MODELING AND CONTROLLER DESIGN OF A HOT AIR BLOWER SYSTEM KHAIRUL NIZAR SYAZWAN BIN WAN SALIHIN WONG

Similar documents
8-BITS X 8-BITS MODIFIED BOOTH 1 S COMPLEMENT MULTIPLIER NORAFIZA SALEHAN

AN IMPROVEMENT OF VOLTAGE QUALITY IN LOW VOLTAGE DISTRIBUTION SYSTEM USING DYNAMIC VOLTAGE RESTORER ABBA LAWAN BUKAR UNIVERSTI TEKNOLOGI MALAYSIA

THE INFLUENCE OF THE DISCORD IN BUILDING DISTINCTIVNESS ON THE PERCEPTION OF TEHRAN S CITY IDENTITY

PERCEIVED IMAGE OF CHINESE TOURIST ON MALACCA WORLD HERITAGE SITES LIEW JAN FUI UNIVERSITI TEKNOLOGI MALAYSIA

THE APPLICATION OF FINITE ELEMENT METHOD IN BURGERS EQUATION NURUL AKIDAH BINTI ADNAN

DEVELOPMENT OF LCD DISPLAY DATA CAPTURING SYSTEM FOR INDUSTRIAL PURPOSE OOI YI FONG

ENHANCED ASPECT LEVEL OPINION MINING KNOWLEDGE EXTRACTION AND REPRESENTATION MAQBOOL RAMDHAN IBRAHIM AL-MAIMANI UNIVERSITI TEKNOLOGI MALAYSIA

THE TRANSLATION OF FIGURATIVE LANGUAGE IN KAZI NAZRUL ISLAM S POEMS SHAFIA AKHTER

ISMAEEL OTUOZE AUDU. A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Architecture

DETERMINISTIC AUTOMATIC TEST PATTERN GENERATION FOR BUILT-IN SELF TEST SYSTEM

INVESTIGATING MULTIPLE FAN BEAM PROJECTION TECHNIQUE USING OPTICAL FIBRE SENSOR IN PROCESS TOMOGRAPHY

COLOR SORTING SYSTEM WITH ROBOT ARM YEOW KHANG YUNG

ABSTRAK. Modeling Language (UML) yang terdiri dar i use cases, gambaraj ah aktiviti,

PERSEPSI PELAJAR TERHADAP KUALITI PERSEKITARAN DALAMAN (IEQ) PERPUSTAKAAN RABIYATUL AKMA BINTI DAUT

CULTURAL UNTRANSLATABILITY IN TO KILL A MOCKINGBIRD TRANSLATED INTO INDONESIAN BY FEMMY SYAHRANI

DEE2034: DIGITAL ELECTRONICS

UNIVERSITI PUTRA MALAYSIA TOWARD A PRAGMATIC CONCEPTION OF METAPHOR CHARBATI YOUSSEF FBMK

UNIVERSITI MALAYSIA PERLIS. PLT106 Digital Electronics [Elektronik Digital]

A STYLISTICS ANALYSIS IN FARHAT ABBAS TWITTER CRITICISM TO AHMAD DHANI ON ABDUL QODIR JAELANI S TOL JOGORAWI ACCIDENT CASE THESIS

ANALYSIS OF SENTENCE STRUCTURE ON KINNEY S DIARY OF A WIMPY KID: THE LAST STRAW

SITUATION TYPES IN THE NOVEL HARRY POTTER AND THE PRISONER OF AZKABAN A THESIS BY: MASYITA RISMADI REG. NO

CONVOLUTION ENCODER FOR FORWARD ERROR CORRECTION AHMAD TERMIZI BIN MOHD AZMI

CHAPTER-9 DEVELOPMENT OF MODEL USING ANFIS

ASNT8140. ASNT8140-KMC DC-23Gbps PRBS Generator with the (x 7 + x + 1) Polynomial. vee. vcc qp. vcc. vcc qn. qxorp. qxorn. vee. vcc rstn_p.

On the design of turbo codes with convolutional interleavers

Guidelines for Specification of LED Lighting Products 2010

ASNT8142-KMC Generator of DC-to-23Gbps PRBS with Selectable Polynomials

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions.

FIGURATIVE EXPRESSIONS IN JOHN STEINBECK S THE PEARL A THESIS BY: ENY NOVEYONA PURBA REG. NO

DEVELOP A LINEAR MEASUREMENT SENSOR SYSTEM ANG SEI QI

Taklimat Penerbitan Buku Penyelidikan 24 Mac 2014

8 DIGITAL SIGNAL PROCESSOR IN OPTICAL TOMOGRAPHY SYSTEM

Implementation of a turbo codes test bed in the Simulink environment

DESIGN METHOD TO TRANSMIT AND RECEIVE SOURCE SYNCHRONOUS SIGNALS USING SOURCE ASYNCHRONOUS TRANSCEIVER CHANNELS

UNIVERSITI PUTRA MALAYSIA COPYRIGHT UPM OPTICAL AND ELECTRICAL PROPERTIES OF ORGANIC AND POLYMER LAYERS OF LIGHT EMITTING DIODE STRUCTURE

DESIGN OF A LOW COST DIGITAL LOCK

Optimization of Multi-Channel BCH Error Decoding for Common Cases. Russell Dill Master's Thesis Defense April 20, 2015

AN IMPROVISED THREE-DIMENSIONAL SLOPE STABILITY ANALYSIS BASED ON LIMIT EQUILIBRIUM METHOD BY USING PARTICLE SWARM OPTIMIZATION ROOHOLLAH KALATEHJARI

Design of Fault Coverage Test Pattern Generator Using LFSR

Lab 2, Analysis and Design of PID

Retiming Sequential Circuits for Low Power

POLITENESS STRATEGIES USED BY DEDDY CORBUZIER IN INTERVIEWING ENTERTAINER AND NON-ENTERTAINER IN HITAM PUTIH TALK SHOW.

data and is used in digital networks and storage devices. CRC s are easy to implement in binary

Model Identification of Displacement Controlled Linear Actuator in Hydraulic System

REDUCING DYNAMIC POWER BY PULSED LATCH AND MULTIPLE PULSE GENERATOR IN CLOCKTREE

UNIVERSITI PUTRA MALAYSIA NEW TUNABLE ALL-FIBER OPTICAL COMB FILTER BASED ON MACHZEHNDER INTERFEROMETER

O/144 - c Tankh DEVELOP SEPARATION. E FOR IN-VEI-nuLb lnr V AINIVthNi s Y STEM (IVIS) LEE HOW CHEH

Design Project: Designing a Viterbi Decoder (PART I)

MANAGING POWER SYSTEM FAULTS. Xianyong Feng, PhD Center for Electromechanics The University of Texas at Austin November 14, 2017

Analysis of Different Pseudo Noise Sequences

UNIVERSITI PUTRA MALAYSIA MEANING AND VALUE OF HUMOR IN THE LIVES OF ELDERLY MALAYS IN PUTRAJAYA, MALAYSIA

ANALYSIS OF PERFORMANCE PRACTICE THROUGH COMPARISON OF MULTIPLE RECORDINGS: THE SONATA NO.1 IN C (OP.1) BY JOHANNES BRAHMS ( ) LEE SEOW PHING

DESIGN VISION SYSTEM TO RECOGNIZE THE SCRIBED NUMBER ON THE WAFER LIAW GEOK PHENG

ECE 402L APPLICATIONS OF ANALOG INTEGRATED CIRCUITS SPRING No labs meet this week. Course introduction & lab safety

An Improved Fuzzy Controlled Asynchronous Transfer Mode (ATM) Network

ESCAPISM IN TENNESSEE WILLIAMS PLAY THE GLASS MENAGERIE

VLSI Test Technology and Reliability (ET4076)

A Comparison of Methods to Construct an Optimal Membership Function in a Fuzzy Database System

Bit Swapping LFSR and its Application to Fault Detection and Diagnosis Using FPGA

WELDING CONTROL UNIT: TE 450 USER MANUAL

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions.

Research Article. ISSN (Print) *Corresponding author Shireen Fathima

International Journal of Engineering Research-Online A Peer Reviewed International Journal

for Digital IC's Design-for-Test and Embedded Core Systems Alfred L. Crouch Prentice Hall PTR Upper Saddle River, NJ

Welcome to the UBC Research Commons Thesis Template User s Guide for Word 2011 (Mac)

Visual And Verbal Communication In Michael Jackson s Video Clip Entitled Black Or White. Abstrak

AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS

UNIVERSITI PUTRA MALAYSIA THE EFFECT OF TEXTUAL INPUT VERSUS ICONIC INPUT IN COMPUTER ASSISTED INSTRUCTION ON INTERVAL RECOGNITION

SUBORDINATIONS IN PAULO COELHO S NOVEL BRIDA

Instrument Recognition in Polyphonic Mixtures Using Spectral Envelopes

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

PCB Error Detection Using Image Processing

Testing and Characterization of the MPA Pixel Readout ASIC for the Upgrade of the CMS Outer Tracker at the High Luminosity LHC

UNIVERSITI PUTRA MALAYSIA MUSICAL AND TEXTUAL ANALYSES OF LULLABIES AND FOLKTALES OF DUSUN LABUK AT EASTERN SABAH, MALAYSIA

Evaluating Oscilloscope Mask Testing for Six Sigma Quality Standards

Interactive Virtual Laboratory for Distance Education in Nuclear Engineering. Abstract

Investigation of Digital Signal Processing of High-speed DACs Signals for Settling Time Testing

An Efficient Low Bit-Rate Video-Coding Algorithm Focusing on Moving Regions

System Identification

ET-5050x-BF1W Datasheet

BASE-LINE WANDER & LINE CODING

A Pseudorandom Binary Generator Based on Chaotic Linear Feedback Shift Register

Reduction of Clock Power in Sequential Circuits Using Multi-Bit Flip-Flops

A DESCRIPTION OF MAIN CHARACTERS IN JAMES ROLLINS S NOVEL

AN ANALYSIS OF INTRINSIC ELEMENTS IN CHARLES DICKENS

PEP-I1 RF Feedback System Simulation

THE INTERPRETATION OF JOHN DONNE POEMS

FPGA IMPLEMENTATION AN ALGORITHM TO ESTIMATE THE PROXIMITY OF A MOVING TARGET

Modified Sigma-Delta Converter and Flip-Flop Circuits Used for Capacitance Measuring

IoT Based Controlling and Monitoring of Smart City

DDA-UG-E Rev E ISSUED: December 1999 ²

An Effective Filtering Algorithm to Mitigate Transient Decaying DC Offset

CABLE THEFT MONITORING SYSTEM USING GSM MODEM (CTMS) SYAZWAN BIN MOHD NAZRI UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TEST PATTERNS COMPRESSION TECHNIQUES BASED ON SAT SOLVING FOR SCAN-BASED DIGITAL CIRCUITS

Triple RTD. On-board Digital Signal Processor. Linearization RTDs 20 Hz averaged outputs 16-bit precision comparator function.

Spectrum Analyser Basics

RX40_V1_0 Measurement Report F.Faccio

Efficient Architecture for Flexible Prescaler Using Multimodulo Prescaler

A Real Time Infrared Imaging System Based on DSP & FPGA

CMOS Design Analysis of 4 Bit Shifters 1 Baljot Kaur, M.E Scholar, Department of Electronics & Communication Engineering, National

Transcription:

i MODELING AND CONTROLLER DESIGN OF A HOT AIR BLOWER SYSTEM KHAIRUL NIZAR SYAZWAN BIN WAN SALIHIN WONG A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical - Mechatronics & Automatic Control) Faculty of Electrical Engineering Universiti Teknologi Malaysia JUNE 2014

Dedicated to my beloved father, mother and family for their never ending support iii

iv ACKNOWLEDGMENTS First First and foremost, I would like to express my sincere gratitude and appreciation to my supervisor, Professor Dr Mohd Fua'ad Rahmat for his invaluable and critical comment throughout this project. His guidance and assistance have given me a strong basis in handling this project. I would like to take this opportunity to thank my beloved father, Wan Salihin Wong Abdullah, my beloved mother, Zuliani Ghazali and my beloved family for their never ending support. Their supports at times of need are crucial to me. Finally, i would like to extend my appreciation to my course mates for discussing and supporting each other throughout the whole time.

v ABSTRACT This research describes the modeling and controller design of a hot air blower system (HABS). The purpose of this research is to obtain model estimation best fit over 90%. Furthermore, the purpose of this research is to design controllers which the overshoot percentage close to zero percent and obtain a shorter rise time compare to current hot air blower system. The research divided into 3 area of focus, first focus on the development of Pseudo-Random Binary Sequences (PRBS) controller prototype to use as a System Identification Tool. The development of the controller was designed using PIC controllers. Testing was being conducted to ensure the controller is fully operational. Next, the output data from the hot air blower system (HABS) was captured for analysis. Second, the research focused on the modeling of a hot air blower system using System Identification and Estimation approach. By obtaining the mathematical model of a hot air blower system, tuning can be made possible. The output data was being run on MATLAB to compare between several of model structures. Model structures selected for this research are Auto-Regressive with exogeneous inputs (ARX), Auto-Regressive Moving-Average with exogeneous inputs (ARMAX), Output Error (OE) and Box Jenkins (BJ). Result shows the exogeneous inputs (ARX) obtained the highest best fit which best resemble the dynamic system of a hot air blower system (HABS) and was selected to be implemented in the controllers. Third area of focus is the simulation design of controllers; controllers which were selected for this research were PID controllers, Self-tuning controllers and Fuzzy controllers. The result obtained are shown in the Result and Analysis chapter, all controllers obtained zero overshoot percentage and have a shorter rise time then the current hot air blower system. Results showed the different in rise time, peak time, delay time and percentage overshoot varies depending on the controller. So, depending on the purpose in the industrial application, engineers can pick any controller to meet their desire task.

vi ABSTRAK Kajian ini menerangkan model dan reka bentuk pengawal sistem penghembus udara panas. Tujuan kajian ini adalah untuk mendapatkan anggaran model terbaik lebih daripada 90%. Tambahan pula, tujuan kajian ini adalah untuk mereka bentuk pengawal yang peratusan terlajak hampir dengan sifar peratus dan untuk memendekan masa kenaikan berbanding dengan sistem penghembus udara panas. Kajian ini dibahagikan kepada 3 bahagian, fokus pertama kepada pembangunan Pseudo-Random Binary Sequences untuk digunakan sebagai system alat Pengenalan. Pembangunan pengawalan telah direka menggunakan pengawalan jenis PIC. Ujian telah dijalankan untuk memastikan pengawal itu beroperasi sepenuhnya. Seterusnya, data output dari sistem penghembus udara panas telah disimpan untuk analisis. Kedua, kajian ini memberi tumpuan kepada sistem penghembus udara panas menggunakan Sistem Pengenalan dan pendekatan Anggaran. Dengan mendapatkan model matematik sistem blower udara panas, pembaikan boleh dijalankan. Data akhir dijalankan dalam MATLAB untuk membandingkan antara beberapa struktur model. Struktur model dipilih untuk kajian ini adalah Auto-Regressive with exogeneous inputs (ARX), Auto-Regressive Moving-Average with exogeneous inputs (ARMAX), Output Error (OE) dan Box Jenkins (BJ). Keputusan menunjukkan Auto-Regressive with exogeneous inputs (ARX) yang memerolehi model tertinggi yang terbaik menyerupai sistem dinamik sistem penghembus udara panas dan telah dipilih untuk dilaksanakan dalam sistem pengawalan. Tumpuan ketiga tumpuan adalah reka bentuk simulasi system pengawalan; pengawal yang telah dipilih untuk kajian ini adalah pengawalan PID, pengawalan Self-Tuning dan pengawalan Fuzzy. Keputusan menunjukkan yang berbeza dalam masa kenaikan, masa puncak, masa tunda dan peratusan terlajak bergantung bergantung pada pengawalan. Jadi, bergantung kepada tujuan dalam perindustrian, jurutera boleh memilih mana-mana pengawalan untuk memenuhi tugas dan keinginan mereka.

vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS ii iii iv v vi vii x xi xv 1 INTRODUCTION 1 1. 1 Introduction 1 1. 2 Problem Statement 3 1. 3 Objective 4 1. 4 Scopes of project 4 1. 5 Thesis Organization 5 2 LITERATURE REVIEW 6 2. 1 Literature Review 6 3 MATHEMATICAL MODEL 8 3. 1 Experimental Setup 8 3. 2 Modeling and Controller Design 10 3. 3 Controller Design 13 3.3.1 PID controller 13

viii 3.3.2 Self-Tuning controller 16 3.3.3 Fuzzy controller 17 4 OPTIMIZATION PROBLEM 19 4. 1 Introduction 19 4. 2 Prototype setup stage 19 4.2.1 Step 1: MATLAB Simulink diagram 19 4.2.2 Step 2: Construct Hardware using Proteus 22 4.2.3 Step 3: Prototype Pseudo Random Binary Sequence signals (PRBS) parts 4.2.4 Step 4: Programming 26 4.2.5 Step 5: Capture Output using oscilloscope 27 4.2.6 Step 6: Analysis RLC data to validate the prototype functionality 4. 3 Data collecting and analysis of a hot air blower stage 4.3.1 Step 1: Capture data using the PRBS prototype development 4.3.2 Step 2: Model presentation using different model structure 4.3.3 Step 3 & Step 4: Parameter Estimation using the first 500 data 4.3.4 Step 5 & Step 6: Model Validation 37 4. 4 Controller simulation design using MATLAB 37 4.4.1 PID controller 38 4.4.2 Self-Tuning controller 40 4.4.2 Fuzzy controller 42 4.4.2 Comparison between controllers and reference model 5 CONCLUSION 48 23 28 30 30 32 35 46 REFERENCES 50

APPENDIX 51 ix

x LIST OF TABLES TABLE NO. TITLE PAGE 3.1 Effects of increasing a parameter independently 14 3.2 Ziegler-Nichols formula to calculate, and 15 4.1 Menu selection on LCD 24 4.2 Comparison Controller analysis 47

xi LIST OF FIGURES TABLE NO. TITLE PAGE 1.0 Various applications of a hot air blower in industrial 2 3.1 PT 326 Process Trainer system 10 3.2 Methods analysis of a hot air blower system 11 4.1 MATLAB simulation for feedback 1 7 20 4.2 MATLAB simulation for feedback 4 7 20 4.3 Output MATLAB simulation for feedback 1 7 20 4.4 Output MATLAB simulation for feedback 1 7 21 4.5 Hardware simulation using Proteus 22 4.6 Microcontroller chip PIC16F877a 22 4.7 Voltage regulator 23 4.8 Hardware construction 23 4.9 RLC circuits 25 4.10 Algorithm of the Pseudo Random Binary Sequence signals 26 4.11 Output oscilloscope n is 7 and feedback 1 7 27 4.12 Output oscilloscope n is 7 and feedback 1 7 27 4.13 Data and model info 28 4.14 Poles and Zeros 29 4.15 Model Selection Criterion 29 4.16 PRBS overall block diagram 31 4.17 Pseudo Random Binary Sequence signals (PRBS) signal 31 input 4.18 Output signal captured by using oscilloscope 32 4.19 System Identification Tool 33 4.20 Recursive method for system identification 34

xii 4.21 Model output 37 4.22 PID controller Simulink design 38 4.23 Graph comparison between PID controller and reference 39 model 4.24 Self-Tuning controller Simulink design 40 4.25 Graph comparison between Self-Tuning controller and 41 reference model 4.26 Fuzzy Editor 42 4.27 Membership Function Editor: Input1 43 4.28 Membership Function Editor: Input2 43 4.29 Membership Function Editor: Output 44 4.30 Fuzzy controller Simulink design 45 4.31 Graph comparison between Fuzzy controller and reference 35 model 4.32 Graph comparison between various controllers and reference model 46

xv LIST OF SYMBOLS D - diameter h - heat transfer coefficient k - thermal conductivity l - length R - resistance T - temperature U - overall heat transfer coefficient

1 CHAPTER 1 INTRODUCTION 1.1 Introduction Hot-air blowers are used in all areas in which hot air is conceivable in the manufacturing process: In the automobile industry, the food industry, the packaging industry, in mechanical engineering and etc. Figure 1.0 is examples of hot air blower application which are used in various industrial. Hot air blower applications include wrapping packaging, drying paint, sealing, heating ball bearing and a finishing touch on the items. Many people still underestimate the importance of having an adequate temperature control in place, but failing to have one could mean higher chances of damaging the goods. In the industrial application, temperature control is a process in which change of temperature of a space is measured or otherwise detected, and the passage of heat energy into or out of the space is adjusted to achieve a desired average temperature. Further enhancements using the accumulated error signal and the rate at which the error is changing are used to form more complex Controllers which is the form usually seen in industry. Increasing the number of hot air blower in the industrial application, lead researcher to boost productivity and efficiency without neglecting the aspect of safety and power consumption.

2 To accurately control process temperature without extensive operator involvement, a temperature control system relies upon a controller, which accepts a temperature sensor such as a thermocouple or RTD as input. It compares the actual temperature to the desired control temperature, or set point, and provides an output to a control element. The controller is one part of the entire control system, and the whole system should be analyzed in selecting the proper controller. Figure 1.0 Various applications of a hot air blower in industrial

3 1.2 Problem Statement Hot air blower plays in an important role in the industry. Hot air blower use highly amount of electricity to run during the process. In order to increase safety, quality and reduce cost, developing controllers for the current system will benefit the industry and also the environment. So the focus in design area is to avoid overshoot in temperature and shorter the rise time. This approach will benefit in a long run where cost electricity can be reduce significantly and maximize the quality of goods in the same time. The main component of the hot air blower is the temperature control; temperature control will be a challenge since it requires time to respond to temperature. Furthermore, to optimize the current system, faster response time need to be purposed. Hence, in order to optimize, researcher need to achieve the model of the system which best represent the system dynamic. With the aid of software, trial and error way can be avoided to obtain results and it helps to save cost. In order to enhance the current system, a Pseudo-Random Binary Sequences (PRBS) controller prototype needs to be designed in order to obtain mathematical model. The PRBS controller needs to be careful design to fulfill the requirement 0.08 second time sampling for this research. Besides, modeling of hot air blower using System Identification and Estimation approach using the normal GUI approach is time consuming. Finding a way to speed up the estimation and trying all possible combination parameter will be vital to the research. Besides, temperature control in the real world requires time to transfer energy into other particles. The respond time taken for heat to transfer takes longer than other controls. For sensitive goods, the temperature control shall minimize the percentage overshoot compare to other heavy industries which allow some overshoot to happen.

4 1.3 Project Objective Objectives of this project are 1) Develop a prototype Pseudo-Random Binary Sequences (PRBS) to use as a system identification tool. 2) Modeling of hot air blower using System Identification and Estimation approach. 3) Design and testing several controllers for a Hot Air Blower System. 1.4 Project Scope and Limitation This paper consists of three areas of studies. First, the hardware development of the PRBS and injecting PRBS input signal to a Hot Air Blower system. Second, Various model structures is being tested and analyzed to best represent the dynamic model of the system. Both mathematical models are used to estimate the temperature of the pipeline. This is to obtain the Best Fit Curve experimental model which is above 90%. Third, from the model obtained several controllers are simulated by using MATLAB software to best describe a Hot Air Blower system. The result is then shown and discussed. During the duration of the research author encountered some limitation, one of it was the limited size memory of the microcontroller used. The memory size used is 256 kb which only fit 5 series of PRBS. By using a bigger memory size, the controller can fit a lot more series and enhance the studies of the project. Second limitation was the study on nonlinear System Identification of a hot air blower system, the nonlinear model structure used was Nonlinear Auto- Regressive with exogeneous (NARX) model structure. The research went to a stop after author cannot find suitable software to run the nonlinear model structure.

5 1.5 Thesis Organization The preceding sections briefly summarized the introduction and objectives of the research work. This section presents the outline of the thesis. The remainder of the theses is organized into five main chapters. Chapter 2 discusses literature review on modeling and controller design of a hot air blower. It also gives a summary on the approach and the direction of the research. The chapter will tell the overview on the development of the Pseudo Random Binary Sequence (PRBS) prototype, the use of this controller to model a mathematical and the design of controllers to improve the current hot air blower system. The Pseudo Random Binary Sequence (PRBS) prototype was then discussed in detail in Chapter 3. In this chapter the development of the prototype was discussed from start to the end in a deliberate way. For the estimation model by using system identification tool from MATLAB, the approach on how the estimation model was being performed on the software. Then this chapter describes the design and implementation of a linear controller for a hot air blower system. The implementation focused on to eliminates overshoot with the best settling time. Chapter 4 showed the result and analysis of the research by using the method discussed previously. Figures of the controllers, graph outputs and screenshots were displayed in the chapter for easy visual. While Chapter 5 is the conclusion and summarization on the finding discovery during the research.

50 References 1. [1]Adrian, C.; Corneliu, A.; Mircea, B. "The simulation of the adaptive systems using the MIT rule", 10th WSEAS Int. Conf. on MATHEMATICAL METHODS AND COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING (MMACTEE'08), Sofia, Bulgaria, May 2-4, 2008 2. [2] J.A. Vazquez Feijoo, K.; Worden; N.J. Rodríguez, J.; Pozos Osorio,P.; Matadamas O. Analysis and control of nonlinear systems with DC terms, Springer Netherlands Nonlinear Dynamics, Volume: 58, Issue : 4, Year: 2012, Pp: 753-775. 3. [3] Kamaruddin, T.N.A.T. ; Mat Darus, I.Z. System Identification for Internal Combustion Engine Model, Modelling Symposium (AMS), 2012 Sixth Asia, Year:2012, Pp: 17 22. 4. [4] Sulaiman, S.F.; Abdul Rahim, H.R.; Johari; Osman K.; Zainal Abidin, A.F.; Rahmat, M.F. Optimizing the Process Parameters of GMV Controller by PSO Tuning Method, Australian Journal of Basic and Applied Sciences, Volume: 7, Issue: 9, Year: 2013, Pp : 44-50. 5. [5] Wang, Z; Yang, J; Ahn, T. The Design of Self-tuning Strategy of Genetically Optimized Fuzzy-PI Controller for HVDC System, 10th International Conference, KES 2006, Bournemouth, UK, Year: 2006, Pp: 52-59. 6. [6] Zabet, K.; Haber, R. Equivalence of PI(D) and predictive functional control for aperiodic processes without dead time, Carpathian Control Conference (ICCC), 2011 12th International, Year: 2011, PP: 459 464.