SUPPLEMENTARY MATERIAL

Similar documents
Supporting Online Material

Research Article The Effect of Simple Melodic Lines on Aesthetic Experience: Brain Response to Structural Manipulations

Individual Differences in Laughter Perception Reveal Roles for Mentalizing and Sensorimotor Systems in the Evaluation of Emotional Authenticity

The e ect of musicianship on pitch memory in performance matched groups

Inter-subject synchronization of brain responses during natural music listening

Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study

Regional homogeneity on resting state fmri in patients with tinnitus

Structural and functional neuroplasticity of tinnitus-related distress and duration

Top-Down and Bottom-Up Influences on the Left Ventral Occipito-Temporal Cortex During Visual Word Recognition: an Analysis of Effective Connectivity

Music and Emotions in the Brain: Familiarity Matters

Discrete cortical regions associated with the musical beauty of major and minor chords

Distress- dependent temporal variability of regions encoding domain- specific and domain- general behavioral manifestations of phantom percepts

Involved brain areas in processing of Persian classical music: an fmri study

Perceiving Nonverbal Behavior: Neural Correlates of Processing Movement Fluency and Contingency in Dyadic Interactions

Degree of Musical Expertise Modulates Higher Order Brain Functioning

Auditory-Motor Expertise Alters Speech Selectivity in Professional Musicians and Actors

Jake R. Carpenter-Thompson, 1,2,3 Sara A. Schmidt, 1,3 and Fatima T. Husain 1,3,4. 1. Introduction

In press, Cerebral Cortex. Sensorimotor learning enhances expectations during auditory perception

Tuning-in to the Beat: Aesthetic Appreciation of Musical Rhythms Correlates with a Premotor Activity Boost

Music and the brain: disorders of musical listening

Overlap of Musical and Linguistic Syntax Processing: Intracranial ERP Evidence

A Protective Effect of Musical Expertise on Cognitive Outcome Following Brain Damage?

The Neural Mechanisms of Tinnitus and Tinnitus Distress

An fmri comparison of neural activity associated with recognition of familiar melodies in younger and older adults

NeuroImage 63 (2012) Contents lists available at SciVerse ScienceDirect. NeuroImage. journal homepage:

Highly creative products represent the pinnacle of. The Brain Network Underpinning Novel Melody Creation

Music Training and Neuroplasticity

Music Lexical Networks

An fmri study of music sight-reading

Neural Substrates of Spontaneous Musical Performance: An fmri Study of Jazz Improvisation

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

By: Steven Brown, Michael J. Martinez, Donald A. Hodges, Peter T. Fox, and Lawrence M. Parsons

ARTICLE IN PRESS. Neural correlates of humor detection and appreciation

Functional brain imaging of tinnitus-like perception induced by aversive auditory stimuli

A NIRS Study of Violinists and Pianists Employing Motor and Music Imageries to Assess Neural Differences in Music Perception

Supplemental Information. Dynamic Theta Networks in the Human Medial. Temporal Lobe Support Episodic Memory

Tinnitus- related distress: evidence from fmri of an emotional stroop task

Progress in Neurobiology

Connecting sound to meaning. /kæt/

doi: /brain/aws220 Brain 2012: 135; Single-subject oscillatory gamma responses in tinnitus

Gray- and White-Matter Anatomy of Absolute Pitch Possessors

An fmri investigation of the cultural specificity of music memory

Lutz Jäncke. Minireview

Neuroaesthetics: a review Di Dio Cinzia 1 and Gallese Vittorio 1,2

What is music as a cognitive ability?

and Biosignalanalysis, University of Münster, Germany Provisional

Supplemental Material for Gamma-band Synchronization in the Macaque Hippocampus and Memory Formation

Supplementary information Table S1 Neuroimaging studies in individuals with tinnitus

Tuning the Brain: Neuromodulation as a Possible Panacea for treating non-pulsatile tinnitus?

Language-Related Field Potentials in the Anterior-Medial Temporal Lobe: I. Intracranial Distribution and Neural Generators

Sensitivity to musical structure in the human brain

Music and Mandarin: Differences in the Cognitive Processing of Tonality

Chapter 1 Chapter 1 Introduction Introduction

Susanne Langer fight or flight. arousal level valence. parasympathetic nervous. system. roughness

NeuroImage 77 (2013) Contents lists available at SciVerse ScienceDirect. NeuroImage. journal homepage:

T he discovery of audiovisual mirror neurons in monkeys, a subgroup of premotor neurons that respond to the

Cross-modal Semantic Priming: A Timecourse Analysis Using Event-related Brain Potentials

Workshop: ERP Testing

Learned audio-visual cross-modal associations in observed piano playing activate the left planum temporale. An fmri study

Comparison of Robarts s 3T and 7T MRI Machines for obtaining fmri Sequences Medical Biophysics 3970: General Laboratory

NEUROSCIENCE AND VISUAL ART; MOVING THROUGH EMPATHY TO THE INEFFABLE

Population codes representing musical timbre for high-level fmri categorization of music genres

Beyond dissociation: Exploring interactions between implicit priming and explicit recognition

qeeg-pro Manual André W. Keizer, PhD October 2014 Version 1.2 Copyright 2014, EEGprofessionals BV, All rights reserved

Generation of novel motor sequences: The neural correlates of musical improvisation

Do musicians have different brains?

TITLE: Tinnitus Multimodal Imaging. PRINCIPAL INVESTIGATOR: Steven Wan Cheung CONTRACTING ORGANIZATION: UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

qeeg-pro Manual André W. Keizer, PhD v1.5 Februari 2018 Version 1.5 Copyright 2018 qeeg-pro BV, All rights reserved

Sample Analysis Design. Element2 - Basic Software Concepts (cont d)

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Brain and Cognition 76 (2011) Contents lists available at ScienceDirect. Brain and Cognition. journal homepage:

Music HEAD IN YOUR. By Eckart O. Altenmüller

Chapter 6. Normal Distributions

Neuroscience and Biobehavioral Reviews

Musical and verbal semantic memory: two distinct neural networks?

DISPLAY WEEK 2015 REVIEW AND METROLOGY ISSUE

Effects of Right and Left Hemisphere Damage on Performance of the Right Hemisphere Communication Battery

Neuroaesthetics. Anjan Chatterjee 1 and Oshin Vartanian 2. Review

Neural Mechanisms of Object Naming and Word Comprehension in Primary Progressive Aphasia

RP and N400 ERP components reflect semantic violations in visual processing of human actions

For the SIA. Applications of Propagation Delay & Skew tool. Introduction. Theory of Operation. Propagation Delay & Skew Tool

NeuroImage. Dissociable systems of working memory for rhythm and melody

DOI: /

Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex

Is moral beauty different from facial beauty? Evidence from an fmri study

Neural substrates associated with humor processing

Music and Mindfulness for Self- Care. Presented by Fleur Hughes (MMT, MTA, NMT, MT-BC) 20 February 2019

Can Music Influence Language and Cognition?

MEMORY IN MUSIC AND EMOTIONS

CS229 Project Report Polyphonic Piano Transcription

Semantic combinatorial processing of non-anomalous expressions

The N400 Event-Related Potential in Children Across Sentence Type and Ear Condition

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

On Your Own. Applications. Unit 2. ii. The following are the pairs of mutual friends: A-C, A-E, B-D, C-D, and D-E.

AP Statistics Sampling. Sampling Exercise (adapted from a document from the NCSSM Leadership Institute, July 2000).

Towards Brain-Computer Music Interfaces: Progress and Challenges

Characterization and improvement of unpatterned wafer defect review on SEMs

PERSPECTIVES. Tinnitus: perspectives from human neuroimaging

ACT-R ACT-R. Core Components of the Architecture. Core Commitments of the Theory. Chunks. Modules

NAA ENHANCING THE QUALITY OF MARKING PROJECT: THE EFFECT OF SAMPLE SIZE ON INCREASED PRECISION IN DETECTING ERRANT MARKING

Transcription:

SUPPLEMENTARY MATERIAL Table S1. Peak coordinates of the regions showing repetition suppression at P- uncorrected < 0.001 MNI Number of Anatomical description coordinates T P voxels Bilateral ant. cingulum Right middle cingulum Right insula Right inferior orbitofrontal gyrus x y z 159-6 -30 27 6.43 0.000001 37 45-21 -12 5.08 0.00002 Left middle superior temporal sulcus 9-51 -27 3 4.15 0.0002 Table S2. Peak coordinates of the regions showing a main effect of subsequent recognition at P- uncorrected < 0.001 MNI Number of Anatomical description coordinates T P voxels x y z R > Miss Left superior temporal sulcus 242-45 -42 3 7.18 0.0000001 Left inferior frontal gyrus 37-36 36-12 5.7 0.000005 Left superior temporal sulcus 11-60 -6-9 5 0.000025 Left inferior frontal gyrus 31-51 30 9 4.7 0.00005 Right superior temporal gyrus 12 51-36 12 4.6 0.00007 Right superior temporal gyrus 16 54-12 -3 4.6 0.00007 Left angular gyrus 9-36 -51 33 4.4 0.0002 Left cerebellum 10-9 -48-9 4.07 0.00025 Left inferior frontal gyrus 11-42 12 27 4.03 0.00028 Right superior temporal sulcus 5 57 3-15 4.03 0.00028 Left fusiform gyrus 6-33 -39-21 3.7 0.0007 Miss > R Bilateral anterior cingulum 55 3 39 3 4.8 0.00004 Left supramarginal gyrus 24-63 -30 33 4.6 0.00007 Left frontal superior gyrus 16-27 39 39 4.6 0.00007 Right middle cingulum 11 6-33 48 4.4 0.0001 Left precuneus 22-6 -63 64 4.4 0.0001 Right middle frontal gyrus 29 27 42 42 4.3 0.0001 Right precuneus 5 6-57 60 3.7 0.0007 R > K

Left cerebellum 5-36 -42-30 5.1 0.00002 Right superior temporal gyrus 34 51-33 12 4.6 0.00007 Right inferior frontal gyrus 17 54 9 30 4.6 0.00007 Left precentral gyrus 50-39 -3 33 4.45 0.0001 Left middle occipital gyrus 13-27 -66 30 4.4 0.00015 Right cerebellum 8 15-69 -24 4.3 0.00015 Left superior temporal sulcus 53-48 -42 3 3.98 0.0003 Left parietal superior gyrus 7-27 -63 45 3.75 0.0006 K > R Right superior frontal gyrus 5 27 63 9 3.9 0.0003 Right superior frontal gyrus 8 21 60 21 3.8 0.0005 Right middlefrontal gyrus 8 33 24 45 3.8 0.0005 Hit > Miss Left inferior frontal gyrus 14-36 36-12 4.7 0.00006 Left superior temporal sulcus 65-48 -36 3 4.65 0.00007 Left precentral gyrus 5-27 -24 69 4.54 0.00009 Right cerebellum 14 6-48 -3 4.46 0.0001 Left superior temporal sulcus 8-57 -3-9 4.17 0.0002 Left cerebellum 9-6 -48-6 4.14 0.0002 Right superior temporal sulcus 24 63-12 -9 4.03 0.0003 Miss > Hit Left superior frontal gyrus 12-27 39 36 4.5 0.0001 Left supramarginal gyrus 20-60 -30 33 4.4 0.00015 Left superior frontal gyrus 11-27 57 27 4.2 0.0002 Right middle frontal gyrus 13 27 39 39 3.97 0.0004

Table S3. Peak coordinates of the regions showing repetition x subsequent recognition interaction at P- uncorrected < 0.001 Anatomical description (R unprimed R primed ) (K unprimed K primed ) Number of voxels MNI coordinates x y z Right hippocampus 7 27-18 -9 5.22 0.000018 Left parahippocampal gyrus 16-24 -21-24 4.6 0.000077 Left hippocampus -27-18 -12 3.8 0.00053 (R unprimed R primed ) (M unprimed M primed ) Right insula 6 27-15 21 4.39 0.00013 (K unprimed K primed ) (M unprimed M primed ) Left precuneus 5-6 45 60 4 0.00032 Right supplementary motor area 10 6 0 51 3.98 0.00034 (K unprimed K primed ) (R unprimed R primed ) Left middle and inferior occipital gyrus 53-24 -96-3 6.18 0.000003 (M unprimed M primed ) (R unprimed R primed ) Right middle frontal gyrus 8 30 15 60 4.63 0.00009 (M unprimed M primed ) (K unprimed K primed ) Right middle frontal gyrus 6 39 6 54 5.13 0.000022 Right superior medial frontal gyrus 6 9 39 45 4 0.00032 Right superior frontal gyrus 6 21 12 45 3.96 0.00036 T P

Table S4. Individual coordinates of the regions included in the DCM analysis Left STS Left parahippocampus Left hippocampus x y z x y z x y z Group coordinates -51-27 3-24 -21-24 -27-18 -12 1-45 -21-6 -18-33 -15-30 -27-9 2-57 -21-15 -30-12 -27-24 -11-11 3-45 -27-6 -21-36 -9-30 -12-12 4-60 -27 3-33 -33-12 No activation 5-51 -36 15-27 -21-24 No activation 6-54 -24 3-18 -36-6 -36-15 -18 7-45 -18 6-27 -9-27 No activation 8-42 -24-9 No activation -33-12 -12 9-51 -12-9 -27-27 -21-15 -36 3 10-42 -15-6 -15-9 -24-24 -33-6 11-66 -33-3 -30-24 -21-21 -9-18 12-51 -21-15 -18-36 -9-15 -6-15 13-42 -27 3-33 -24-24 No activation 14-66 -42 6-24 -36-12 -33-21 -15 15-60 -27-15 -24-15 -27-36 -15-18 16-48 -36 3-33 -40-6 -21-12 -15 17-66 -18 9-21 -24-21 -27-24 -9 18-66 -21 6-27 -24-27 -36-6 -21 19-63 -12-12 -21-27 -15-24 -18-12 20-60 -39 0-24 -41-6 -24-24 -9 21-42 -33 6-18 -3-30 -27-18 -18 22-66 -12-9 -27-15 -33-27 -15-12

Table S5 Individual MAP estimates of the DCM.B and DCM.C matrices DCM.B DCM.C STS PhG STS Hip STS Subjects R K M R K M Primed Unprimed Pword 1-0.005 0.006 0.008 0.001-0.006-0.010-0.003 0.026-0.007 2-0.047 0.003-0.048-0.021-0.005 0.033 0.093 0.061-0.270 3 0.230 0.022-0.012 0.080 0.012-0.012 0.011 0.069 0.016 4-0.016 0.001 0.001 0.008 0.010 0.015-0.023 0.017 0.050 5 0.031 0.015 0.016 0.005-0.057 0.001 0.018 0.048 0.022 6 0.047 0.012 0.005 0.085-0.023 0.002 0.028 0.052 0.048 7 0.048-0.044 0.020 0.043-0.082-0.038 0.079 0.099 0.081 8-0.014 0.006 0.002 0.006 0.001-0.006 0.016 0.010 0.021 9-0.059 0.043 0.018 0.041 0.054-0.063 0.064 0.097 0.091 10 0.053 0.013 0.009 0.007-0.060 0.012 0.060 0.092 0.064 11 0.023 0.027 0.011 0.133 0.020-0.017 0.084 0.086 0.016 12 0.008 0.036-0.023 0.066-0.020 0.001 0.060 0.062 0.063 13 0.007 0.007-0.008 0.003 0.002-0.015 0.007 0.029 0.003 14 0.020 0.011 0.004 0.050 0.004 0.007 0.034 0.049 0.045 15 0.017-0.014-0.005 0.016-0.008 0.003 0.017 0.023 0.005 16-0.033 0.025-0.016-0.005-0.002 0.001 0.022 0.035 0.024 17 0.102-0.024 0.002 0.025-0.002-0.014 0.032 0.032 0.034 18* -0.001-0.009-0.95-0.004-0.004-0.9 0.004 0.015 0.026 19 0.012 0.010 0.027 0.029-0.040 0.000-0.025 0.027 0.010 20 0.017-0.002 0.007 0.037 0.018 0.014 0.011 0.041 0.021 21-0.034 0.06-0.032 0.022 0.141-0.062 0.096 0.110 0.130 22-0.024-0.015 0.002 0.013-0.001 0.005 0.021 0.027 0.027 Mean 0.018 0.01-0.001 0.031-0.002-0.007 0.033 0.052 0.024 SD 0.06 0.02 0.02 0.036 0.04 0.023 0.035 0.03 0.07 (*): outlier. PhG = left parahippocampal gyrus; Hip = left hippocampus; SD = standard deviation; Mean and SD calculated without outlier.

Table S6. Individual MAP estimates of the DCM.A matrix Subjects STS PhG STS Hip PhG STS PhG Hip Hip STS Hip PhG 1 0.039-0.016 0.003-0.0006-0.001-0.0007 2-0.18 0.0006-0.022-0.001-0.002-0.0003 3 0.042 0.097 0.004 0.0044 0.01 0.003 4 0.005 0.0055 0.0005 0 0.0006-0.0001 5 0.115-0.108 0.0042-0.011-0.003-0.01 6-0.036 0.0042-0.003 0.0022-0.001 0.003 7-0.044-0.111-0.006 0.006-0.01 0.0058 8 0.023 0.009 0 0.001 0 0.0001 9-0.135-0.12 0 0.016-0.008 0.0134 10 0.034 0.046 0.003 0.016 0.006-0.0001 11 0.098 0.099 0.0126 0.006 0.029 0.0066 12 0.053-0.014-0.004-0.0026 0.004-0.0025 13 0.0063 0.019 0.0006 0.0004 0.0015 0.0003 14-0.0656-0.053-0.0027 0.0033-0.002 0.0026 15 0.0034-0.007 0.0004 0.0004 0.0003 0.0003 16-0.0437 0.015-0.002-0.0006 0.0005-0.0006 17 0.083 0.093 0.0018 0.0066 0.0005 0.007 19 0.011-0.038 0.01-0.0018-0.003-0.0025 20 0.048 0.14 0.0012 0.007 0.002 0.007 21 0.0178-0.108 0.0067 0.009-0.022 0.002 22 0.017 0.09 0.0008 0.001 0.006 0.001 Mean 0.004 0.002 0.000 0.003 0.000 0.002 SD 0.07 0.07 0.007 0.006 0.009 0.004 PhG = left parahippocampal gyrus; Hip = left hippocampus; SD = standard deviation

Figure S1. Z-transformed Receiver operating characteristics (Z-ROCs) plotted for R, RK and RKG points according to primed and unprimed conditions

Figure S2. Regions of the MTL displayed on saggital slices that show a significant interaction between priming and subsequent recognition in the left (including the hippocampus and the parahippocampus gyrus) and right (hippocampus) hemispheres.

Figure S3. Results of the DCM analysis with the Individual method (see Methods section). Mean coupling parameters (MAP estimates of DCM.B matrix) for Remember (R), Know (K), and Miss (M) responses between the left STG and MTL regions (PhG: left parahippocampus gyrus; Hip: left hippocampus). Stars represent significant coupling parameters (different from 0) and triangles represent significant differences between R and K coupling parameters. Note that there is one difference in the outcomes between the Group and Individual DCM analyses: the Individual method showed a negative coupling between the left STG and the left PhG only for subsequent K responses (i.e. the priming-related decrease in the STG activity is coupled with a priming-related increase in the parahippocampal activity only for subsequent K responses). However, though this effect is

interesting with respect to the memory functions supported by the PhG, it is not reliable with the Group method and is therefore not discussed further.