The telepathology and teleradiology network in Croatia

Similar documents
Imaging systems and Telemedicine. Dr. Adrian Mondry

How to Manage Color in Telemedicine

A Noble Identification System for Tumors and Implementation

Technical aspects of telepathology with emphasis on future development

Glass slides containing tissues

Fumitaka Okumura CDI Partner. The promised 8K/16K industry in Japan. A 8K/16K bottleneck is transmission technology.

Imagine... the new standard in routine microscopy. VisionTek. Live Digital Microscope

Design and Implementation of a Digital Teleultrasound System for Real-Time Remote Diagnosis

Part III: How to Present in the Health Sciences

DICOM medical image watermarking of ECG signals using EZW algorithm. A. Kannammal* and S. Subha Rani

Data-processing and news-production systems of Bulgarian National Television

Reading Room of The Library of the Academy of Sciences

Telemedicine with Digital Video Transport System over the Korea-Japan Cable. Network

Digital picture transmission between Antarctica and India

P1: OTA/XYZ P2: ABC c01 JWBK457-Richardson March 22, :45 Printer Name: Yet to Come

We Believe the Possibilities. Case Study

Vascular. Development of Trinias FPD-Equipped Angiography System. 1. Introduction. MEDICAL NOW No.73 (2013.2) Yoshiaki Miura

Digital Pathology, The Heart of the Lab, The Birmingham Heartlands Experience. Dr Bruce Tanchel Heart of England NHS Foundation Trust, Birmingham, UK

Appalachian College of Pharmacy. Library and Learning Resource Center. Collection Development Policy

Clinical Study Troublesome Tinnitus in Children: Epidemiology, Audiological Profile, and Preliminary Results of Treatment

Telemedicine system based on radio cell phone technology

Coronis 5MP Mammo. The standard of care for digital mammography

A Mobile Tele-Radiology Imaging System with JPEG2000 for an Emergency Care

Core ICT indicators on access to, and use of, ICTs by households and individuals

Tele-Medicine Focusing on the future. Image and data ar Seize the

Tele-Education Postgraduate Education

INSTRUCTIONS FOR AUTHORS

DICOM. image protocol

Hospital Wide. Healthcare Display Solutions DICOM Displays, Large Screen Displays and Projectors

CARESTREAM DIRECTVIEW Elite CR System

I 1 CASE STUDY. AccorHotels SAT. Kathrein Solutions for Hotels and Guest Houses

ADS Basic Automation solutions for the lighting industry

ISO 2789 INTERNATIONAL STANDARD. Information and documentation International library statistics

Initial Experience With Automatic Image Transmission to an Intensive Care Unit Using Picture Archiving and Communications System Technology

David Castrillo Manager Spain-Portugal

Nio. Industry-standard diagnostic display systems

Communications in Japan

VisionTek live digital microscope

Guide to Network Video Applications AXIS 2120

SAMPLE COLLECTION DEVELOPMENT POLICY

NEW APPROACHES IN TRAFFIC SURVEILLANCE USING VIDEO DETECTION

The Diagnosis of Small Solitary Pulmonary Nodule:

Smart Traffic Control System Using Image Processing

Integration of Virtual Instrumentation into a Compressed Electricity and Electronic Curriculum

Humor and Laughter May Influence Health: II. Complementary Therapies and Humor in a Clinical Population

ISSN (PRINT): , (ONLINE): , VOLUME-5, ISSUE-4,

CARESTREAM DIRECTVIEW Elite CR System

All-in-one solutions For applications with imaging challenges, we offer a wide range of TDI solutions.

A bibliometric analysis of publications by staff from Mid Yorkshire Hospitals NHS Trust,

TCF: Hybrid fibre coax systems Online course specification

Collection Development Policy. Bishop Library. Lebanon Valley College. November, 2003

AN EXPLORATION OF THE BENEFITS OF MIGRATION TO DIGITAL BROADCASTING

IJMIE Volume 2, Issue 3 ISSN:

Agilent I 2 C Debugging

INSTRUCTIONS FOR AUTHORS

1ms Column Parallel Vision System and It's Application of High Speed Target Tracking

Do we still need bibliographic standards in computer systems?

Tranformation of Scholarly Publishing in the Digital Era: Scholars Point of View

loss in frame rate. 3. Color flow with capability of automatically picking up color flow as a function of focal depth. 4. Color Angiography.

2018 Survey Summary for Storage in Professional Media and Entertainment

RSNA 2006 November 26 to December 1 Chicago. Guest author for ImPACT Dr. Koos Geleijns, Medical Physicist, Leiden University Medical Center.

S M A R T U LT R A S O U N D

HEVC: Future Video Encoding Landscape

Display Quality Assurance: Considerations When Establishing a Display QA Program. Mike Silosky, M.S. 8/3/2017

Understanding Compression Technologies for HD and Megapixel Surveillance

Request for Proposals

Clarity and confidence. Raising the bar in diagnostic imaging with Barco radiology and mammography displays

What is a Visual Presenter? Flexible operation, ready in seconds. Perfect images. Progressive Scan vs. PAL/ NTSC Video

Memento of the post-mortem

PRESS RELEASE. South-East European Digital Television SEE Digi.TV

Tuesday, Dec 3rd 10:15 to 11:00 IHE Classroom at InfoRAD at RSNA 2002.

Information Products in CPC version 2

Understanding Multimedia - Basics

Network Infrastructure for the Television beyond 2000

Associate of Applied Science Medical Assistant. McLENNAN COMMUNITY COLLEGE

INTERNATIONAL TELECOMMUNICATION UNION

NEUROSURGICAL ENCYCLOPEDIA- ENCYCLOPEDIA NEUROCHIRURGICA INSTRUCTIONS FOR AUTHORS Contact : gdechambenoit(at)neurochirurgie.

Barco surgical displays. High-accuracy visualization solutions for surgery and endoscopy

From operating theatre to operating studio visualising surgery in the age of telemedicine

Acoustics H-HLT. The study programme. Upon completion of the study! The arrangement of the study programme. Admission requirements

Instructions for Submission of Journal Article to the World Hospitals and Health Services Journal

University of Groningen. Tinnitus Bartels, Hilke

Digital Terrestrial HDTV Broadcasting in Europe

Advanced telemedicine project in Asia-Pacific and possible collaboration with Europe:

Patient centric Medical Database with Remote Urinalysis Test

MULTI-CHANNEL CALL RECORDING AND MONITORING SYSTEM

HOW TO DELIVER OMNICHANNEL CUSTOMER ENGAGEMENT, TODAY! , Genesys Telecommunications Laboratories, Inc. All rights reserved.

Positive Interaction of Users and Librarians in Croatian Public Libraries

Solutions to Embedded System Design Challenges Part II

Instructions for authors

The Joint Transportation Research Program & Purdue Library Publishing Services

JNN. Instructions for Authors. I. General policy. II. Manuscript Preparation

1 Feb Grading WB PM Low power Wireless RF Transmitter for Photodiode Temperature Measurements

What are Bibliometrics?

IOT BASED SMART ATTENDANCE SYSTEM USING GSM

Development of Digital TV in Europe

Role of Color in Telemedicine Applications. Elizabeth A. Krupinski, PhD

Transparent Computer Shared Cooperative Workspace (T-CSCW) Architectural Specification

2-4 NOVEMBER 2016, YAOUNDE CAMEROON

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Transcription:

223 The telepathology and teleradiology network in Croatia S. Seiwerth and Z. Danilovic Institute of Pathology, Medical Faculty, University of Zagreb, Croatia Telepathology as a demanding branch of telemedicine poses a real challenge to experts. The introduction of telepathology in underprivileged countries with poor infrastructure and low health-care budget is a difficult task. On the other hand these countries would mostly benefit by introducing telemedicine/telepathology. In our experience it is possible to build an efficient telepathology/teleradiology network using analogue telephone links and still image transmission, and a store and forward mode of operation. This experience is based on the application of telepathology in Croatia for seven years leading to a national teleradiology network. In this paper the ideas, development and software solutions in the process of establishing a national telepathology and teleradiology network are highlighted. Keywords: Telepathology, Croatia, teleradiology, still image transmission 1. Introduction The technological level of communication infrastructure (analogue telephone links versus ISDN versus broadband) needed to introduce telemedicine in general and telepathology in particular is a matter of discussion. The some holds true for the feasibility and adequacy of different operation modes (dynamic versus static; interactive versus store and forward) [1,3,6,13 17,22]. Croatia with its specific geographical shape and focal distribution of medical facilities seems to be a country that could greatly benefit from the introduction of telemedicine. This idea was greatly fostered by the war 1991 1995. During this time large parts of national territory were under Serb control and numerous vital communication routes were closed. The De- * Corresponding author: Ass. Prof. Sven Seiwerth M.D., Ph.D., Institute of Pathology Medical Faculty University of Zagreb, Salata 10, Croatia. Tel.: +385 1 45 66 977/980; Fax: +385 1 46 83 829. partments of pathology equipped with relatively few, sometimes little experienced staff members and some of them working in isolated or hardly accessible hospitals (like Dubrovnik), felt this need very strongly. After some experimental work during 1993, the concept of telepathology in Croatia was launched [2,4]. Contemporary to this work, a project (supported by the Ministry of Science) with the scope of telepathology as a basis for Telemedicine started. The technical prerequisites, inherited from disintegrated Yugoslavia, were poor: no other infrastructure except the plain old telephone system (POTS) was available. Most of the hospitals, university hospitals and university buildings had analogue, operator driven switchboards. The development of adequate software seemed to be the next important steps. A system should be developed which would be able to function under the given, rather primitive circumstances. In addition, it should be the adaptable to future technical developments [2,8,9]. It became obvious that this task could only be performed in a close cooperation between medical and computer experts working on the spot. To keep scientific enthusiasm in realistic borders, the cooperation of an university staff and a small, profit-based company (VAMS, Zagreb) seemed to be a good solution. These efforts led at the beginning to a telepathology network, and few years later to a national teleradiology network. The aim of this paper is to highlight the concepts and tools of the enterprise. 2. Concept of telepathology in Croatia Being confronted with the unpleasant situation of war, enemy control areas, isolated hospitals, poor infrastructure and critical finances, the idea of introducing a high-technological tool like telemedicine seemed quite ambitious. The first system in use was a derivation of a custom-made image analyzer. The PC-based system had all equipment and tools required for image acquisition and the possibility to store image files. A simple image transmission program, using a Analytical Cellular Pathology 21 (2000) 223 228 ISSN 0921-8912 / $8.00 2000, IOS Press. All rights reserved

224 S. Seiwerth and Z. Danilovic / The telepathology and teleradiology network in Croatia whiteboard and enabling interactive chat mode was added. Voice communication was possible using a separate telephone line. Based on the experiences working with this system a concept to develop a national telepathology network was elaborated. The geographical and socio-political situation was accounted for. The future network was planed hierarchically with regional centers (Osijek, Rijeka and Split) and a national center in Zagreb. A close cooperation with the newly formed Croatian tumor bank was planed. All communication was planed on POTS, using interactive mode with still image transmission. Quite soon a telepathology network including 6 workstations, comprising four teaching and two peripheral hospitals was established [4]. Meanwhile, the government started to build an optical cable network throughout the country, as a basis for introducing ISDN and ATM. It became obvious that the technical basis for telepathology/telemedicine had to be improved and the development of new software solutions had to be considered. The introduction of the Internet as a powerful tool in information exchange created completely new possibilities and opened new fields of investigation [1]. Trough the gathered experience and the new emerging technologies the store and forward mode of operation came into focus of our interest, instead of the interactive mode implemented in the beginning of our studies. The need for further development of the whole telepathology software by adding new programs, such as an multifunctional image database, was also obvious. 3. Software solutions To meet our established needs a bi-module telepathology system was created. It consists of a patient database with multimedia functions (ISSA) and a telepathology module (PHAROS) working on a PC under Windows environment [7,9,10]. ISSA is a patient database allowing simultaneous storage of textual (history, status), alphanumerical (laboratory) or images patients data as well as sound/ voice (Fig. 1). The images can be captured either directly from source (DICOM standard) or by a camera. CT, MR, US, as well as plain radiographs, images of macroscopic specimens and histological slides can be acquired. An additional tool enables the acquisition of live image sequences ( cine loop ) [25]. One of the major drawbacks of the classical store and forward telepathology, as established by different authors, is the inability of the receiving side to scan the whole specimen. Thus, the consultant has to relay upon the judgement and choice of the referring pathologist. To solve this drawback, different solutions have been proposed [12,27]. In 1998 we introduced a new tool, called patchwork which seems to be very useful in overcoming this problems. It enables semi-automatic image sampling operated interactively or with a motorized stage. To our opinion and experience a continuous control of the focus has to be maintained even when using the motorized stage. The result of the patchwork is an overview image of the whole specimen, composed of full-size, high quality images. These images can be expanded to a full screen size. In this manner the consulting pathologist has the opportunity to select the field of his interest by himself. The patchwork can consist of as many as needed elements. The image generated in this way can be stored as a single file or as a part of the ISSA patient file. The size of a patchwork file composed of 12 images acquired with 6.3 objective and JPEG compressed is about 1.6 MB (Fig. 2). This file size allows easy manipulation and transmission within few minutes [3]. Recently a tool enabling dynamic store and forward telepathology was added to ISSA. The histological slide can be scanned in a standard fashion and the scanning sequence can be recorded ( cine loop ). The images are of high quality and high resolution. From the recorded sequence every single image can be separately analyzed and manipulated (enlarged, stored, transmitted). However, storage of these sequences requires space (5 8 times the space of the corresponding patchwork), and a longer transmission time has to be taken into account [25]. All the pictorial data described above and stored in ISSA can be compressed and sent via ordinary telephone line or Internet, or can be attached to an e-mail. Using this mode the images can be assessed by any potential communication partner. An other possibility is to send the whole ISSA patient file, including textual part, alphanumeric data and images. This type of file can only be opened by a corresponding program on the receiving side. By this point-to-point communication patient data protection is ensured. The database has also the most often used morphometric operations (distance, counting, perimeter, area) needed in daily routine. PHAROS is a teletransmission module. It works on the multipage whiteboard principle, with additional chat fields. Single images or patchworks can be placed on the whiteboard. Interactive and store and forward

S. Seiwerth and Z. Danilovic / The telepathology and teleradiology network in Croatia 225 Fig. 1. ISSA patient data file (images from different source). mode of operation can be used. When using POTS, frozen image transmission is the only possibility. In the interactive mode of operation two cursors and different marking and measuring tools are simultaneously displayed on both communication ends. In the mean time voice communication (trough voice modem) and chat screen are enabled. The program continuously records a communication chart, a feature important due to legal reasons. In the store and forward mode whole ISSA files can be transmitted trough PHAROS using a telephone lines or Internet. During transmission the program ensures that all data are successfully transmitted by continuous checking received against sent data [25]. Despite the existing national telepathology network, most of the routine teleconsultation work is done with international partners, such as K. Kayser (Heidelberg, Germany), L. Banach (Umtata, South Africa) and with the AFIP (Washington DC, USA) (Fig. 3). Internet based, store and forward mode is definitely the most often used way of communication. 4. From telepathology to teleradiology Soon after the first telepathology network has been established and the program solutions described above have been verified in practice, a national teleradiology network has been established in Croatia. In 1998 the network, countrywide linking 33 CT machines in 27 hospitals, has become fully operational. Currently, the system with both of its modules is mostly used for filmless archiving and for remote neurosurgical consultations. The former is saving large amounts of money and storage space while the later saves patients lives or ensures optimal treatment quality (e.g., by avoiding unnecessary transport or speeding it up when needed) [8]. The neurosurgical consultation center is located at the Neurosurgical Clinic Rebro in Zagreb. More than three hundred consultation cases are handled per year. Most of them are neurotraumata or brain tumors. The above-described feature of cine loop is used for capturing images from angiographic examinations or

226 S. Seiwerth and Z. Danilovic / The telepathology and teleradiology network in Croatia Fig. 2. Patchwork image consisting of 12 full-size high quality images. Each image can be expanded to full screen size. ultrasound sequences. As these files can be very large. For consultation purposes they can be stored on a CD and sent by overnight delivery or carrier. Despite the fact of a functional ATM system in Croatia its use is mainly restricted to universities and companies. Medical institutions supposed to work under economically feasible conditions and with limited finances are not able to take this load. Just recently the introduction of ISDN started very strongly, promising a financially more acceptable burden for the healthcare system. It is to be expected that in the near future the national teleradiology and telepathology networks will switch to ISDN based communication. As this trend has been expected from the development seen in countries with higher technological standard, the telepathology/teleradiology system described above has been designed to meet requirements of these more advanced communication channels. 5. The future 6. Conclusion Many experts in telepathology support the principle that only very complex systems with live image transmission and robotic microscopes based on broad band communication channels can give satisfactory results in routine work [21 27]. In our opinion, systems designed for analogue lines (POTS) can also produce high quality results if adequate software solutions are applied [5,11,18 20,26]. The importance of building simple to operate, high quality systems, which can run on POTS as well as on ISDN or ATM can not be overemphasized. Such systems can introduce telepathology/teleradiology/telemedicine into financially underprivileged countries,

S. Seiwerth and Z. Danilovic / The telepathology and teleradiology network in Croatia 227 Fig. 3. Telepathology and teleradiology networks in Croatia. which will greatly benefit from introduction of these new technologies. Integrating patients databases and telemedicine tools into a singular information system seems also to be of importance. We have the feeling that a system which grew from a relatively small telepathology network to a national teleradiology network in a relatively poor country represents a model which can give useful information about future research and development directions. References [1] C.A. Beltrami and V. Della Mea, Second opinion consultation trough the Internet, Adv. Clin. Path. 2 (1998), 146 148. [2] Z. Danilovic, A. Dzubur and S. Seiwerth, Concept of telepathology in Croatia, Arch. Anat. Cytol. Pathol. 43 (1995), 282 284. [3] Z. Danilovic, S. Seiwerth, K. Kayser, L. Banach, D. Babic and A. Dzubur, Experience based approach to interactive versus store and forward telepathology, Adv. Clin. Path. 2 (1998), 149 150. [4] Z. Danilovic and S. Seiwerth, Telepatologija u Hrvatskoj, in: Proceedings Telemedicina u Hrvatskoj, Zagreb, 1998, pp. 181 188. [5] M.N. Doolittle, K.W. Doolittle, Z. Winkelman and D.S. Weinberg, Color images in telepathology: how many colors do we need?, Hum. Pathol. 28 (1997), 36 41. [6] B.E. Dunn, U.A. Almagro, H. Choi, D.L. Recla and R.S. Weinstein, Use of telepathology for routine surgical pathology review in a test bed in the Department of Veterans Affairs, Telemed. J. 3 (1997), 1 10. [7] A. Dzubur, Z. Danilovic, N. Caklovic and S. Seiwerth, A contribution to quantitative analysis of transmitted images, Arch. Anat. Cytol. Pathol. 43 (1995), 268 270. [8] A. Dzubur, International PACS/Teleradiology spotlights: Croatia, Telemedicine Today (December 1998), 35. [9] A. Dzubur, S. Seiwerth and Z. Danilovic, Benefits of image databank supporting the telepathology system, Adv. Clin. Path. 2 (1998), 158 159. [10] P. Hufnagl and M. Dietel, The UICC Telepathology Consultation Center, Elec. J. Pathol. Histol. 6(2) (2000), No. 002-12. [11] K. Kayser, M. Drlicek and W. Rahn, Aids of telepathology in intraoperative histomorphological tumor diagnosis and classification, In vivo 7 (1993), 379 382. [12] K. Kayser and G. Kayser, Basic aspects of and recent development of telepathology in Europe with specific emphasis on quality assurance, J. Anal. Quant. Cytol. Histol. 21 (1999), 319 328. [13] K. Kayser and G. Kayser, Telepathology aspects of social influence and quality control, Elec. J. Pathol. Histol. (1996), No. 963-04. [14] K. Kayser, G. Kayser and S. Zink, New technical aspects in telepathology, Elec. J. Pathol. Histol. (2000), No. 003-04. [15] K. Kayser, J. Szymas and R. Weinstein, Telepathology Telecommunication, Electronic Education and Publication in Pathology, Springer, Heidelberg, New York, 1999. [16] K. Kayser, Telepathology in Europe. Its practical use, Arch. Anat. Cytol. Pathol. 43 (1995), 196 199. [17] S.Y. Lee and J. Frankel, Ultrasound and other imaging technologies in the intensive care unit, Surg. Clin. North. Am. 80 (2000), 975 1003. [18] J. Lissner and U. Fink, Digital imaging and picture archiving and communication systems, Curr. Opin. Radiol. 3 (1991), 267 274.

228 S. Seiwerth and Z. Danilovic / The telepathology and teleradiology network in Croatia [19] J. Morrissey, Storing device saves space, money, Mod. Healthc. 25 (1995), 38. [20] S.K. Mun, A.M. Elsayed, W.G. Tohme and Y.C. Wu, Teleradiology/telepathology requirements and implementation, J. Med. Syst. 19 (1995), 153 164. [21] I. Nordrum, Real-time diagnoses in telepathology, Adv. Clin. Path. 2 (1998), 127 131. [22] I. Nordrum, A. Amin, V. Isaksen, M. Johansen and J.A. Ludvigsen, Still image consultation via e-mail in surgical pathology, Adv. Clin. Path. 2 (1998), 154 156. [23] J.M. Schmitz, O. Bollmann and R. Bollmann, Patchwork images as a new technique, Elec. J. Pathol. Histol. 6(2) (2000), No. 002-12. [24] P. Schwarzmann, B. Binder, R. Klose and M. Kaser, Histkom evaluation of active telepathology in fieldtests, Adv. Clin. Path. 2 (1998), 135 138. [25] S. Seiwerth, Telepathology and teleradiology, Elec. J. Pathol. Histol. 6(3) (2000), No. 003-06. [26] Y. Tsuchihashi, T. Mazaki, S. Murata, K. Nakasato, M. Morishima, H. Nagata, I. Tofukuji and K. Naitoh, Telepathology and cytology in Kyoto, Japan to support regional medicine with special references to their need accuracy and cost, Adv. Clin. Path. 2 (1998), 131 132. [27] R.S. Weinstein, A.K. Bhattacharyya, A.R. Graham and J.R. Davis, Telepathology: a ten year progress report, Hum. Pathol. 28 (1997), 1 7.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity