e49824. Wood,K.A.,Stillman,R.A.,Daunt,F.,O'Hare,M.T.,2014a.Cansacrificialfeedingareasprotect aquaticplantsfromherbivoregrazing?usingbehaviouralecologytoinformwildlife management.plosone9,e104034. Wood,K.A.,Stillman,R.A.,Daunt,F.,O'Hare,M.T.,2014b.Chalkstreamsandgrazingmuteswans. BritishWildlife25,171Y176. Wood,K.A.,Stillman,R.A.,Daunt,F.,O'Hare,M.T.,2015.Theswangrazingconflictinchalkrivers.In: Redpath,S.M.,Gutierrez,R.J.,Wood,K.A.,Young,J.C.(Eds.),Conflictsinconservation: navigatingtowardssolutions.cambridgeuniversitypress,cambridge,uk,pp.134y136. 1458 1459 59

60 Captions)to)figures) 1460 1461 Figure1.Frequencydiagramofpercentageofherbivory(%herbivory)onvascularplants(a:mean 1462 percentdamage;b,c:netprimaryproductionremoval)andbiomassc:nratio(g/g)across(a,d) 1463 terrestrial,(b,e)freshwaterand(c,f)marineecosystems.freshwaterandmarinedataincludeboth 1464 submergedandemergentplants.themedianvaluesineachpanelareindicatedwithanarrow 1465 accompaniedby M. 1466 Datasources:terrestrial(a)herbivory:percentageofleafareadamaged(Turcotteetal.2014),(d) 1467 biomassc:nratio:infoliage(elseretal.2000);freshwater(b)herbivory:percentageofemergentand 1468 submergedvascularplantbiomassremovedbyherbivoresinherbivoreexclosure/enclosureor 1469 addition/removalexperiments(woodetal.2016),(e)biomassc:nratio:insubmergedandemergent 1470 vascularplants(cloernetal.2002;bakkerunpublisheddata);marine,(c)herbivory:percentageof 1471 emergentandsubmergedvascularplantbiomassremovedbyherbivoresinherbivore 1472 exclosure/enclosureoraddition/removalexperiments(woodetal.2016),percentageofleafarea 1473 damagedinseagrasses(cebrianandduarte1998)(f)biomassc:nratio:inseagrassleaves(atkinson 1474 &Smith1983,Duarte1990,Fourqureanetal.1993,CebrianandDuarte1998,Fourqureanetal. 1475 2010,OlsenenValiela2010),insaltmarshplants(Cloernetal.2002).Thedurationoftheherbivroy 1476 studiesvariedfrominstantaneousmeasurementsofpercentageleafdamageinterrestrialplantsand 1477 seagrassestoexclosuresstudiesinfreshwaterandmarineecosystemsrangingfromaboutaweekto 1478 multiplestudyyears(studydurationsreportedinwoodetal.2016whofoundnoeffectofstudy 1479 durationonpercentageherbivoreplantbiomassremoval). 1480 1481 Figure2.Frequencydiagramofnetprimaryproductionremoval(%herbivory)andbiomassC:N(g/g) 1482 forvascularfreshwaterandmarinemacrophytesofdifferentgrowthforms(emergentand 1483

1484 1485 submerged).emergentplantsincludefloatingplantsandwetlandorsaltmarshplants.themedian valuesineachpanelareindicatedwithanarrowaccompaniedby M.DatasourcesasinFig.1. 1486 1487 1488 1489 1490 1491 1492 1493 Figure3.Synthesizingschemeindicatingtheeffectsofherbivoresonmacrophytebedsandthe functioningofshallowfreshwater(a)andmarine(b)aquaticecosystems.herbivoresaffectplant abundanceandspeciescompositionbygrazingandbioturbation.theirpresencealters biogeochemicalcyclingandprimaryproduction,theytransportnutrientsandpropagulesacross ecosystemboundaries,modifyhabitatforotherorganismsandaffectthelevelofshoreline protectionbymacrophytebeds.symbolsinthefigurearecourtesyoftheintegrationandapplication Network,Univ.ofMarylandCenterforEnvironmentalScience(ian.umces.edu/symbols/). 61

1494# 1495# Table#1.#Plant#and#herbivore#traits#promoting#propagule#dispersal#by#aquatic#herbivores.# # Trait# Effect# References# Herbivores) # # Ability#to#chew#or#grind#food# The#presence#of#a#gizzard#or#grinding#teeth#reduces#propagule#survival.#Among#waterfowl,#heavier# gizzards#reduce#seed#survival#but#higher#grit#content#may#enhance#germination#of#undigested#seeds.# Figuerola#et#al.#(2002)# Furry#or#sticky#appearance#of# Animals#with#a#surface#on#which#propagules#can#attach#disperse#more#propagules# # animal#body# Diet#selection# Targeted#feeding#on#seeds#may#result#in#more#transport,#but#also#in#more#seed#predation# #thus# reducing#the#transport#through#untargeted#feeding#which,#particularly#when#mixed#with#large#bulks#of# food#(plant#parts,#animal#food,#debris),#may#result#in#high#propagule#survival.## Figuerola#et#al.#(2003)# Travelling#distance# Larger#travelling#distances#results#in#further#potential#dispersal,#particularly#for#migratory#species#that# cover#long#distances#in#single#leaps# Viana#et#al.#(2013b)# Habitat#use# Animals#with#specialized#use#of#aquatic#habitats#are#more#likely#to#deposit#the#propagules#in#suitable# habitat.#in#particular,#targeted#arrival#to#aquatic#habitats#at#stopovers#may#increased#the#deposition#of# Figuerola#and#Green#(2005)# # 62#

propagules##ingested#at#departure#sites,#especially#after#the#first#drinking#and#feeding#bout.# Plants) # # Propagule#dimensions# Small,#round#seeds#survive#digestive#tract#better#than#large,#elongated#seeds.#Small#size,#in#particular,# may#enhance#ingestion#mixed#with#vegetative#plant#material,#increasing#propagule#ingestion#( foliage#is# the#fruit,#sensu#janzen#(1984))#and#survival#to#gut#passage.# Mueller#and#van#der#Valk# (2002);#Soons#et#al.#(2008);# Figuerola#et#al.#(2010)# Hardness#and#permeability#of# seed#coat# Adaptations#for# epizoochorous#dispersal# Thicker,#harder#and#less#permeable#seed#coats#increase#survival#to#disperser s#gut#passage,#but#may# reduce#germination#in#the#absence#of#uningested#seeds.# Hooks,#rough#or#sticky#surface#have#been#proposed#to#enhance#dispersal#potential# Mueller#and#van#der#Valk# (2002);#Santamaria#et#al.# (2002);#Figuerola#et#al.# (2010)# Van#der#Pijl#(1982)# # Resistance#to#dessication# Organism s#and/or#propagule s#resistance#to#dessication#may#enhance#epizoochorous#dispersal#of# aquatic#organisms# Panov#and#Caceres#(2007);# Havel#et#al.#(2014)# 1496# 1497# # # 1498# # # # 63#

64# # Table#2.#An#overview#of#reported#conservation#conflicts#that#have#arisen#from#the#impacts#of#overgrazing#by#herbivores#on#macrophytes.# 1499# # 1500# Herbivore# Issue# Parties#in#conflict# Location(s)# Duration# Current#status# References# Green#turtle# (Chelonia)mydas)# Overgrazing#of#seagrasses#can# undermine#conservation#efforts# in#protected#areas#and#reduce# fish#catches#for#local#people# Turtle#and#seagrass# conservationists,# fishermen# IndoaPacific# oceans# 1980s#a# present# Ongoing# Arthur#et#al.#(2013);# Christianen#et#al.# (2014)# West#Indian# manatee# (Trichechus) manatus)# Overgrazing#has#hindered# efforts#to#restore#submerged# macrophyte#beds# Manatee#and# macrophyte# conservationists# Freshwater#and# brackish# ecosystems#in# southaeast#usa# 1990s#a# present# Ongoing# Hauxwell#et#al.#(2004)# Beaver#(Castor) spp.)# Impacts#on#aquatic#habitats,#via# effects#on#vegetation#and#wider# ecosystem#(e.g.#fish)# Conservationists,# animal#welfare# groups,#fishermen,# and#statutory#wildlife# management# Freshwater# habitats#across# North#America,# Russia# Unknown#a# present# Ongoing# Nolet#and#Rosell# (1998);#Collen#and# Gibson#(2001);#Halley# and#rosell#(2002)#

65# # agencies# Coypu#(Myocastor) coypus)#and# muskrat#(ondatra) zibethicus)# Overgrazing#on#emergent# macrophytes#degrades#aquatic# habitats# Conservationists,# animal#welfare#groups,# and#statutory#wildlife# management#agencies# Freshwater# lakes#and# wetlands#in# Europe# 1930s# # present# Resolved#by# 1970s#via# extirpation#of# coypu#in#britain;# ongoing# elsewhere#in# Europe# Gosling#and#Baker# (1989);#Barends# (2002)# Mute#swan# (Cygnus)olor)# Overgrazing#of#macrophytes# degrades#aquatic#habitats# Conservationists,# animal#welfare# groups,#and#statutory# wildlife#management# agencies# Freshwater# habitats#in# Europe#and#USA# 1950s#a# present# Ongoing# Perry#and#Perry# (2008);#Wood#et#al.# (2014b,#2015)# Geese#(Anser)spp.,# Branta#spp.,#and# Chen#spp.)# Overgrazing#of#emergent# macrophytes#degrades#wetland# habitats# Conservationists,# animal#welfare# groups,#and#statutory# wildlife#management# Canadian#Arctic# and#subaarctic# wetlands,# freshwater#lakes# 1970s#a# present# Ongoing# Kerbes#et#al.#(1990);# Nichols#(2014)#

agencies# and#wetlands#in# Europe#and# North#America# 1501# # 1502# # 1503# # 66#

1504# 1505# Table#3.#A#summary#of#key#herbivore#taxa#used#as#biocontrol#agents#in#the#management#of#macrophytes.# # Herbivore#biocontrol#agent# Target#macrophyte(s)# Herbivore#generalist#or# References# specific?# West#Indian#manatee# Wide#range#of##macrophyte#species,#including#Cabomba)aquatica,# Generalist# Allsopp#(1960)## (Trichechus)manatus)# Anacharis#spp.,#Leersia#spp.,#Utricularia#spp.# Geese#(Anser)spp)# Wide#range#of#macrophyte#species# Generalist# Ross#(1971);#Wilson#et# al.#(1977)## Grass#carp# Wide#range#of#macrophyte#species,#including#invasive#species#such#as# Generalist# Clayton#(1996);#Hanlon# (Ctenopharyngodon)idella)# Hydrilla)verticillata# et#al.#(2000)## Cichlid#fishes,#e.g.#blue#tilapia# Wide#range#of#macrophyte#species# Generalist# Schwartz#et#al.#(1986)## (Oreochromis)aureus)# Crayfish,#e.g.#papershell# crayfish#(orconectes)immunis)# Wide#range#of#submerged#macrophyte#species# Generalist# Letson#and# Makarewicz#(1994)## Weevils,#e.g.#milfoil#weevil# Speciesaspecific#biocontrol#agents#identified#for#many#macrophyte# Specialist# Creed#and#Sheldon# # 67#

(Euhrychiopsis)lecontei),# Hydrilla#tuber#weevil#(Bagous) affinis)# species,#e.g.#hydrilla#(hydrilla)verticillata),#eurasian#water#milfoil# (Myriophyllum)spicatum)# (1993);#Newman# (2004)# Apple#snails#(Pomacea#spp.)# Wide#range#of#macrophyte#species# Generalist# Rushing#(1973)## Dipteran#larvae,#e.g.#Asian# Speciesaspecific#biocontrol#agents#identified#for#many#macrophyte# Specialist# Wheeler#and#Center# hydrilla#leafamining#fly# species,#e.g.#hydrilla)verticillata# (2001);#Bownes#(2014)# (Hydrellia)pakistanae)# Lepidopteran#larvae,#e.g.# Speciesaspecific#biocontrol#agents#identified#for#many#macrophyte# Both#generalist#and# Wheeler#et#al.#(1998);# waterlettuce#moth# species# specialist#species#reported# Gross#et#al.#(2001);# (Spodoptera)pectinicornis)# Newman#(2004)# Hemiptera,#e.g.#Eccritotarsus) Speciesaspecific#biocontrol#agents#identified#for#many#macrophyte# Specialist# Coetzee#et#al.#(2007);# catarinensis# species,#e.g.#water#hyacinth#(eichhornia)crassipes)# Hernandez#et#al.#(2011)## Orthoptera,#e.g.#water# Speciesaspecific#biocontrol#agents#identified#for#many#macrophyte# Specialist# Bownes#et#al.#(2010)# hyacinth#grasshopper# species,#e.g.#water#hyacinth#(eichhornia)crassipes)# (Cornops)aquaticum)# 1506# 1507# # # 68#

1508# 1509# Table#4.#Different#methodologies#used#to#detect#and#quantify#herbivory#on#macrophytes.# # Methodology# Explanation# References# Exclosures# # Installation#of#cages#(fully#closed#or#open#at#the#bottom)#to#protect#macrophytes#from# different#herbivores#(fish,#muskrats,#waterfowl,#crayfish,#turtles)## Søndergaard#et#al.#(1996);# Körner#et#al.#(2002);#Hilt#(2006);# Christianen#et#al.#(2012);#Poore# et#al.#(2012);#veen#et#al.#(2013);# Van#der#Wal#et#al.#(2013);# Sarneel#et#al.#(2014)# Tethering# Shoot#herbivory#rates#(cm#shoota1#daya1)#are#estimated#for#marked#shoots#by# measuring#leaf#elongation#over#time.# Kirsch#et#al.#(2002);#Tomas#et#al.# (2005);#Prado#et#al.#(2007);# Pages#et#al.#(2014)## Underwater#videos# Video#recording#and#quantification#of#fish#activities#including#plucking#of#leaves## Körner#&#Dugdale#(2003);# Bennett#&#Bellwood#(2011);# Verges#et#al.#(2014b)# Visual#estimation#of#leaf#damage# # Francescini#et#al.#(2010)# # 69#

Natural#gradients# Measure#macrophyte#performance#(e.g.#growth#rate,#biomass,#etc)#across#naturallya occuring#gradients#in#herbivore#assemblage#properties#(e.g.#density)## Wood#et#al.#(2012b)# Drones# Identificaton#of#muskrat#damage#in#constructed#wetlands#by#digitizing#lowaaltitude# aerial#photographs## Brandt#et#al.#(2015)# Molecular#markers# # Assessments#of#genetic#variation#in#plants#across#environmental#or#geographical# (latitudinal)#gradients#using#different#molecular#markers# Mader#et#al.#(1998);# Hangelbroek#et#al.#(2002)#;#King# et#al.#(2002);#hidding#et#al.# (2014)# Stable#isotope#analyses# # Measurement#of#carbon,#nitrogen#and#hydrogen#stable#isotopes#in#resources#and# consumers#and#application#of#mixing#models# France#et#al.#(1996);#Solomon#et# al.#(2011);#dorenbosch#and# Bakker#(2012);#Mendonca#et#al.# (2013);#Vander#Zanden#et#al.# (2013);#Scharnweber#et#al.# (2014);#De#Kluijver#et#al.#(2015)# Gut#analyses#and#stable#isotope# analyses# Gut#analyses#in#fish#combined#with#stable#isotope#analyses#of#basal#food#resources#and# fish# Mao#et#al.#(2014)# # 70#

Telemetry# Wholealake#fish#telemetry# Hanson#et#al.#(2007)# Bird#counting#and#determination# # Dos#Santos#et#al.#(2012)# of#lignin#content#in#faeces# Laboratory#feeding#rate# determination#in#fish## Determination#of#fish#feeding#rates#in#aquaria## Körner#&#Dugdale#(2003)# Mechanistic#models# Simulations#of#foraging#herbivores#or#effects#on#plant#growth#can#predict#the#location,# timing,#and#magnitude#of#herbivore#effects#on#macrophytes# Hootsmans#(1999);#Van#Nes#et# al.#(2003);#nolet#et#al.#(2006);# Wood#et#al.#(2014a);#Nolet#et#al.# (2016);#Hidding#et#al.#(2016)# 1510# # 1511# # # 71#

1512# # 1513# # 72#

1514# # 1515# # 73#