TEST REPORT No

Similar documents
TEST REPORT FROM RFI GLOBAL SERVICES LTD

ELECTRICAL TESTING FOR:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

TEST REPORT FROM RFI GLOBAL SERVICES LTD

TOBY-L200 GSM/UMTS/HSPA/LTE Data Module

A Test Lab Techno Corp. FCC. RF Test Report. Product Type. : Mobile Hotspot. Applicant. : Netgear Inc.

FCC PART 15 TEST REPORT

How To Demonstrate Improved ACLR Dynamic Range With FSU and Noise Correction

FCC PART TEST REPORT SHANGHAI MERIT TECHNOLOGY CORP.

RF Test Report: Airspan ib440 to 47CFR SC_TR_150_B

REPORT Datum/Date Beteckning/Reference Sida/Page

EMC Test Report. Client: Continental Automotive Systems, Inc. Tested by: Fendy Liauw, Engineering Technician

FCC PART 15 TEST REPORT

Tests on 3G-Base Stations to TS with R&S Spectrum Analyzers and SMIQ Vector Signal Generator

FCC PART 22H, PART 24E MEASUREMENT AND TEST REPORT. Shanghai AirM2M Communication Technology Co., Ltd

GSM. (Global System for Mobile Communications) TEST REPORT. according to ETSI EN (v9.0.2) for

FCC PART TEST REPORT. HHC Changzhou Corp.

FCC ID: IMK-ILCISA EMI TEST REPORT

CENTRE OF TESTING SERVICE INTERNATIONAL

CONTENTS 1. GENERAL INFORMATION INTRODUCTION PRODUCT INFORMATION DESCRIPTION OF TESTS CHANNEL BANDWIDTH...

TEST REPORT. Test report no.: / A. Test standard/s

Untertürkheimer Str. 6-10, Saarbruecken Phone: +49 (0) Fax: RSC-Laboratory Phone: +49 (0) Fax: -9075

TEST REPORT. Test Report No. : UL-RPT-RP C V2.0. Date of Issue: 06 March 2018

EUROFINS PRODUCT SERVICE GMBH. Testing Cert # Compliance Test Report FCC PART 15 SUBPART C IC RSS 210 ISSUE 7

InterReach Fusion Data Sheet

Improving the accuracy of EMI emissions testing. James Young Rohde & Schwarz

15dBm Triband Indoor Band Selective Repeater for Multiple Networks, Frequency Agile with Fixed Bandwidth

TEST REPORT. Report Number: MPK-003B Project Number: G October 20, 2017

TEST REPORT. Issued for:

FCC Test Report (Part 15C) WPT

TEST REPORT. REPORT NUMBER: B15W50007-FCC-RF_Rev4

Akkreditiertes Prüflaboratorium

SIGFOX END- PRODUCT RADIATED TEST PLAN FOR SIGFOX READY TM CERTIFICATION

FCC REPORT Q6WBT * In the configuration tested, the EUT complied with the standards specified above.

R3267/3273 Spectrum Analyzers

Advanced Techniques for Spurious Measurements with R&S FSW-K50 White Paper

Akkreditiertes Prüflaboratorium

IMPORTANT NOTICE. Company name - STMicroelectronics NV is replaced with ST-NXP Wireless.

Spectrum Analyzer 1.6 GHz 3 GHz R&S HMS-X

FCC REPORT (GSM & WCDMA)

FCC Part 15 Subpart B Test Report. FCC PART 15 Subpart B Class B: 2014

Calibrating the CMD Output Level for BER

CERTIFICATION APPLICATION TEST REPORT

FCC PART 15 CLASS B MEASUREMENT AND TEST REPORT. Tritech Technology Ltd.

Test Procedure for Common Path Distortion (CPD)

EMC Test Report. Client: Crestron Electronics, Inc. Tested by: Jeremy O. Pickens, Senior EMC Engineer

TABLE OF CONTENTS 1. GENERAL INFORMATION PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) TEST STANDARDS TEST METHODOLOGY

RF Semiconductor Test AXRF RF Port Upgrade Kits

TEST REPORT. Test Report No. : UL-RPT-RP JD18L V2.0. Manufacturer : Neeo AG. Model No. : 6336-BRAIN FCC ID : 2AKK7-BR633601

R&S ZVA-Zxx Millimeter-Wave Converters Specifications

FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of NYNE MULTIMEDIA INC. Bluetooth Speaker. Model Number: NYNE VIBE FCC ID: AWA-NYNEVIBE

Tests on 3G-Base Stations to TS with FSIQ and SMIQ

Report No.: CAT-012

JD725A Cable and Antenna Analyzer - Dual Port

T E S T - R E P O R T. No for PC24E-11-FC/R. RF-modem for wireless LAN. Agere Systems Nederland B.V.

Calibration Certificate

USB-TG124A Tracking Generator User Manual

Spectrum Analyzer 1.6 GHz 3 GHz HMS-X

Digital Pre-Distortion Techniques for RF Power Amplifiers

Report On. FCC Testing of the Pace Plc 16x4 Hybrid Gateway Cable Set Top Box COMMERCIAL-IN-CONFIDENCE

CONFORMANCE TEST REPORT FOR FCC Part 15, subpart D

R&S ETH Handheld TV Analyzer Portable DVB-T/H signal analysis up to 3.6/8 GHz

Testing. Maker Works. Applicant: Model No.: FCC ID: Jun., May to 16. Date of Test: PASS* Test Result: Signature: Authorized. this report.

R&S ZVA-Zxx Millimeter-Wave Converters Specifications

In-Line or 75 Ohm In-Line

EMC Test Report. 850 Kacena Road Hiawatha, IA 52233

RF Level Test System +20 dbm to 130 dbm

Agilent CSA Spectrum Analyzer N1996A

Report No.: CAT-012-1

Interface Practices Subcommittee SCTE STANDARD SCTE Measurement Procedure for Noise Power Ratio

Test Report. Applicant Address. : WALTOP International Corp. : 6F,No.19-1 Industry E.Rd.IV,Hsinchu Science Park,Hsin-Chu 30077,Taiwan,R.O.C.

FCC Report. Beijing Visual World Technology Co.,Ltd.

Radio Test report

Description of the test object Appendix 1. Operation mode during measurements Appendix 1. Test setups Appendix 1. Purpose of test Appendix 1

FCC TEST REPORT For. ETI Solid State Lighting (Zhuhai) Ltd. LED downlight Model No.: XX

FCCC RF : ZTE APPLICANT EQUIPMENT BRAND NAME MODEL NAME FCC ID STANDARDD : WF722. The product was SPORTON. Page Number (KUNSHAN) INC.

Determing Amplifier Nonlinearities by using Real-World Signals European Microwave Week 2003

FCC test report. Via Pezza Alta, 13 I Rustignè di Oderzo (TV)

Test Report #: Date: January 24, 2006

Out of Band Spurious Measurement for Bluetooth Modules

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of. Guangzhou Panyu Juda Car Audio Equipment Co.,Ltd. CD/USB RADIO. Model Number: TY-CWU700

Test Report. Product Name: Access Point Model No.: MS-6809 FCC ID: DoC

FCC TEST REPORT for Aeon Labs LLC. Aeon Minimote Model No.: DS03202B-ZWUS, DS03202W-ZWUS

HP 71910A and 71910P Wide Bandwidth Receiver Technical Specifications

Tektronix RSA306 USB Spectrum Analyzer

LTE-A Base Station Transmitter Tests According to TS Rel. 12. Application Note. Products: R&S SMW200A R&S FSW R&S FSV R&S SMBV100A R&S FSVA

Spectrum Master. Compact Handheld Spectrum Analyzer. Technical Data Sheet

CENTRE OF TESTING SERVICE INTERNATIONAL OPERATE ACCORDING TO ISO/IEC FCC ID TEST REPORT

FCC Report (WIFI) Shenzhen Reo-link Digital Technology Co., Ltd B509, University Town Business Park LiShan Road, NanShan, Shenzhen, Guangdong, China

FCC RF Test Report. STANDARD : FCC Part 15 Subpart C CLASSIFICATION : (DTS) Digital Transmission System

R&S FSW Signal and Spectrum Analyzer Specifications

R&S FSW-K76/-K77 3GPP TD-SCDMA BS/UE Measurement Applications Specifications

Cell Phone Signal Booster. User Manual. NEED HELP? support.weboost.com

CERTIFICATION APPLICATION TEST REPORT

PiMPro Rack Mount Analyzer

R&S DST200 RF Diagnostic Chamber Specifications

TRM Module. l TRM = Transmitter Receiver Module. l Communication to the module is essential. l Each module is individually tested

Sunlight Supply, Inc.

FCC Report (WIFI) Red Bear Company Limited. RedBear IoT phat 2ABXJ-PHAT-IOT

Transcription:

D-PL-12076-01-00 TEST REPORT No. 3-20835062 Applicant Equipment under test Kathrein Automotive GmbH & Co. KG LTE Kompensator US; 6803145-01 218898-10 50110260 FCC-ID: 2ACC7LTECOMPB0 Test Standard(s) FCC part 20, section 20.21 Signal Boosters Accredited Testing Laboratory The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS). The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01 CETECOM GmbH Im Teelbruch 116 / 45219 Essen / Germany Registered in Essen, Germany / Reg.-No.: HRB Essen 8984 Phone: +49 681 598 0 / Fax: +49 681 598 9075 Internet: www.cetecom.com / E-mail: info@cetecom.com

Table of content Table of content... 2 Disclaimer and Notes... 3 1. Summary of Test Results... 4 2. Administrative Data... 5 2.1. Identification of the Testing Laboratory and Test Location... 5 2.2. Organizational Items... 6 2.3. Applicant s Details... 6 2.4. Test Environment... 6 3. Test Standard(s)... 6 4. Equipment under Test... 7 4.1. General information... 7 4.2. Auxiliary Equipment... 7 4.3. EUT Set Up... 7 5. Measurements / Detailed Test Results... 8 5.1. Authorized Frequency Bands... 8 5.2. Maximum RF Power and Determination of AGC Start Level... 16 5.3. Gain... 27 5.4. Intermodulation... 27 5.5. Out of Band Emission... 39 5.6. Conducted Spurious Emissions... 72 5.7. Noise... 90 5.8. Uplink Inactivity... 111 5.9. Variable Gain and Uplink Gain Timing... 115 5.10. Occupied Bandwidth... 125 5.11. Oscillation Detection and Mitigation Test... 157 6. Test System... 182 6.1. System Set Up and Test Procedure... 182 6.2. Measurement Equipment... 183 6.3. Measurement Uncertainty... 183 Annex A: Photographs of Test set up(s)... 185 Annex B: External Photographs of the EUT... 187 Test Report No.: 3-20835062 2 / 187

Disclaimer and Notes The test results of this test report relate exclusively to the test item specified in this test report. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM. The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer. Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided. Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or noninfringement, all of which are expressly disclaimed by CETECOM. All rights and remedies regarding vendor s products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM. In no case this test report can be considered as a Letter of Approval. Test Report No.: 3-20835062 3 / 187

1. Summary of Test Results No deviations from the technical specifications were ascertained There were deviations from the technical specifications ascertained This test report is only a partial test report. The content and verdict of the performed test cases are listed below Chapter KDB Test Case Reference to FCC part 20 for a consumer wideband booster, cradle type Limit Verdict 5.1 5.2 7.1 Authorized frequency band verification test 7.2 Maximum power measurement test procedure 20.21(e)(3) Frequency Bands Pass 20.21(e)(8)(i)(D) Power Limits 20.21(e)(8)(i)(B) Bidirectional Capability 20.21(e)(8)(ii)(B) Gain Control 17 < p < 30 dbm Pass 5.3 7.3 Gain < 23 db Pass 5.4 5.5 5.6 7.4 Intermodulation product test procedure 7.5 Out-of-band emissions test procedure 7.6 Conducted spurious emissions test procedure 5.7 7.7 Noise limits test 5.8 7.8 Uplink Inactivity 5.9 5.10 5.11 7.9 Variable booster gain test procedure 7.10 Occupied bandwidth test procedure 7.11 Oscillation detection test procedure 7.12 Radiated spurious emissions test procedure 7.13 Spectrum block filtering test procedure 20.21(e)(8)(i)(F) Intermodulation -19 dbm Pass 20.21(e)(8)(i)(E) Out of Band Emission 2.1051 Spurious emissions at antenna terminals 20.21(e)(8)(i)(A) Noise Limits 20.21(e)(8)(i)(H) Tr. Power Off 20.21(e)(8)(i)(A) Noise Limits 20.21(e)(8)(i)(H) Tr. Power Off 20.21(e)(8)(i)(C)(1) Gain Limits 20.21(e)(8)(ii)(B) Gain Control -19 dbm Pass -19 dbm Pass < -70 dbm Pass < 15 s Pass 6 23 db / 1 s Pass 2.1049 Occupied bandwidth Pass 20.21(e)(8)(ii)(A) Anti-Oscillation 0.3 / 1 / 60 s Pass 2.1053 Field strength of spurious radiation Separate test report 20.21(e)(3) Frequency Bands Not supported Test Report No.: 3-20835062 4 / 187

Uplink Power and Gain Summary Frequency Band Supported signal types Max Uplink Power Max Uplink Gain Band 2: 1900 MHz (PCS) GSM / CDMA / WCDMA / LTE 19.9 19.7 Band 4: 1.7 GHz WCDMA / LTE 18.6 19.1 Band 5: 850 MHz (cell band) GSM / CDMA / WCDMA / LTE 19.9 19.9 Band 12: 700 MHz LTE 19.2 18.9 Band 13: 800 MHz LTE 18.0 18.4 i.a. i.v....... Thomas Hauck Dr. Peter Nevermann Responsible for test report Responsible for laboratory 2. Administrative Data 2.1. Identification of the Testing Laboratory and Test Location Company name: CETECOM GmbH Address: Im Teelbruch 116 45219 Essen Germany Responsible for testing laboratory: Dr. Peter Nevermann Deputy: Thomas Hauck Test Report No.: 3-20835062 5 / 187

2.2. Organizational Items Order No.: 20835062 / 15083280 Responsible for test report and project leader: Dr. Peter Nevermann Receipt of EUT 04.01.2016 Date(s) of test: 06.01.2016 03.03.2016 Date of report: 17.03.2016 Attending persons during test: Thomas Hauck and Piotr Sardyko Version of template V5-SB 2.3. Applicant s Details Applicant s name: Kathrein Automotive GmbH & Co. KG Address: Anton-Kathrein-Str. 1-3 83004 Rosenheim Germany Contact person: Email: Herr T. Toni Ilsanker toni.ilsanker@kathreinautomotive.com 2.4. Test Environment Temperature: Relative humidity: Barometric pressure: Power supply: Tnom: + 22 C / air condition 55 % ± 25% rh not relevant for this kind of testing Vnom: + 12.0 V, DC 3. Test Standard(s) Test Standard Version Test Standard Description FCC part 20.21 01.10.2014 Signal Boosters KDB 935210 D03 V04, February 2016 Wideband Consumer Signal Booster Compliance Measurement Guidance Test Report No.: 3-20835062 6 / 187

4. Equipment under Test 4.1. General information Device classification: Consumer wideband booster, cradle type Type identification: LTE Kompensator US Type of radio transmission: Bi-directional amplifier Power supply: 12 V, DC Temperature range: Supported Frequency Bands [MHz] and Modes: Band 2: 1850 1910 / 1930 1990 MHz, GSM / CDMA / WCDMA / LTE Band 4: 1710 1755 / 2110-2155 MHz, WCDMA / LTE Band 5: 824 849 / 869 894 MHz, GSM / CDMA / WCDMA / LTE Band 12/17: 699 716 / 729 746 MHz, LTE Band 13: 777 787 / 746 756 MHz, LTE Additional system description: This booster requires a RF signal on its server port for enabling uplink operation. Additional there is on the donor side an antenna key sensor. Therefore during conducted testing a special antenna key simulator must be used (50 Ω device, transparent to RF). EUT short description*) EUT A EUT B EUT Booster Booster Type LTE Kompensator US 6803145-01 LTE Kompensator US 6803145-01 S/N serial number HW hardware status SW software status 358 13611416B01V04 9408675_S01_RC09 342 13611416B01V04 9408675_S01_RC09 4.2. Auxiliary Equipment AE short description Auxiliary Equipment Type S/N serial number HW hardware status SW software status AE 1 Antenna key simulator NAN NAN NAN NAN AE 2 Antenna AE 3 Cradle 4.3. EUT Set Up EUT set-up no.*) Combination of EUT and AE Remarks Set 1 EUT A + AE 1 for conducted tests Set 2 EUT B + AE 2 + AE 3 for radiated tests *) EUT set-up no. is used to simplify the identification of the EUT set-up in CETECOM test reports. Test Report No.: 3-20835062 7 / 187

5. Measurements / Detailed Test Results The set up and test procedure has been according to FCC KDB 935210 D03: Wideband Consumer Signal Booster Compliance Measurement Guidance. This booster requires an antenna key and a RF signal on its server port for enabling uplink operation. Therefor the needed RF cabling for testing and other details are provide in the appropriate chapters. All conducted test have been carried out with EUT set number 1 with an antenna key simulator. An automated and calibrated test system has been used as described in chapter 6. 5.1. Authorized Frequency Bands The activated cable routing for this test in uplink is shown in Fig. 1 and for the downlink in Fig. 2, respectively. Below are summarized in the first table the measured results for the frequency f0 with maximum gain in each band within the supported frequency band limits (but with 2.5 MHz distance to the band edges) and in the second table the input power level at AGC start as well the AGC start value -3 db and the related maximum output power in CW mode. The third table shows the input power level at AGC start which has been determined for EUT B for the radiated measurements. Below are summarized the measured results for uplink and downlink for EUT A for conducted tests Band Direction Frequency range Frequency f0 2 up 1850 MHz 1910 MHz 1879.3 MHz 4 up 1710 MHz 1755 MHz 1746.2 MHz 5 up 824 MHz 849 MHz 837.9 MHz 12 up 699 MHz 716 MHz 701.5 MHz 13 up 777 MHz 787 MHz 782.9 MHz 2 down 1930 MHz -1990 MHz 1949.0 MHz 4 down 2110 MHz 2155 MHz 2124.9 MHz 5 down 868 MHz 894 MHz 882.8 MHz 12 down 729 MHz -746 MHz 734.3 MHz 13 down 746 MHz -768 MHz 752.3 MHz Test Report No.: 3-20835062 8 / 187

Below are summarized the measured results for uplink and downlink for EUT A and B for conducted tests in CW mode. Band Direction pin at AGC start CW EUT A pin at AGC start CW - 3 db EUT A pin at AGC start CW EUT B 2 up -1.54 dbm -4.54 dbm -1.68 dbm 4 up -0.70 dbm -3.70 dbm -0.47 dbm 5 up -1.51 dbm -4.51 dbm -1.93 dbm 12 up 0.99 dbm -2.01 dbm 0.86 dbm 13 up -0.81 dbm -3.81 dbm -0.25 dbm 2 down -51.95 dbm -54.95 dbm -51.41 dbm 4 down -52.07 dbm -55.07 dbm -51.67 dbm 5 down -52.07 dbm -55.07 dbm -51.92 dbm 12 down -51.63 dbm -54.63 dbm -51.83 dbm 13 down -52.42 dbm -55.42 dbm -52.27 dbm Note: The AGC start results for EUT B has been used as a preparation for the radiated tests Test Report No.: 3-20835062 9 / 187

Fig. 1: Set up for frequency response test in uplink. Fig. 2: Set up for frequency response test in downlink. Test Report No.: 3-20835062 10 / 187

Fig. 3: Frequency response in uplink in band 2. Fig. 4: Frequency response in uplink in band 4. Test Report No.: 3-20835062 11 / 187

Fig. 5: Frequency response in uplink in band 5. Fig. 6: Frequency response in uplink in band 12. Test Report No.: 3-20835062 12 / 187

Fig. 7: Frequency response in uplink in band 13. Fig. 8: Frequency response in downlink in band 2. Test Report No.: 3-20835062 13 / 187

Fig. 9: Frequency response in downlink in band 4. Fig. 10: Frequency response in downlink in band 5. Test Report No.: 3-20835062 14 / 187

Fig. 11: Frequency response in downlink in band 12. Note: In downlink band 12 and 13 are directly adjacent. Fig. 12: Frequency response in downlink in band 13. Test Report No.: 3-20835062 15 / 187

5.2. Maximum RF Power and Determination of AGC Start Level The activated cable routing for this test in downlink has been the same as used in chapter 5.1. The activated cable routing for this test in uplink is shown in Fig. 13. Below are summarized the measured results for the Pin and Pout found just bevor the AGC starts, plus the absolute overall maximum output power found in uplink for 21.1 db plus the maximum power found in downlink for -28.4 dbm. All measured conducted RF power levels found are between +17 dbm and +30 dbm in uplink and well below +17 dbm in downlink. Band Direction pin at AGC start GSM pout at AGC start GSM pout Max. GSM pin at AGC start 4 MHZ Signal pout at AGC start 4 MHZ Signal pout Max 4 MHZ Signal 2 up -0.3 dbm 19.5 dbm 19.9 dbm -1.6 dbm 17.7 dbm 18.2 dbm 4 up 0.2 dbm 19.9 dbm 20.4 dbm -1.1 dbm 18.1 dbm 18.6 dbm 5 up -0.5 dbm 19.5 dbm 19.9 dbm -1.9 dbm 17.5 dbm 18.0 dbm 12 up 1.1 dbm 20.7 dbm 21.1 dbm -0.3 dbm 18.7 dbm 19.2 dbm 13 up -0.05 dbm 19.4 dbm 19.8 dbm -1.0 dbm 17.5 dbm 18.0 dbm 2 down -51.8 dbm -31.7 dbm -28.4 dbm -51.1 dbm -30.9 dbm -28.5 dbm 4 down -52.3 dbm -32.0 dbm -28.6 dbm -51.2 dbm -31.2 dbm -29.0 dbm 5 down -52.0 dbm -33.1 dbm -29.8 dbm -51.4 dbm -33.0 dbm -30.2 dbm 12 down -51.0 dbm -32.0 dbm -29.1 dbm -50.8 dbm -31.9 dbm -29.8 dbm 13 down -50.8 dbm -33.4 dbm -30.4 dbm -50.9 dbm -33.2 dbm -30.9 dbm Fig. 13: Set up for maximum RF power test in uplink. Test Report No.: 3-20835062 16 / 187

Fig. 14: Power measurement in uplink in band 2 applying a GSM signal. Fig. 15: Power measurement in uplink in band 2 applying a 4 MHz signal. Test Report No.: 3-20835062 17 / 187

Fig. 16: Power measurement in uplink in band 4 applying a GSM signal. Fig. 17: Power measurement in uplink in band 4 applying a 4 MHz signal. Test Report No.: 3-20835062 18 / 187

Fig. 18: Power measurement in uplink in band 5 applying a GSM signal. Fig. 19: Power measurement in uplink in band 5 applying a 4 MHz signal. Test Report No.: 3-20835062 19 / 187

Fig. 20: Power measurement in uplink in band 12 applying a GSM signal. Fig. 21: Power measurement in uplink in band 12 applying a 4 MHz signal. Test Report No.: 3-20835062 20 / 187

Fig. 22: Power measurement in uplink in band 13 applying a GSM signal. Fig. 23: Power measurement in uplink in band 13 applying a 4 MHz signal. Test Report No.: 3-20835062 21 / 187

Fig. 24: Power measurement in downlink in band 2 applying a GSM signal. Fig. 25: Power measurement in downlink in band 2 applying a 4 MHz signal. Test Report No.: 3-20835062 22 / 187

Fig. 26: Power measurement in downlink in band 4 applying a GSM signal. Fig. 27: Power measurement in downlink in band 4 applying a 4 MHz signal. Test Report No.: 3-20835062 23 / 187

Fig. 28: Power measurement in downlink in band 5 applying a GSM signal. Fig. 29: Power measurement in downlink in band 5 applying a 4 MHz signal. Test Report No.: 3-20835062 24 / 187

Fig. 30: Power measurement in downlink in band 12 applying a GSM signal. Fig. 31: Power measurement in downlink in band 12 applying a 4 MHz signal. Test Report No.: 3-20835062 25 / 187

Fig. 32: Power measurement in downlink in band 13 applying a GSM signal. Fig. 33: Power measurement in downlink in band 13 applying a 4 MHz signal. Test Report No.: 3-20835062 26 / 187

5.3. Gain Measured data as sown in chapter 5.2 has been used to calculate up- and downlink gain values. The results are summarized below. Band Gain uplink GSM mode Gain uplink 4 MHZ Signal mode Gain downlink GSM mode Gain downlink 4 MHZ Signal mode 2 19.8 db 19.3 db 20.1 db 20.2 db 4 19.7 db 19.2 db 20.3 db 20.0 db 5 20.0 db 19.4 db 18.9 db 18.4 db 12 19.6 db 19.0 db 19.0 db 18.9 db 13 19.4 db 18.5 db 17.4 db 17.7 db All gain data do meet the limit of 23 db (for cradle type of booster) and the maximum difference between up- and downlink is actually 1.1 db and hence well below the 9 db limit. 5.4. Intermodulation The activated cable routing for this test in uplink is shown in Fig. 34 and for the downlink in Fig. 35, respectively. As illustrated on the next pages the EUT meets the limit of -19 dbm in all required conditions for intermodulation. (Just before the EUT begins AGC and 10 db above the AGC threshold). Test Report No.: 3-20835062 27 / 187

Fig. 34: Set up for intermodulation test in uplink. Fig. 35: Set up for intermodulation test in downlink. Test Report No.: 3-20835062 28 / 187

Fig. 36: Intermodulation test in uplink in band 2 at AGC. Fig. 37: Intermodulation test in uplink in band 2 at AGC plus 10 db. Test Report No.: 3-20835062 29 / 187

Fig. 38: Intermodulation test in uplink in band 4 at AGC. Fig. 39: Intermodulation test in uplink in band 4 at AGC plus 10 db. Test Report No.: 3-20835062 30 / 187

Fig. 40: Intermodulation test in uplink in band 5 at AGC. Fig. 41: Intermodulation test in uplink in band 5 at AGC plus 10 db. Test Report No.: 3-20835062 31 / 187

Fig. 42: Intermodulation test in uplink in band 12 at AGC. Fig. 43: Intermodulation test in uplink in band 12 at AGC plus 10 db. Test Report No.: 3-20835062 32 / 187

Fig. 44: Intermodulation test in uplink in band 13 at AGC. Fig. 45: Intermodulation test in uplink in band 13 at AGC plus 10 db. Test Report No.: 3-20835062 33 / 187

Fig. 46: Intermodulation test in downlink in band 2 at AGC. Fig. 47: Intermodulation test in downlink in band 2 at AGC plus 10 db. Test Report No.: 3-20835062 34 / 187

Fig. 48: Intermodulation test in downlink in band 4 at AGC. Fig. 49: Intermodulation test in downlink in band 4 at AGC plus 10 db. Test Report No.: 3-20835062 35 / 187

Fig. 50: Intermodulation test in downlink in band 5 at AGC. Fig. 51: Intermodulation test in downlink in band 5 at AGC plus 10 db. Test Report No.: 3-20835062 36 / 187

Fig. 52: Intermodulation test in downlink in band 12 at AGC. Fig. 53: Intermodulation test in downlink in band 12 at AGC plus 10 db. Test Report No.: 3-20835062 37 / 187

Fig. 54: Intermodulation test in downlink in band 13 at AGC. Fig. 55: Intermodulation test in downlink in band 13 at AGC plus 10 db. Test Report No.: 3-20835062 38 / 187

5.5. Out of Band Emission The activated cable routing for this test is shown in Fig. 56 for GSM and CDMA in uplink and in Fig. 58 for LTE in uplink, in Fig. 57 and Fig. 59 for GSM and CDMA in downlink and for LTE in downlink, respectively. As illustrated on the next pages the EUT meets the limit of -19 dbm in all required conditions for Out of Band Emissions. Fig. 56: Set up for out of band emission tests for GSM and CDMA in uplink. Test Report No.: 3-20835062 39 / 187

Fig. 57: Set up for out of band emission tests for GSM and CDMA in downlink. Fig. 58: Set up for out of band emission tests for LTE in uplink. Test Report No.: 3-20835062 40 / 187

Fig. 59: Set up for out of band emission tests for LTE in downlink. Test Report No.: 3-20835062 41 / 187

Fig. 60: Out-of-band emissions in uplink in band 2 applying a GSM signal for the lower band edge. Fig. 61: Out-of-band emissions in uplink in band 2 applying a GSM signal for the upper band edge. Test Report No.: 3-20835062 42 / 187

Fig. 62: Out-of-band emissions in uplink in band 4 applying a GSM signal for the lower band edge. Fig. 63: Out-of-band emissions in uplink in band 4 applying a GSM signal for the upper band edge. Test Report No.: 3-20835062 43 / 187

Fig. 64: Out-of-band emissions in uplink in band 5 applying a GSM signal for the lower band edge. Fig. 65: Out-of-band emissions in uplink in band 5 applying a GSM signal for the upper band edge. Test Report No.: 3-20835062 44 / 187

Fig. 66: Out-of-band emissions in uplink in band 12 applying a GSM signal for the lower band edge. Fig. 67: Out-of-band emissions in uplink in band 12 applying a GSM signal for the upper band edge. Test Report No.: 3-20835062 45 / 187

Fig. 68: Out-of-band emissions in uplink in band 13 applying a GSM signal for the lower band edge. Fig. 69: Out-of-band emissions in uplink in band 13 applying a GSM signal for the upper band edge. Test Report No.: 3-20835062 46 / 187

Fig. 70: Out-of-band emissions in downlink in band 2 applying a GSM signal for the lower band edge. Fig. 71: Out-of-band emissions in downlink in band 2 applying a GSM signal for the upper band edge. Test Report No.: 3-20835062 47 / 187

Fig. 72: Out-of-band emissions in downlink in band 4 applying a GSM signal for the lower band edge. Fig. 73: Out-of-band emissions in downlink in band 4 applying a GSM signal for the upper band edge. Test Report No.: 3-20835062 48 / 187

Fig. 74: Out-of-band emissions in downlink in band 5 applying a GSM signal for the lower band edge. Fig. 75: Out-of-band emissions in downlink in band 5 applying a GSM signal for the upper band edge. Test Report No.: 3-20835062 49 / 187

Fig. 76: Out-of-band emissions in downlink in band 12 applying a GSM signal for the lower band edge. Fig. 77: Out-of-band emissions in downlink in band 12 applying a GSM signal for the upper band edge. Test Report No.: 3-20835062 50 / 187

Fig. 78: Out-of-band emissions in downlink in band 13 applying a GSM signal for the lower band edge. Fig. 79: Out-of-band emissions in downlink in band 13 applying a GSM signal for the upper band edge. Test Report No.: 3-20835062 51 / 187

Fig. 80: Out-of-band emissions in uplink in band 2 applying a LTE signal for the lower band edge. Fig. 81: Out-of-band emissions in uplink in band 2 applying a LTE signal for the upper band edge. Test Report No.: 3-20835062 52 / 187

Fig. 82: Out-of-band emissions in uplink in band 4 applying a LTE signal for the lower band edge. Fig. 83: Out-of-band emissions in uplink in band 4 applying a LTE signal for the upper band edge. Test Report No.: 3-20835062 53 / 187

Fig. 84: Out-of-band emissions in uplink in band 5 applying a LTE signal for the lower band edge. Fig. 85: Out-of-band emissions in uplink in band 5 applying a LTE signal for the upper band edge. Test Report No.: 3-20835062 54 / 187

Fig. 86: Out-of-band emissions in uplink in band 12 applying a LTE signal for the lower band edge. Fig. 87: Out-of-band emissions in uplink in band 12 applying a LTE signal for the upper band edge. Test Report No.: 3-20835062 55 / 187

Fig. 88: Out-of-band emissions in uplink in band 13 applying a LTE signal for the lower band edge. Fig. 89: Out-of-band emissions in uplink in band 13 applying a LTE signal for the upper band edge. Test Report No.: 3-20835062 56 / 187

Fig. 90: Out-of-band emissions in downlink in band 2 applying a LTE signal for the lower band edge. Fig. 91: Out-of-band emissions in downlink in band 2 applying a LTE signal for the upper band edge. Test Report No.: 3-20835062 57 / 187

Fig. 92: Out-of-band emissions in downlink in band 4 applying a LTE signal for the lower band edge. Fig. 93: Out-of-band emissions in downlink in band 4 applying a LTE signal for the upper band edge. Test Report No.: 3-20835062 58 / 187

Fig. 94: Out-of-band emissions in downlink in band 5 applying a LTE signal for the lower band edge. Fig. 95: Out-of-band emissions in downlink in band 5 applying a LTE signal for the upper band edge. Test Report No.: 3-20835062 59 / 187

Fig. 96: Out-of-band emissions in downlink in band 12 applying a LTE signal for the lower band edge. Fig. 97: Out-of-band emissions in downlink in band 12 applying a LTE signal for the upper band edge. Test Report No.: 3-20835062 60 / 187

Fig. 98: Out-of-band emissions in downlink in band 13 applying a LTE signal for the lower band edge. Fig. 99: Out-of-band emissions in downlink in band 13 applying a LTE signal for the upper band edge. Test Report No.: 3-20835062 61 / 187

Fig. 100: Out-of-band emissions in uplink in band 2 applying a CDMA signal for the lower band edge. Fig. 101: Out-of-band emissions in uplink in band 2 applying a CDMA signal for the upper band edge. Test Report No.: 3-20835062 62 / 187

Fig. 102: Out-of-band emissions in uplink in band 4 applying a CDMA signal for the lower band edge. Fig. 103: Out-of-band emissions in uplink in band 4 applying a CDMA signal for the upper band edge. Test Report No.: 3-20835062 63 / 187

Fig. 104: Out-of-band emissions in uplink in band 5 applying a CDMA signal for the lower band edge. Fig. 105: Out-of-band emissions in uplink in band 5 applying a CDMA signal for the upper band edge. Test Report No.: 3-20835062 64 / 187

Fig. 106: Out-of-band emissions in uplink in band 12 applying a CDMA signal for the lower band edge. Fig. 107: Out-of-band emissions in uplink in band 12 applying a CDMA signal for the upper band edge. Test Report No.: 3-20835062 65 / 187

Fig. 108: Out-of-band emissions in uplink in band 13 applying a CDMA signal for the lower band edge. Fig. 109: Out-of-band emissions in uplink in band 13 applying a CDMA signal for the upper band edge. Test Report No.: 3-20835062 66 / 187

Fig. 110: Out-of-band emissions in downlink in band 2 applying a CDMA signal for the lower band edge. Fig. 111: Out-of-band emissions in downlink in band 2 applying a CDMA signal for the upper band edge. Test Report No.: 3-20835062 67 / 187

Fig. 112: Out-of-band emissions in downlink in band 4 applying a CDMA signal for the lower band edge. Fig. 113: Out-of-band emissions in downlink in band 4 applying a CDMA signal for the upper band edge. Test Report No.: 3-20835062 68 / 187

Fig. 114: Out-of-band emissions in downlink in band 5 applying a CDMA signal for the lower band edge. Fig. 115: Out-of-band emissions in downlink in band 5 applying a CDMA signal for the upper band edge. Test Report No.: 3-20835062 69 / 187

Fig. 116: Out-of-band emissions in downlink in band 12 applying a CDMA signal for the lower band edge. Fig. 117: Out-of-band emissions in downlink in band 12 applying a CDMA signal for the upper band edge. Test Report No.: 3-20835062 70 / 187

Fig. 118: Out-of-band emissions in downlink in band 13 applying a CDMA signal for the lower band edge. Fig. 119: Out-of-band emissions in downlink in band 13 applying a CDMA signal for the upper band edge. Test Report No.: 3-20835062 71 / 187

5.6. Conducted Spurious Emissions The activated cable routing for this test has been the same as used in chapter 5.1. This test starts at 400 khz since the minimal frequency created within the device is 410 khz. Fig. 120: Conducted spurious emissions in uplink in band 2 applying a 4 MHz signal (0.4 MHz 1 GHz). Test Report No.: 3-20835062 72 / 187

Fig. 121: Conducted spurious emissions in uplink in band 2 applying a 4 MHz signal (1 GHz 1849 MHz). Fig. 122: Conducted spurious emissions in uplink in band 2 applying a 4 MHz signal (1911 MHz 10 GHz). Test Report No.: 3-20835062 73 / 187

Fig. 123: Conducted spurious emissions in uplink in band 2 applying a 4 MHz signal (10 GHz 22 GHz). Fig. 124: Conducted spurious emissions in uplink in band 4 applying a 4 MHz signal (0.4 MHz 1 GHz). Test Report No.: 3-20835062 74 / 187

Fig. 125: Conducted spurious emissions in uplink in band 4 applying a 4 MHz signal (1 GHz 1709 MHz). Fig. 126: Conducted spurious emissions in uplink in band 4 applying a 4 MHz signal (1756 MHz 10 GHz). Test Report No.: 3-20835062 75 / 187

Fig. 127: Conducted spurious emissions in uplink in band 4 applying a 4 MHz signal (10 GHz 22 GHz). Fig. 128: Conducted spurious emissions in uplink in band 5 applying a 4 MHz signal (0.4 MHz 823 MHz). Test Report No.: 3-20835062 76 / 187

Fig. 129: Conducted spurious emissions in uplink in band 5 applying a 4 MHz signal (850 MHz 1 GHz). Fig. 130: Conducted spurious emissions in uplink in band 5 applying a 4 MHz signal (1 GHz 9 GHz). Test Report No.: 3-20835062 77 / 187

Fig. 131: Conducted spurious emissions in uplink in band 12 applying a 4 MHz signal (0.4 MHz 698 MHz). Fig. 132: Conducted spurious emissions in uplink in band 12 applying a 4 MHz signal (717 MHz 1 GHz). Test Report No.: 3-20835062 78 / 187

Fig. 133: Conducted spurious emissions in uplink in band 12 applying a 4 MHz signal (1 GHz 9 GHz). Fig. 134: Conducted spurious emissions in uplink in band 13 applying a 4 MHz signal (0.4 MHz 776 MHz). Test Report No.: 3-20835062 79 / 187

Fig. 135: Conducted spurious emissions in uplink in band 13 applying a 4 MHz signal (788 MHz 1 GHz). Fig. 136: Conducted spurious emissions in uplink in band 13 applying a 4 MHz signal (1 GHz 9 GHz). Test Report No.: 3-20835062 80 / 187

Fig. 137: Conducted spurious emissions in downlink in band 2 applying a 4 MHz signal (0.4 MHz 1 GHz). Fig. 138: Conducted spurious emissions in downlink in band 2 applying a 4 MHz signal (1 GHz 1929 MHz). Test Report No.: 3-20835062 81 / 187

Fig. 139: Conducted spurious emissions in downlink in band 2 applying a 4 MHz signal (1911 MHz 10 GHz). Fig. 140: Conducted spurious emissions in downlink in band 2 applying a 4 MHz signal (10 GHz 22 GHz). Test Report No.: 3-20835062 82 / 187

Fig. 141: Conducted spurious emissions in downlink in band 4 applying a 4 MHz signal (0.4 MHz 1 GHz). Fig. 142: Conducted spurious emissions in downlink in band 4 applying a 4 MHz signal (1 GHz 2109 MHz). Test Report No.: 3-20835062 83 / 187

Fig. 143: Conducted spurious emissions in downlink in band 4 applying a 4 MHz signal (2156 MHz 10 GHz). Fig. 144: Conducted spurious emissions in downlink in band 4 applying a 4 MHz signal (10 GHz 22 GHz). Test Report No.: 3-20835062 84 / 187

Fig. 145: Conducted spurious emissions in downlink in band 5 applying a 4 MHz signal (0.4 MHz 868 MHz). Fig. 146: Conducted spurious emissions in downlink in band 5 applying a 4 MHz signal (895 MHz 1 GHz). Test Report No.: 3-20835062 85 / 187

Fig. 147: Conducted spurious emissions in downlink in band 5 applying a 4 MHz signal (1 GHz 9 GHz). Fig. 148: Conducted spurious emissions in downlink in band 12 applying a 4 MHz signal (0.4 MHz 728 MHz). Test Report No.: 3-20835062 86 / 187

Fig. 149: Conducted spurious emissions in downlink in band 12 applying a 4 MHz signal (747 MHz 1 GHz). Fig. 150: Conducted spurious emissions in downlink in band 12 applying a 4 MHz signal (1 GHz 9 GHz). Test Report No.: 3-20835062 87 / 187

Fig. 151: Conducted spurious emissions in downlink in band 13 applying a 4 MHz signal (0.4 MHz 745 MHz). Fig. 152: Conducted spurious emissions in downlink in band 13 applying a 4 MHz signal (757 MHz 1 GHz). Test Report No.: 3-20835062 88 / 187

Fig. 153: Conducted spurious emissions in downlink in band 13 applying a 4 MHz signal (1 GHz 9 GHz). Test Report No.: 3-20835062 89 / 187

5.7. Noise 5.7.1 Maximum transmitter noise power level The activated cable routing for this test in uplink is shown in Fig. 154, Fig. 155, Fig. 157 and for the downlink in Fig. 156, Fig. 158, respectively. For the uplink two scenarios are necessary as shown in Fig. 154 and Fig. 155, because for the special type of booster under test, a stimulating signal is required at the server port to switch ON the uplink amplifier. Additionally the stimulating signal was applied twice: At the lower frequency band edge plus in a second test at the higher edge in order to see the noise in the full frequency range. Fig. 154: Set up for the noise test in uplink with uplink activated. Test Report No.: 3-20835062 90 / 187

Fig. 155: Set up for the noise test in uplink when in power OFF mode. Fig. 156: Set up for the noise test in downlink. Test Report No.: 3-20835062 91 / 187

Fig. 157: Set up for the maximum transmitter noise power level test in uplink. Fig. 158: Set up for the maximum transmitter noise power level test in downlink. Test Report No.: 3-20835062 92 / 187

Fig. 159: Noise limits in uplink in band 2 (power off mode). Fig. 160: Noise limits in uplink in band 2 (signal at lower band edge). Test Report No.: 3-20835062 93 / 187

Fig. 161: Noise limits in uplink in band 2 (signal at upper band edge). Fig. 162: Noise limits in uplink in band 4 (power off mode). Test Report No.: 3-20835062 94 / 187

Fig. 163: Noise limits in uplink in band 4 (signal at lower band edge). Fig. 164: Noise limits in uplink in band 4 (signal at upper band edge). Test Report No.: 3-20835062 95 / 187

Fig. 165: Noise limits in uplink in band 5 (power off mode). Fig. 166: Noise limits in uplink in band 5 (signal at lower band edge). Test Report No.: 3-20835062 96 / 187

Fig. 167: Noise limits in uplink in band 5 (signal at upper band edge). Fig. 168: Noise limits in uplink in band 12 (power off mode). Test Report No.: 3-20835062 97 / 187

Fig. 169: Noise limits in uplink in band 12 (signal at lower band edge). Fig. 170: Noise limits in uplink in band 12 (signal at upper band edge). Test Report No.: 3-20835062 98 / 187

Fig. 171: Noise limits in uplink in band 13 (power off mode). Fig. 172: Noise limits in uplink in band 13 (signal at lower band edge). Test Report No.: 3-20835062 99 / 187

Fig. 173: Noise limits in uplink in band 13 (signal at upper band edge). Fig. 174: Noise limits in downlink in band 2 (power off mode). Test Report No.: 3-20835062 100 / 187

Fig. 175: Noise limits in downlink in band 4 (power off mode). Fig. 176: Noise limits in downlink in band 5 (power off mode). Test Report No.: 3-20835062 101 / 187

Fig. 177: Noise limits in downlink in band 12 (power off mode). Fig. 178: Noise limits in downlink in band 13 (power off mode). Test Report No.: 3-20835062 102 / 187

Fig. 179: Maximum transmitter noise power level in uplink in band 2. Fig. 180: Maximum transmitter noise power level in uplink in band 4. Test Report No.: 3-20835062 103 / 187

Fig. 181: Maximum transmitter noise power level in uplink in band 5. Fig. 182: Maximum transmitter noise power level in uplink in band 12. Test Report No.: 3-20835062 104 / 187

Fig. 183: Maximum transmitter noise power level in uplink in band 13. Fig. 184: Maximum transmitter noise power level in downlink in band 2. Test Report No.: 3-20835062 105 / 187

Fig. 185: Maximum transmitter noise power level in downlink in band 4. Fig. 186: Maximum transmitter noise power level in downlink in band 5. Test Report No.: 3-20835062 106 / 187

Fig. 187: Maximum transmitter noise power level in downlink in band 12. Fig. 188: Maximum transmitter noise power level in downlink in band 13. Test Report No.: 3-20835062 107 / 187

5.7.2 Variable uplink noise timing Below are summarized the measured results for Variable uplink Noise Timing. The activated cable routing for this test is shown in Fig. 157. Band direction uplink noise decrease time Limit Result 2 up 0,86 s 1s Pass 4 up 0,60 s 1s Pass 5 up 0,80 s 1s Pass 12 up 0,60 s 1s Pass 13 up 0,44 s 1s Pass Fig. 189: Variable Uplink Noise Timing limits in band 2. Test Report No.: 3-20835062 108 / 187

Fig. 190: Variable Uplink Noise Timing limits in band 4. Fig. 191: Variable Uplink Noise Timing limits in band 5. Test Report No.: 3-20835062 109 / 187

Fig. 192: Variable Uplink Noise Timing limits in band 12. Fig. 193: Variable Uplink Noise Timing limits in band 13. Test Report No.: 3-20835062 110 / 187

5.8. Uplink Inactivity In order to test automatically the time the system need to enter an uplink inactivity state we did the following: 1.) Switch OFF booster 2.) Apply a CW signal at the server port 3.) After 15 seconds we switched ON the booster 4.) Immediately after that we switched the signal OFF. The pictures below shows the DUT basically immediately switches OFF once the signal at the server port disappears. Fig. 194: Set up for the uplink inactivity tests. Test Report No.: 3-20835062 111 / 187

Fig. 195: Uplink inactivity test in band 2. Fig. 196: Uplink inactivity test in band 4. Test Report No.: 3-20835062 112 / 187

Fig. 197: Uplink inactivity test in band 5. Fig. 198: Uplink inactivity test in band 12. Test Report No.: 3-20835062 113 / 187

Fig. 199: Uplink inactivity test in band 13. Test Report No.: 3-20835062 114 / 187

5.9. Variable Gain and Uplink Gain Timing For measuring the variable gain and its dependency on RSSI signal level signal routings as shown in Fig. 200 and Fig. 201 are used. For the special booster under test always a signal at the server port is required to enable the uplink amplifier. Within the variable gain data provided are measurement values for the gain values found with closest distance to the limit line. This distance is reported as delta in db at the plots. All data found met the limits for variable gain. All timing data found met the 1 s limit. Fig. 200: Set up for the variable (RSSI dependent) gain measurements in uplink. Test Report No.: 3-20835062 115 / 187

Fig. 201: Set up for the variable (RSSI dependent) gain measurements in downlink. Test Report No.: 3-20835062 116 / 187

Fig. 202: Variable RSSI dependent uplink gain in band 2. Fig. 203: Variable RSSI dependent downlink gain in band 2. Test Report No.: 3-20835062 117 / 187

Fig. 204: Variable RSSI dependent uplink gain in band 4. Fig. 205: Variable RSSI dependent downlink gain in band 4. Test Report No.: 3-20835062 118 / 187

Fig. 206: Variable RSSI dependent uplink gain in band 5. Fig. 207: Variable RSSI dependent downlink gain in band 5. Test Report No.: 3-20835062 119 / 187

Fig. 208: Variable RSSI dependent uplink gain in band 12. Fig. 209: Variable RSSI dependent downlink gain in band 12. Test Report No.: 3-20835062 120 / 187

Fig. 210: Variable RSSI dependent uplink gain in band 13. Fig. 211: Variable RSSI dependent downlink gain in band 13. Test Report No.: 3-20835062 121 / 187

Fig. 212: Variable uplink gain timing in band 02. Fig. 213: Variable uplink gain timing in band 04. Test Report No.: 3-20835062 122 / 187

Fig. 214: Variable uplink gain timing in band 05. Fig. 215: Variable uplink gain timing in band 12. Test Report No.: 3-20835062 123 / 187

Fig. 216: Variable uplink gain timing in band 13. Test Report No.: 3-20835062 124 / 187

5.10. Occupied Bandwidth This measurement is required to compare the output signal relative to the input signal according to 2.1049. In fact we found no substantial spectral growth. The activated cable routing used is shown in Fig. 217 and Fig. 218 for up- and downlink, respectively. For showing the signal source signal the DUT was replaced by an RF through. Fig. 217: Set up for the occupied bandwidth test in uplink. Test Report No.: 3-20835062 125 / 187

Fig. 218: Set up for occupied bandwidth test in downlink. Test Report No.: 3-20835062 126 / 187

Ref 25 dbm * Att 20 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -11.22 dbm 1.880000000 GHz 1 PK MAXH 20 10 0 OBW246.794871795 khz Temp 1 [T1 OBW] -23.18 dbm 1.879878205 GHz Temp 2 [T1 OBW] -23.20 dbm 1.880125000 GHz A -10 1-20 T1 T2-30 3DB -40-50 -60-70 Center 1.88 GHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 12:50:36 Fig. 219: Occupied bandwidth for GSM signal when using a through in band 2 uplink. Ref 25 dbm * Att 20 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] 9.01 dbm 1.880000000 GHz 1 PK MAXH 20 10 0 T1 1 T2 OBW246.794871795 khz Temp 1 [T1 OBW] -2.26 dbm 1.879878205 GHz Temp 2 [T1 OBW] -4.36 dbm 1.880125000 GHz A -10-20 -30 3DB -40-50 -60-70 Center 1.88 GHz 200 khz/ Span 2 MHz Date: 29.JAN.2016 19:30:55 Fig. 220: Occupied bandwidth for GSM signal in band 2 uplink. Test Report No.: 3-20835062 127 / 187

Ref -30 dbm * Att 0 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -62.30 dbm 1.960000000 GHz 1 PK MAXH -30-40 -50 OBW243.589743590 khz Temp 1 [T1 OBW] -73.71 dbm 1.959878205 GHz Temp 2 [T1 OBW] -74.05 dbm 1.960121795 GHz A -60 1-70 T1 T2-80 -90 3DB -100-110 -120-130 Center 1.96 GHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 12:51:52 Fig. 221: Occupied bandwidth for GSM signal when using a through in band 2 downlink. Ref -30 dbm * Att 0 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -43.01 dbm 1.960000000 GHz 1 PK MAXH -30-40 -50 T1 1 T2 OBW250.000000000 khz Temp 1 [T1 OBW] -54.16 dbm 1.959878205 GHz Temp 2 [T1 OBW] -55.72 dbm 1.960128205 GHz A -60-70 -80-90 3DB -100-110 -120-130 Center 1.96 GHz 200 khz/ Span 2 MHz Date: 29.JAN.2016 19:39:16 Fig. 222: Occupied bandwidth for GSM signal in band 2 downlink. Test Report No.: 3-20835062 128 / 187

Ref 25 dbm * Att 20 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -9.33 dbm 1.732500000 GHz 1 PK MAXH 20 10 0 OBW243.589743590 khz Temp 1 [T1 OBW] -24.87 dbm 1.732378205 GHz Temp 2 [T1 OBW] -23.50 dbm 1.732621795 GHz A -10 1-20 T1 T2-30 3DB -40-50 -60-70 Center 1.7325 GHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 12:53:18 Fig. 223: Occupied bandwidth for GSM signal when using a through in band 4 uplink. Ref 25 dbm * Att 20 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] 8.03 dbm 1.732500000 GHz 1 PK MAXH 20 10 0 T1 1 T2 OBW246.794871795 khz Temp 1 [T1 OBW] -3.13 dbm 1.732378205 GHz Temp 2 [T1 OBW] -5.22 dbm 1.732625000 GHz A -10-20 -30 3DB -40-50 -60-70 Center 1.7325 GHz 200 khz/ Span 2 MHz Date: 29.JAN.2016 19:47:50 Fig. 224: Occupied bandwidth for GSM signal in band 4 uplink. Test Report No.: 3-20835062 129 / 187

Ref -30 dbm * Att 0 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -62.66 dbm 2.132500000 GHz 1 PK MAXH -30-40 -50 OBW250.000000000 khz Temp 1 [T1 OBW] -77.29 dbm 2.132375000 GHz Temp 2 [T1 OBW] -76.96 dbm 2.132625000 GHz A -60 1-70 -80 T1 T2-90 3DB -100-110 -120-130 Center 2.1325 GHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 12:54:54 Fig. 225: Occupied bandwidth for GSM signal when using a through in band 4 downlink. Ref -30 dbm * Att 0 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -43.16 dbm 2.132500000 GHz 1 PK MAXH -30-40 -50 T1 1 T2 OBW243.589743590 khz Temp 1 [T1 OBW] -55.20 dbm 2.132378205 GHz Temp 2 [T1 OBW] -56.26 dbm 2.132621795 GHz A -60-70 -80-90 3DB -100-110 -120-130 Center 2.1325 GHz 200 khz/ Span 2 MHz Date: 29.JAN.2016 19:50:37 Fig. 226: Occupied bandwidth for GSM signal in band 4 downlink. Test Report No.: 3-20835062 130 / 187

Ref 25 dbm * Att 20 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -10.90 dbm 836.500000000 MHz 1 PK MAXH 20 10 0 OBW246.794871795 khz Temp 1 [T1 OBW] -25.28 dbm 836.375000000 MHz Temp 2 [T1 OBW] -24.36 dbm 836.621794872 MHz A -10 1-20 T1 T2-30 3DB -40-50 -60-70 Center 836.5 MHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 12:56:24 Fig. 227: Occupied bandwidth for GSM signal when using a through in band 5 uplink. Ref 25 dbm * Att 20 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] 8.99 dbm 836.500000000 MHz 1 PK MAXH 20 10 0 T1 1 T2 OBW246.794871795 khz Temp 1 [T1 OBW] -2.20 dbm 836.378205128 MHz Temp 2 [T1 OBW] -4.12 dbm 836.625000000 MHz A -10-20 -30 3DB -40-50 -60-70 Center 836.5 MHz 200 khz/ Span 2 MHz Date: 29.JAN.2016 20:09:36 Fig. 228: Occupied bandwidth for GSM signal in band 5 uplink. Test Report No.: 3-20835062 131 / 187

Ref -30 dbm * Att 0 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -63.33 dbm 881.500000000 MHz 1 PK MAXH -30-40 -50 OBW246.794871795 khz Temp 1 [T1 OBW] -75.04 dbm 881.378205128 MHz Temp 2 [T1 OBW] -77.21 dbm 881.625000000 MHz A -60 1-70 -80 T1 T2-90 3DB -100-110 -120-130 Center 881.5 MHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 12:58:34 Fig. 229: Occupied bandwidth for GSM signal when using a through in band 5 downlink. Ref -30 dbm * Att 0 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -43.89 dbm 881.500000000 MHz 1 PK MAXH -30-40 -50 T1 1 T2 OBW246.794871795 khz Temp 1 [T1 OBW] -56.78 dbm 881.375000000 MHz Temp 2 [T1 OBW] -55.08 dbm 881.621794872 MHz A -60-70 -80-90 3DB -100-110 -120-130 Center 881.5 MHz 200 khz/ Span 2 MHz Date: 29.JAN.2016 20:12:03 Fig. 230: Occupied bandwidth for GSM signal in band 5 downlink. Test Report No.: 3-20835062 132 / 187

Ref 25 dbm * Att 20 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -9.67 dbm 707.500000000 MHz 1 PK MAXH 20 10 0 OBW246.794871795 khz Temp 1 [T1 OBW] -20.74 dbm 707.378205128 MHz Temp 2 [T1 OBW] -22.27 dbm 707.625000000 MHz A -10 1-20 T1 T2-30 3DB -40-50 -60-70 Center 707.5 MHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 13:00:17 Fig. 231: Occupied bandwidth for GSM signal when using a through in band 12 uplink. Ref 25 dbm * Att 20 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] 9.64 dbm 707.500000000 MHz 1 PK MAXH 20 10 0 T1 1 T2 OBW246.794871795 khz Temp 1 [T1 OBW] -2.93 dbm 707.378205128 MHz Temp 2 [T1 OBW] -5.11 dbm 707.625000000 MHz A -10-20 -30 3DB -40-50 -60-70 Center 707.5 MHz 200 khz/ Span 2 MHz Date: 29.JAN.2016 20:18:06 Fig. 232: Occupied bandwidth for GSM signal in band 12 uplink. Test Report No.: 3-20835062 133 / 187

Ref -30 dbm * Att 0 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -60.88 dbm 737.500000000 MHz 1 PK MAXH -30-40 -50-60 1 OBW246.794871795 khz Temp 1 [T1 OBW] -76.36 dbm 737.375000000 MHz Temp 2 [T1 OBW] -74.18 dbm 737.621794872 MHz A -70 T1 T2-80 -90 3DB -100-110 -120-130 Center 737.5 MHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 13:01:31 Fig. 233: Occupied bandwidth for GSM signal when using a through in band 12 downlink. Ref -30 dbm * Att 0 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -44.74 dbm 737.500000000 MHz 1 PK MAXH -30-40 -50 T1 1 T2 OBW246.794871795 khz Temp 1 [T1 OBW] -55.42 dbm 737.378205128 MHz Temp 2 [T1 OBW] -57.12 dbm 737.625000000 MHz A -60-70 -80-90 3DB -100-110 -120-130 Center 737.5 MHz 200 khz/ Span 2 MHz Date: 29.JAN.2016 20:24:56 Fig. 234: Occupied bandwidth for GSM signal in band 12 downlink. Test Report No.: 3-20835062 134 / 187

Ref 25 dbm * Att 20 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -11.32 dbm 782.000000000 MHz 1 PK MAXH 20 10 0 OBW246.794871795 khz Temp 1 [T1 OBW] -23.44 dbm 781.878205128 MHz Temp 2 [T1 OBW] -21.96 dbm 782.125000000 MHz A -10 1-20 T1 T2-30 3DB -40-50 -60-70 Center 782 MHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 13:02:44 Fig. 235: Occupied bandwidth for GSM signal when using a through in band 13 uplink. Ref 25 dbm * Att 20 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] 9.38 dbm 782.000000000 MHz 1 PK VIEW 20 10 0 T1 1 T2 OBW246.794871795 khz Temp 1 [T1 OBW] -3.21 dbm 781.878205128 MHz Temp 2 [T1 OBW] -5.38 dbm 782.125000000 MHz A -10-20 -30 3DB -40-50 -60-70 Center 782 MHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 12:33:37 Fig. 236: Occupied bandwidth for GSM signal in band 13 uplink. Test Report No.: 3-20835062 135 / 187

Ref -30 dbm * Att 0 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -59.58 dbm 751.000000000 MHz 1 PK MAXH -30-40 -50-60 1 OBW246.794871795 khz Temp 1 [T1 OBW] -73.35 dbm 750.878205128 MHz Temp 2 [T1 OBW] -74.95 dbm 751.125000000 MHz A -70 T1 T2-80 -90 3DB -100-110 -120-130 Center 751 MHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 13:04:08 Fig. 237: Occupied bandwidth for GSM signal when using a through in band 13 downlink. Ref -30 dbm * Att 0 db * RBW 3 khz * VBW 10 khz SWT 225 ms Marker 1 [T1 ] -43.13 dbm 751.000000000 MHz 1 PK VIEW -30-40 -50 T1 1 T2 OBW246.794871795 khz Temp 1 [T1 OBW] -57.68 dbm 750.875000000 MHz Temp 2 [T1 OBW] -55.84 dbm 751.121794872 MHz A -60-70 -80-90 3DB -100-110 -120-130 Center 751 MHz 200 khz/ Span 2 MHz Date: 2.FEB.2016 12:42:44 Fig. 238: Occupied bandwidth for GSM signal in band 13 downlink. Test Report No.: 3-20835062 136 / 187

Ref 25 dbm * Att 20 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -20.28 dbm 1.880000000 GHz 1 RM* AVG 20 10 0 OBW 1.274038462 MHz Temp 1 [T1 OBW] -26.58 dbm 1.879358974 GHz Temp 2 [T1 OBW] -25.84 dbm 1.880633013 GHz A -10-20 T1 1 T2-30 SWP 100 of 100 3DB -40-50 -60-70 Center 1.88 GHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 18:47:13 Fig. 239: Occupied bandwidth for CDMA signal when using a through in band 2 uplink. Ref 25 dbm * Att 20 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -0.97 dbm 1.880000000 GHz 1 RM* AVG 20 10 0 T1 1 T2 OBW 1.274038462 MHz Temp 1 [T1 OBW] -7.33 dbm 1.879358974 GHz Temp 2 [T1 OBW] -7.47 dbm 1.880633013 GHz A -10-20 -30 SWP 100 of 100 3DB -40-50 -60-70 Center 1.88 GHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 19:00:49 Fig. 240: Occupied bandwidth for CDMA signal in band 2 uplink. Test Report No.: 3-20835062 137 / 187

Ref -30 dbm * Att 0 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -68.81 dbm 1.960000000 GHz 1 RM* AVG -30-40 -50 OBW 1.282051282 MHz Temp 1 [T1 OBW] -74.51 dbm 1.959358974 GHz Temp 2 [T1 OBW] -75.18 dbm 1.960641026 GHz A -60 1-70 T1 T2-80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 1.96 GHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 18:48:00 Fig. 241: Occupied bandwidth for CDMA signal when using a through in band 2 downlink. Ref -30 dbm * Att 0 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -50.25 dbm 1.960000000 GHz 1 RM* AVG -30-40 -50 T1 1 T2 OBW 1.282051282 MHz Temp 1 [T1 OBW] -56.46 dbm 1.959358974 GHz Temp 2 [T1 OBW] -56.38 dbm 1.960641026 GHz A -60-70 -80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 1.96 GHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 19:01:21 Fig. 242: Occupied bandwidth for CDMA signal in band 2 downlink. Test Report No.: 3-20835062 138 / 187

Ref 25 dbm * Att 20 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -16.91 dbm 1.732500000 GHz 1 RM* AVG 20 10 0 OBW 1.274038462 MHz Temp 1 [T1 OBW] -23.34 dbm 1.731858974 GHz Temp 2 [T1 OBW] -23.43 dbm 1.733133013 GHz A -10 1-20 T1 T2-30 SWP 100 of 100 3DB -40-50 -60-70 Center 1.7325 GHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 18:48:36 Fig. 243: Occupied bandwidth for CDMA signal when using a through in band 4 uplink. Ref 25 dbm * Att 20 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -0.62 dbm 1.732500000 GHz 1 RM* AVG 20 10 0 T1 1 T2 OBW 1.274038462 MHz Temp 1 [T1 OBW] -7.08 dbm 1.731858974 GHz Temp 2 [T1 OBW] -6.26 dbm 1.733133013 GHz A -10-20 -30 SWP 100 of 100 3DB -40-50 -60-70 Center 1.7325 GHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 19:08:53 Fig. 244: Occupied bandwidth for CDMA signal in band 4 uplink. Test Report No.: 3-20835062 139 / 187

Ref -30 dbm * Att 0 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -70.05 dbm 2.132500000 GHz 1 RM* AVG -30-40 -50 OBW 1.282051282 MHz Temp 1 [T1 OBW] -75.16 dbm 2.131858974 GHz Temp 2 [T1 OBW] -75.53 dbm 2.133141026 GHz A -60-70 T1 1 T2-80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 2.1325 GHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 18:49:08 Fig. 245: Occupied bandwidth for CDMA signal when using a through in band 4 downlink. Ref -30 dbm * Att 0 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -50.73 dbm 2.132500000 GHz 1 RM* AVG -30-40 -50 T1 1 T2 OBW 1.274038462 MHz Temp 1 [T1 OBW] -56.58 dbm 2.131858974 GHz Temp 2 [T1 OBW] -56.39 dbm 2.133133013 GHz A -60-70 -80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 2.1325 GHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 19:11:29 Fig. 246: Occupied bandwidth for CDMA signal in band 4 downlink. Test Report No.: 3-20835062 140 / 187

Ref 25 dbm * Att 20 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -19.32 dbm 836.500000000 MHz 1 RM* AVG 20 10 0 OBW 1.274038462 MHz Temp 1 [T1 OBW] -25.36 dbm 835.858974359 MHz Temp 2 [T1 OBW] -24.85 dbm 837.133012821 MHz A -10 1-20 T1 T2-30 SWP 100 of 100 3DB -40-50 -60-70 Center 836.5 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 18:49:41 Fig. 247: Occupied bandwidth for CDMA signal when using a through in band 5 uplink. Ref 25 dbm * Att 20 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -1.31 dbm 836.500000000 MHz 1 RM* AVG 20 10 0 T1 1 T2 OBW 1.282051282 MHz Temp 1 [T1 OBW] -7.09 dbm 835.858974359 MHz Temp 2 [T1 OBW] -7.29 dbm 837.141025641 MHz A -10-20 -30 SWP 100 of 100 3DB -40-50 -60-70 Center 836.5 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 19:12:07 Fig. 248: Occupied bandwidth for CDMA signal in band 5 uplink. Test Report No.: 3-20835062 141 / 187

Ref -30 dbm * Att 0 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -68.77 dbm 881.500000000 MHz 1 RM* AVG -30-40 -50 OBW 1.282051282 MHz Temp 1 [T1 OBW] -74.81 dbm 880.858974359 MHz Temp 2 [T1 OBW] -74.90 dbm 882.141025641 MHz A -60 1-70 T1 T2-80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 881.5 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 18:50:23 Fig. 249: Occupied bandwidth for CDMA signal when using a through in band 5 downlink. Ref -30 dbm * Att 0 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -50.64 dbm 881.500000000 MHz 1 RM* AVG -30-40 -50 T1 1 T2 OBW 1.282051282 MHz Temp 1 [T1 OBW] -56.38 dbm 880.858974359 MHz Temp 2 [T1 OBW] -56.77 dbm 882.141025641 MHz A -60-70 -80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 881.5 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 19:13:37 Fig. 250: Occupied bandwidth for CDMA signal in band 5 downlink. Test Report No.: 3-20835062 142 / 187

Ref 25 dbm * Att 20 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -17.60 dbm 707.500000000 MHz 1 RM* AVG 20 10 0 OBW 1.274038462 MHz Temp 1 [T1 OBW] -24.35 dbm 706.858974359 MHz Temp 2 [T1 OBW] -23.90 dbm 708.133012821 MHz A -10 1-20 T1 T2-30 SWP 100 of 100 3DB -40-50 -60-70 Center 707.5 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 18:50:47 Fig. 251: Occupied bandwidth for CDMA signal when using a through in band 12 uplink. Ref 25 dbm * Att 20 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -0.73 dbm 707.500000000 MHz 1 RM* AVG 20 10 0 T1 1 T2 OBW 1.274038462 MHz Temp 1 [T1 OBW] -6.39 dbm 706.858974359 MHz Temp 2 [T1 OBW] -7.43 dbm 708.133012821 MHz A -10-20 -30 SWP 100 of 100 3DB -40-50 -60-70 Center 707.5 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 19:14:02 Fig. 252: Occupied bandwidth for CDMA signal in band 12 uplink. Test Report No.: 3-20835062 143 / 187

Ref -30 dbm * Att 0 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -67.98 dbm 737.500000000 MHz 1 RM* AVG -30-40 -50 OBW 1.282051282 MHz Temp 1 [T1 OBW] -74.03 dbm 736.858974359 MHz Temp 2 [T1 OBW] -74.44 dbm 738.141025641 MHz A -60 1-70 T1 T2-80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 737.5 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 18:51:21 Fig. 253: Occupied bandwidth for CDMA signal when using a through in band 12 downlink. Ref -30 dbm * Att 0 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -51.01 dbm 737.500000000 MHz 1 RM* AVG -30-40 -50 T1 1 T2 OBW 1.282051282 MHz Temp 1 [T1 OBW] -56.17 dbm 736.858974359 MHz Temp 2 [T1 OBW] -56.95 dbm 738.141025641 MHz A -60-70 -80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 737.5 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 19:14:31 Fig. 254: Occupied bandwidth for CDMA signal in band 12 downlink. Test Report No.: 3-20835062 144 / 187

Ref 25 dbm * Att 20 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -18.33 dbm 782.000000000 MHz 1 RM* AVG 20 10 0 OBW 1.274038462 MHz Temp 1 [T1 OBW] -24.77 dbm 781.358974359 MHz Temp 2 [T1 OBW] -24.76 dbm 782.633012821 MHz A -10 1-20 T1 T2-30 SWP 100 of 100 3DB -40-50 -60-70 Center 782 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 18:51:49 Fig. 255: Occupied bandwidth for CDMA signal when using a through in band 13 uplink. Ref 25 dbm * Att 20 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -0.41 dbm 782.000000000 MHz 1 RM* AVG 20 10 0 T1 1 T2 OBW 1.274038462 MHz Temp 1 [T1 OBW] -6.26 dbm 781.358974359 MHz Temp 2 [T1 OBW] -6.56 dbm 782.633012821 MHz A -10-20 -30 SWP 100 of 100 3DB -40-50 -60-70 Center 782 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 19:15:13 Fig. 256: Occupied bandwidth for CDMA signal in band 13 uplink. Test Report No.: 3-20835062 145 / 187

Ref -30 dbm * Att 0 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -68.08 dbm 751.000000000 MHz 1 RM* AVG -30-40 -50 OBW 1.282051282 MHz Temp 1 [T1 OBW] -73.41 dbm 750.358974359 MHz Temp 2 [T1 OBW] -74.30 dbm 751.641025641 MHz A -60 1-70 T1 T2-80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 751 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 18:52:51 Fig. 257: Occupied bandwidth for CDMA signal when using a through in band 13 downlink. Ref -30 dbm * Att 0 db * RBW 30 khz * VBW 100 khz SWT 25 ms Marker 1 [T1 ] -50.29 dbm 751.000000000 MHz 1 RM* AVG -30-40 -50 T1 1 T2 OBW 1.282051282 MHz Temp 1 [T1 OBW] -56.09 dbm 750.358974359 MHz Temp 2 [T1 OBW] -56.97 dbm 751.641025641 MHz A -60-70 -80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 751 MHz 500 khz/ Span 5 MHz Date: 29.JAN.2016 19:16:10 Fig. 258: Occupied bandwidth for CDMA signal in band 13 downlink. Test Report No.: 3-20835062 146 / 187

Ref 25 dbm * Att 20 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -20.66 dbm 1.880000000 GHz 1 RM* AVG 20 10 0 OBW 4.182692308 MHz Temp 1 [T1 OBW] -26.44 dbm 1.877916667 GHz Temp 2 [T1 OBW] -27.17 dbm 1.882099359 GHz A -10-20 T1 1 T2-30 SWP 100 of 100 3DB -40-50 -60-70 Center 1.88 GHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 16:41:50 Fig. 259: Occupied bandwidth for WCDMA signal when using a through in band 2 uplink. Ref 25 dbm * Att 20 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -2.00 dbm 1.880000000 GHz 1 RM* AVG 20 10 0 T1 1 T2 OBW 4.182692308 MHz Temp 1 [T1 OBW] -7.58 dbm 1.877916667 GHz Temp 2 [T1 OBW] -8.48 dbm 1.882099359 GHz A -10-20 -30 SWP 100 of 100 3DB -40-50 -60-70 Center 1.88 GHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 17:00:56 Fig. 260: Occupied bandwidth for WCDMA signal in band 2 uplink. Test Report No.: 3-20835062 147 / 187

Ref -30 dbm * Att 0 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -70.50 dbm 1.960000000 GHz 1 RM* AVG -30-40 -50 OBW 4.214743590 MHz Temp 1 [T1 OBW] -76.64 dbm 1.957900641 GHz Temp 2 [T1 OBW] -76.85 dbm 1.962115385 GHz A -60-70 T1 1 T2-80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 1.96 GHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 18:41:13 Fig. 261: Occupied bandwidth for WCDMA signal when using a through in band 2 downlink. Ref -30 dbm * Att 0 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -51.27 dbm 1.960000000 GHz 1 RM* AVG -30-40 -50 T1 1 OBW 4.198717949 MHz Temp 1 [T1 OBW] -56.87 dbm 1.957900641 GHz Temp 2 [T1 OBW] -58.03 dbm 1.962099359 GHz T2 A -60-70 -80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 1.96 GHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 18:37:38 Fig. 262: Occupied bandwidth for WCDMA signal in band 2 downlink. Test Report No.: 3-20835062 148 / 187

Ref 25 dbm * Att 20 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -18.37 dbm 1.732500000 GHz 1 RM* AVG 20 10 0 OBW 4.182692308 MHz Temp 1 [T1 OBW] -23.61 dbm 1.730416667 GHz Temp 2 [T1 OBW] -24.84 dbm 1.734599359 GHz A -10 1-20 T1 T2-30 SWP 100 of 100 3DB -40-50 -60-70 Center 1.7325 GHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 16:54:52 Fig. 263: Occupied bandwidth for WCDMA signal when using a through in band 4 uplink. Ref 25 dbm * Att 20 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -1.59 dbm 1.732500000 GHz 1 RM* AVG 20 10 0 T1 1 T2 OBW 4.198717949 MHz Temp 1 [T1 OBW] -7.00 dbm 1.730400641 GHz Temp 2 [T1 OBW] -7.79 dbm 1.734599359 GHz A -10-20 -30 SWP 100 of 100 3DB -40-50 -60-70 Center 1.7325 GHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 17:01:45 Fig. 264: Occupied bandwidth for WCDMA signal in band 4 uplink. Test Report No.: 3-20835062 149 / 187

Ref -30 dbm * Att 0 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -70.57 dbm 2.132500000 GHz 1 RM* AVG -30-40 -50 OBW 4.214743590 MHz Temp 1 [T1 OBW] -76.39 dbm 2.130400641 GHz Temp 2 [T1 OBW] -77.74 dbm 2.134615385 GHz A -60-70 T1 1 T2-80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 2.1325 GHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 18:41:46 Fig. 265: Occupied bandwidth for WCDMA signal when using a through in band 4 downlink. Ref -30 dbm * Att 0 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -52.02 dbm 2.132500000 GHz 1 RM* AVG -30-40 -50 T1 1 OBW 4.182692308 MHz Temp 1 [T1 OBW] -57.99 dbm 2.130400641 GHz Temp 2 [T1 OBW] -58.45 dbm 2.134583333 GHz T2 A -60-70 -80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 2.1325 GHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 18:36:30 Fig. 266: Occupied bandwidth for WCDMA signal in band 4 downlink. Test Report No.: 3-20835062 150 / 187

Ref 25 dbm * Att 20 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -20.16 dbm 836.500000000 MHz 1 RM* AVG 20 10 0 OBW 4.182692308 MHz Temp 1 [T1 OBW] -26.20 dbm 834.416666667 MHz Temp 2 [T1 OBW] -26.10 dbm 838.599358974 MHz A -10-20 T1 1 T2-30 SWP 100 of 100 3DB -40-50 -60-70 Center 836.5 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 16:55:55 Fig. 267: Occupied bandwidth for WCDMA signal when using a through in band 5 uplink. Ref 25 dbm * Att 20 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -1.80 dbm 836.500000000 MHz 1 RM* AVG 20 10 0 T1 1 T2 OBW 4.182692308 MHz Temp 1 [T1 OBW] -7.11 dbm 834.416666667 MHz Temp 2 [T1 OBW] -8.67 dbm 838.599358974 MHz A -10-20 -30 SWP 100 of 100 3DB -40-50 -60-70 Center 836.5 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 17:02:56 Fig. 268: Occupied bandwidth for WCDMA signal in band 5 uplink. Test Report No.: 3-20835062 151 / 187

Ref -30 dbm * Att 0 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -70.27 dbm 881.500000000 MHz 1 RM* AVG -30-40 -50 OBW 4.214743590 MHz Temp 1 [T1 OBW] -76.07 dbm 879.400641026 MHz Temp 2 [T1 OBW] -76.90 dbm 883.615384615 MHz A -60-70 T1 1 T2-80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 881.5 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 18:42:32 Fig. 269: Occupied bandwidth for WCDMA signal when using a through in band 5 downlink. Ref -30 dbm * Att 0 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -51.00 dbm 881.500000000 MHz 1 RM* AVG -30-40 -50 T1 1 OBW 4.182692308 MHz Temp 1 [T1 OBW] -57.25 dbm 879.416666667 MHz Temp 2 [T1 OBW] -57.51 dbm T2 883.599358974 MHz A -60-70 -80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 881.5 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 18:38:10 Fig. 270: Occupied bandwidth for WCDMA signal in band 5 downlink. Test Report No.: 3-20835062 152 / 187

Ref 25 dbm * Att 20 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -18.19 dbm 707.500000000 MHz 1 RM* AVG 20 10 0 OBW 4.182692308 MHz Temp 1 [T1 OBW] -24.16 dbm 705.416666667 MHz Temp 2 [T1 OBW] -24.99 dbm 709.599358974 MHz A -10 1-20 T1 T2-30 SWP 100 of 100 3DB -40-50 -60-70 Center 707.5 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 16:57:45 Fig. 271: Occupied bandwidth for WCDMA signal when using a through in band 12 uplink. Ref 25 dbm * Att 20 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -1.91 dbm 707.500000000 MHz 1 RM* AVG 20 10 0 T1 1 T2 OBW 4.214743590 MHz Temp 1 [T1 OBW] -7.14 dbm 705.400641026 MHz Temp 2 [T1 OBW] -7.18 dbm 709.615384615 MHz A -10-20 -30 SWP 100 of 100 3DB -40-50 -60-70 Center 707.5 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 17:08:39 Fig. 272: Occupied bandwidth for WCDMA signal in band 12 uplink. Test Report No.: 3-20835062 153 / 187

Ref -30 dbm * Att 0 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -68.73 dbm 737.500000000 MHz 1 RM* AVG -30-40 -50 OBW 4.198717949 MHz Temp 1 [T1 OBW] -74.87 dbm 735.400641026 MHz Temp 2 [T1 OBW] -75.48 dbm 739.599358974 MHz A -60 1-70 T1 T2-80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 737.5 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 18:43:01 Fig. 273: Occupied bandwidth for WCDMA signal when using a through in band 12 downlink. Ref -30 dbm * Att 0 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -52.51 dbm 737.500000000 MHz 1 RM* AVG -30-40 -50 T1 1 OBW 4.198717949 MHz Temp 1 [T1 OBW] -57.42 dbm 735.400641026 MHz Temp 2 [T1 OBW] -57.95 dbm 739.599358974 MHz T2 A -60-70 -80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 737.5 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 18:38:42 Fig. 274: Occupied bandwidth for WCDMA signal in band 12 downlink. Test Report No.: 3-20835062 154 / 187

Ref 25 dbm * Att 20 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -19.73 dbm 782.000000000 MHz 1 RM* AVG 20 10 0 OBW 4.182692308 MHz Temp 1 [T1 OBW] -24.91 dbm 779.916666667 MHz Temp 2 [T1 OBW] -25.43 dbm 784.099358974 MHz A -10-20 T1 1 T2-30 SWP 100 of 100 3DB -40-50 -60-70 Center 782 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 16:58:35 Fig. 275: Occupied bandwidth for WCDMA signal when using a through in band 13 uplink. Ref 25 dbm * Att 20 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -1.67 dbm 782.000000000 MHz 1 RM* AVG 20 10 0 T1 1 T2 OBW 4.182692308 MHz Temp 1 [T1 OBW] -7.17 dbm 779.916666667 MHz Temp 2 [T1 OBW] -7.62 dbm 784.099358974 MHz A -10-20 -30 SWP 100 of 100 3DB -40-50 -60-70 Center 782 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 17:09:45 Fig. 276: Occupied bandwidth for WCDMA signal in band 13 uplink. Test Report No.: 3-20835062 155 / 187

Ref -30 dbm * Att 0 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -69.56 dbm 751.000000000 MHz 1 RM* AVG -30-40 -50 OBW 4.198717949 MHz Temp 1 [T1 OBW] -75.59 dbm 748.900641026 MHz Temp 2 [T1 OBW] -75.73 dbm 753.099358974 MHz A -60-70 T1 1 T2-80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 751 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 18:43:31 Fig. 277: Occupied bandwidth for WCDMA signal when using a through in band 13 downlink. Ref -30 dbm * Att 0 db * RBW 100 khz * VBW 300 khz SWT 5 ms Marker 1 [T1 ] -51.71 dbm 751.000000000 MHz 1 RM* AVG -30-40 -50 T1 1 OBW 4.182692308 MHz Temp 1 [T1 OBW] -58.27 dbm 748.916666667 MHz Temp 2 [T1 OBW] -58.54 dbm 753.099358974 MHz T2 A -60-70 -80 SWP 100 of 100-90 3DB -100-110 -120-130 Center 751 MHz 1 MHz/ Span 10 MHz Date: 29.JAN.2016 18:39:36 Fig. 278: Occupied bandwidth for WCDMA signal in band 13 downlink. Test Report No.: 3-20835062 156 / 187

5.11. Oscillation Detection and Mitigation Test 5.11.1 Oscillation Restart Tests For measuring the capability of the EUT to detect the presence of oscillation and to turn off then the output power within 300 ms for the uplink and 1000 ms for the downlink and remain off for one minute before restart the test setup as shown in Fig. 279 and for the downlink in Fig. 280 has been used. Below are summarized the measured results for uplink and downlink oscillation detection time test limits Band direction Frequency range Measured Time Limit Result 2 up 1850 MHz 1910 MHz 200.6 ms 300 ms Pass 4 up 1710 MHz 1755 MHz 200.6 ms 300 ms Pass 5 up 824 MHz 849 MHz 200.6 ms 300 ms Pass 12 up 699 MHz 716 MHz 200.6 ms 300 ms Pass 13 up 777 MHz 787 MHz 200.6 ms 300 ms Pass 2 down 1930 MHz -1990 MHz 101.8 ms 1000 ms Pass 4 down 2110 MHz 2155 MHz 101.8 ms 1000 ms Pass 5 down 868 MHz 894 MHz 92.8 ms 1000 ms Pass 12 down 729 MHz -746 MHz 92.8 ms 1000 ms Pass 13 down 746 MHz -768 MHz 92.8 ms 1000 ms Pass Below are summarized the measured results for uplink and downlink restart time test limits Band direction Frequency range Measured Time Limit Result 2 up 1850 MHz 1910 MHz 63.2 s 60 s Pass 4 up 1710 MHz 1755 MHz 63.2 s 60 s Pass 5 up 824 MHz 849 MHz 63.2 s 60 s Pass 12 up 699 MHz 716 MHz 63.2 s 60 s Pass 13 up 777 MHz 787 MHz 63.2 s 60 s Pass 2 down 1930 MHz -1990 MHz 63.2 s 60 s Pass 4 down 2110 MHz 2155 MHz 63.2 s 60 s Pass 5 down 868 MHz 894 MHz 63.2 s 60 s Pass 12 down 729 MHz -746 MHz 63.2 s 60 s Pass 13 down 746 MHz -768 MHz 63.2 s 60 s Pass Test Report No.: 3-20835062 157 / 187

Below are summarized the measured results for uplink and downlink restart attempts Band direction Frequency range Restarts Limit Result 2 up 1850 MHz 1910 MHz 4 5 Pass 4 up 1710 MHz 1755 MHz 4 5 Pass 5 up 824 MHz 849 MHz 4 5 Pass 12 up 699 MHz 716 MHz 4 5 Pass 13 up 777 MHz 787 MHz 4 5 Pass 2 down 1930 MHz -1990 MHz 4 5 Pass 4 down 2110 MHz 2155 MHz 4 5 Pass 5 down 868 MHz 894 MHz 4 5 Pass 12 down 729 MHz -746 MHz 4 5 Pass 13 down 746 MHz -768 MHz 4 5 Pass Fig. 279: Set up for oscillation detection and mitigation tests in uplink. Note: For this special type of booster under test a stimulating signal is required at the server port to switch the uplink amplifier ON to be able to measure test 5.11.1 oscillation restart (KDB Test Case 7.11.2) Test Report No.: 3-20835062 158 / 187

Fig. 280: Set up for oscillation detection and mitigation tests in downlink. Fig. 281: Band 2 uplink oscillation detection time test result. Test Report No.: 3-20835062 159 / 187

Fig. 282: Band 4 uplink oscillation detection time test result. Fig. 283: Band 5 uplink oscillation detection time test result. Test Report No.: 3-20835062 160 / 187

Fig. 284: Band 12 uplink oscillation detection time test result. Fig. 285: Band 13 uplink oscillation detection time test result. Test Report No.: 3-20835062 161 / 187

Fig. 286: Band 2 downlink oscillation detection time test result. Fig. 287: Band 4 downlink oscillation detection time test result. Test Report No.: 3-20835062 162 / 187

Fig. 288: Band 5 downlink oscillation detection time test result. Fig. 289: Band 12 downlink oscillation detection time test result. Test Report No.: 3-20835062 163 / 187

Fig. 290: Band 13 downlink oscillation detection time test result. Fig. 291: Band 2 uplink restart time test result. Test Report No.: 3-20835062 164 / 187

Fig. 292: Band 4 uplink restart time test result. Fig. 293: Band 5 uplink restart time test result. Test Report No.: 3-20835062 165 / 187

Fig. 294: Band 12 uplink restart time test result. Fig. 295: Band 13 uplink restart time test result. Test Report No.: 3-20835062 166 / 187

Fig. 296: Band 2 downlink restart time test result. Fig. 297: Band 4 downlink restart time test result. Test Report No.: 3-20835062 167 / 187

Fig. 298: Band 5 downlink restart time test result. Fig. 299: Band 12 downlink restart time test result. Test Report No.: 3-20835062 168 / 187

Fig. 300: Band 13 downlink restart time test result. Fig. 301: Band 2 uplink restart attempt test result. Test Report No.: 3-20835062 169 / 187

Fig. 302: Band 4 uplink restart attempt test result. Fig. 303: Band 5 uplink restart attempt test result. Test Report No.: 3-20835062 170 / 187

Fig. 304: Band 12 uplink restart attempt test result. Fig. 305: Band 13 uplink restart attempt test result. Test Report No.: 3-20835062 171 / 187

Fig. 306: Band 2 downlink restart attempt test result. Fig. 307: Band 4 downlink restart attempt test result. Test Report No.: 3-20835062 172 / 187

Fig. 308: Band 5 downlink restart attempt test result. Fig. 309: Band 12 downlink restart attempt test result. Test Report No.: 3-20835062 173 / 187

Fig. 310: Band 13 downlink restart attempt test result. Test Report No.: 3-20835062 174 / 187

5.11.2 Test Procedure for Measuring Oscillation Mitigation or Shutdown For measuring the capability of this special type of booster under test to shut down to mitigate the oscillations we have conducted measurements as described in the specification: - That the booster shut down to mitigate the oscillation and - also the maximum of oscillation as described in KDB 935210 D03 to ensure that the maximum output level of the oscillation does not exceed the minimal output level by 12 db before the booster shut down. The test setup as shown in Fig. 279 and Fig. 280 has been used. All test has been done in 1 db steps as required. Below are summarized the measured results for uplink and downlink oscillation mitigation in terms of maximum oscillation levels found. Note: In some bands and some attenuation steps an immediate shutdown occurred (e.g. band 2: 5 db over maximum gain). Band direction Max Oscillation Power and frequency Min Power within the span and frequency Δ level /dbm Δ level limit /dbm 2 up -79.6 dbm/1889.2 MHz -82.4 dbm /1902.6 MHz 2.8 12 4 up -73.1 dbm/1743.5 MHz -83.9 dbm/1748.84 MHz 10.8 12 5 up -74.3 dbm/836.47 MHz -84.1 dbm/832.84 MHz 9.8 12 12 up -76.5 dbm/705.28 MHz -83.0 dbm/707.74 MHz 6.5 12 13 up -76.2 dbm/784.95 MHz -84.3 dbm/787.13 MHz 8.1 12 2 down -74.6 dbm/1964.43 MHz -84.1 dbm/1962.84 MHz 9.5 12 4 down -71.6 dbm/2128.59 MHz -82.0 dbm/2119.74 MHz 10.4 12 5 down -83.9 dbm/887.01 MHz -85.5 dbm/890.81 MHz 1.6 12 12 down -83.1dBm/744.12 MHz -84.6 dbm/749.99 MHz 1.5 12 13 down -82.7 dbm/751.29 MHz -84.8 dbm/748.84 MHz 2.1 12 Since in band 4 in uplink the overall maximum was found, details of the determination is reported below for this particular band and direction. Test Report No.: 3-20835062 175 / 187

Fig. 311: Band 2 uplink shut down time. Fig. 312: Band 4 uplink maximum oscillation level. Test Report No.: 3-20835062 176 / 187

Fig. 313: Band 4 uplink maximum oscillation level determination. Fig. 314: Band 4 uplink shut down time. Test Report No.: 3-20835062 177 / 187

Fig. 315: Band 5 uplink shut down time. Fig. 316: Band 12 uplink shut down time. Test Report No.: 3-20835062 178 / 187

Fig. 317: Band 13 uplink shut down time. Fig. 318: Band 2 downlink shut down time. Test Report No.: 3-20835062 179 / 187

Fig. 319: Band 4 downlink shut down time. Fig. 320: Band 5 downlink shut down time. Test Report No.: 3-20835062 180 / 187

Fig. 321: Band 12 downlink shut down time. Fig. 322: Band 13 downlink shut down time. Test Report No.: 3-20835062 181 / 187

6. Test System 6.1. System Set Up and Test Procedure The test system used is a semi-automatic system made for testing booster and repeater. As shown in Fig. 323 it consist of a several RF switches, directional couplers, RF sources and a 26.5 GHz spectrum analyzer. All required test scenarios can be created without the need to re-route cable or other RF equipment. All RF paths have been calibrated in respect to the measurement ports (the booster server and donor port) by means of a vector network analyzer. The semi-automatic test procedures capture spectrum analyzer trace results numerically, does take into account the appropriate RF path loss (cable attenuation plus e.g. directional coupler data), and provides a graphical representations of the data at the RF measurements ports. Fig. 323: Complete test system RF routing. Test Report No.: 3-20835062 182 / 187

6.2. Measurement Equipment Equipment Type SN last cal next cal RF source R&S SMU 200A 100754 21.09.2015 22.09.2017 RF source R&S SMU 200A 1001120 18.11.2015 19.11.2017 Spectrum analyzer R&S FSU 200152 16.09.2015 17.09.2017 Network Analyzer Agilent N5230A US43500426 31.03.2015 30.03.2017 Temperature and Humidity measurement Opus 10 DL020 / 00302 26.10.2015 25.20.2016 6.3. Measurement Uncertainty A number of measurements carried out with this test system are based on pure relative measurements: All tests considering a gain are tests, where the uncertainty depends on the repeatability of the RF connections and spectrum analyzer reading repeatability only. To assess this uncertainty contribution some gain measurements have been done by replacing the DUT in by a SMA RF through. The results shown in hence do effectively include the uncertainty of the cable attenuation measurements. Fig. 324: Gain measurement of a RF through below 1 GHz. Test Report No.: 3-20835062 183 / 187

Fig. 325: Gain measurement of a RF through above 1 GHz. In conclusion we estimated the gain uncertainty of: Δ gain < ±0.12 db. For absolute measurements the spectrum analyzer properties determine the uncertainty for frequency and RF power levels. According to the data sheet of the Rohde & Schwarz FSU the following data are applicable: For Frequency it is: Δ f / f < 0.05 pp m + 0.1 ppm / year. For a power uncertainty estimation of the following contributions (in terms of standard deviations σ) are taken into account: nonlinearity at levels > -70 dbm: 0.03 db attenuator switching: 0.07 db relative to reference level: 0.05 db reference level: 0.07 db frequency dependent contribution: 0.10 db / 0.70 db for < 3.6 GHz / 22 GHz. Additionally the relative (RF switching. cable loss uncertainty): 0.20 db eventually add up to an overall RF power uncertainty of: Δ power < ± 0.45 db Δ power < ± 1.1 db for frequencies below 3.6 GHz. and for frequencies up to 22 GHz. Test Report No.: 3-20835062 184 / 187

Annex A: Photographs of Test set up(s) Test Report No.: 3-20835062 185 / 187

Test Report No.: 3-20835062 186 / 187

Annex B: External Photographs of the EUT Test Report No.: 3-20835062 187 / 187