Digital System Clocking: High-Performance and Low-Power Aspects

Similar documents
Digital System Clocking: High-Performance and Low-Power Aspects. Microprocessor Examples

Clock Generation and Distribution for High-Performance Processors

EE241 - Spring 2005 Advanced Digital Integrated Circuits

EE-382M VLSI II FLIP-FLOPS

II. ANALYSIS I. INTRODUCTION

Lecture 26: Multipliers. Final presentations May 8, 1-5pm, BWRC Final reports due May 7 Final exam, Monday, May :30pm, 241 Cory

Digital System Clocking: High-Performance and Low-Power Aspects

ISSCC 2003 / SESSION 19 / PROCESSOR BUILDING BLOCKS / PAPER 19.5

Timing EECS141 EE141. EE141-Fall 2011 Digital Integrated Circuits. Pipelining. Administrative Stuff. Last Lecture. Latch-Based Clocking.

Topic 8. Sequential Circuits 1

Lecture 21: Sequential Circuits. Review: Timing Definitions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Lecture 6. Clocked Elements

VLSI Design: 3) Explain the various MOSFET Capacitances & their significance. 4) Draw a CMOS Inverter. Explain its transfer characteristics

An efficient Sense amplifier based Flip-Flop design

Design of a Low Power and Area Efficient Flip Flop With Embedded Logic Module

ECE321 Electronics I

Hardware Design I Chap. 5 Memory elements

11. Sequential Elements

SYNCHRONOUS DERIVED CLOCK AND SYNTHESIS OF LOW POWER SEQUENTIAL CIRCUITS *

Clocked Storage Elements in High-Performance and Low-Power Systems. Further reproduction without written permission is strictly prohibited.

Modeling and designing of Sense Amplifier based Flip-Flop using Cadence tool at 45nm

EEC 118 Lecture #9: Sequential Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EMT 125 Digital Electronic Principles I CHAPTER 6 : FLIP-FLOP

Energy-Delay Space Analysis for Clocked Storage Elements Under Process Variations

Experiment 8 Introduction to Latches and Flip-Flops and registers

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

Clocking Spring /18/05

EECS150 - Digital Design Lecture 18 - Circuit Timing (2) In General...

P.Akila 1. P a g e 60

EE241 - Spring 2007 Advanced Digital Integrated Circuits. Announcements

Sequential Circuit Design: Part 1

Sequencing. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall,

Scan. This is a sample of the first 15 pages of the Scan chapter.

UNIT III COMBINATIONAL AND SEQUENTIAL CIRCUIT DESIGN

Texas Instruments TNETE2201 Ethernet Transceiver Circuit Analysis

Comparative study on low-power high-performance standard-cell flip-flops

Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift Register

Sequential Circuit Design: Part 1

Microprocessor Design

More on Flip-Flops Digital Design and Computer Architecture: ARM Edition 2015 Chapter 3 <98> 98

GLITCH FREE NAND BASED DCDL IN PHASE LOCKED LOOP APPLICATION

Logic Analysis Basics

Logic Analysis Basics

FLIP-FLOPS and latches, which we collectively refer to as

Memory elements. Topics. Memory element terminology. Variations in memory elements. Clock terminology. Memory element parameters. clock.

Improved Sense-Amplifier-Based Flip-Flop: Design and Measurements

Efficient Architecture for Flexible Prescaler Using Multimodulo Prescaler

Introduction to Sequential Circuits

ESE 570 STATIC SEQUENTIAL CMOS LOGIC CELLS. Kenneth R. Laker, University of Pennsylvania, updated 25Mar15

Design for Testability Part II

CHAPTER 6 ASYNCHRONOUS QUASI DELAY INSENSITIVE TEMPLATES (QDI) BASED VITERBI DECODER

Logic Design. Flip Flops, Registers and Counters

A low jitter clock and data recovery with a single edge sensing Bang-Bang PD

Design And Analysis of Clocked Subsystem Elements Using Leakage Reduction Technique

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset

CMOS Low Power, High Speed Dual- Modulus32/33Prescalerin sub-nanometer Technology

High Frequency 32/33 Prescalers Using 2/3 Prescaler Technique

Logic Devices for Interfacing, The 8085 MPU Lecture 4

Simulation Mismatches Can Foul Up Test-Pattern Verification

Embedded Logic Flip-Flops: A Conceptual Review

ECEN620: Network Theory Broadband Circuit Design Fall 2014

AN EFFICIENT DOUBLE EDGE TRIGGERING FLIP FLOP (MDETFF)

ECEN454 Digital Integrated Circuit Design. Sequential Circuits. Sequencing. Output depends on current inputs

Nan Ya NT5DS32M8AT-7K 256M DDR SDRAM

High Performance Dynamic Hybrid Flip-Flop For Pipeline Stages with Methodical Implanted Logic

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME

Sequential Logic. References:

Lecture 23 Design for Testability (DFT): Full-Scan

Low Power Different Sense Amplifier Based Flip-flop Configurations implemented using GDI Technique

COMP2611: Computer Organization. Introduction to Digital Logic

An FPGA Implementation of Shift Register Using Pulsed Latches

Chapter 7 Sequential Circuits

Digital Integrated Circuits EECS 312. Review. Remember the ENIAC? IC ENIAC. Trend for one company. First microprocessor

Design for Testability

Digital Integrated Circuits EECS 312

Design of Low Power D-Flip Flop Using True Single Phase Clock (TSPC)

Sequential Circuit Design: Principle

A Unified Approach in the Analysis of Latches and Flip-Flops for Low-Power Systems

Sequential Logic. Analysis and Synthesis. Joseph Cavahagh Santa Clara University. r & Francis. TaylonSi Francis Group. , Boca.Raton London New York \

EE241 - Spring 2001 Advanced Digital Integrated Circuits. References

Report on 4-bit Counter design Report- 1, 2. Report on D- Flipflop. Course project for ECE533

Sequential Logic. Introduction to Computer Yung-Yu Chuang

Testing Digital Systems II

Combinational vs Sequential

Module 8. Testing of Embedded System. Version 2 EE IIT, Kharagpur 1

(CSC-3501) Lecture 7 (07 Feb 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

Modifying the Scan Chains in Sequential Circuit to Reduce Leakage Current

Sequential Logic Basics

A NOVEL APPROACH TO ACHIEVE HIGH SPEED LOW-POWER HYBRID FLIP-FLOP

The basic logic gates are the inverter (or NOT gate), the AND gate, the OR gate and the exclusive-or gate (XOR). If you put an inverter in front of

data and is used in digital networks and storage devices. CRC s are easy to implement in binary

HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP

Future of Analog Design and Upcoming Challenges in Nanometer CMOS

LAB #4 SEQUENTIAL LOGIC CIRCUIT

V6118 EM MICROELECTRONIC - MARIN SA. 2, 4 and 8 Mutiplex LCD Driver

EFFICIENT POWER REDUCTION OF TOPOLOGICALLY COMPRESSED FLIP-FLOP AND GDI BASED FLIP FLOP

Comparative Analysis of low area and low power D Flip-Flop for Different Logic Values

Low-Power and Area-Efficient Shift Register Using Pulsed Latches

Analysis of Digitally Controlled Delay Loop-NAND Gate for Glitch Free Design

Transcription:

Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Chapter 9: Microprocessor Examples Wiley-Interscience and IEEE Press, January 2003

Microprocessor Examples Clocking for Intel Microprocessors IA-32 Pentium Pro First IA-64 Microprocessor Pentium 4 Sun Microsystems UltraSPARC-III Clocking Clocking and CSEs Alpha Clocking: A Historical Overview Clocking and CSEs IBM Microprocessors Level-Sensitive Scan Design Examples of CSEs Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 2

Microprocessor Examples Clocking for Intel Microprocessors IA-32 Pentium Pro First IA-64 Microprocessor Pentium 4 Sun Microsystems UltraSPARC-III Clocking Clocking and CSEs Alpha Clocking: A Historical Overview Clocking and CSEs IBM Microprocessors Level-Sensitive Scan Design Examples of CSEs Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 3

Intel Microprocessor Features Pentium II Pentium III Pentium 4 MPR Issue June 1997 April 2000 Dec 2001 Clock Speed 266 MHz 1GHz 2GHz Pipeline Stages 12/14 12/14 22/24 Transistors 7.5M 24M 42M Cache (I/D/L2) 16k/16K/- 16K/16K/256K 12K/8K/256K Die Size 203mm 2 106mm 2 217mm 2 IC Process 0.28µm, 4M 0.18µm, 6M 0.18µm, 6M Max Power 27W 23W 67W Source: Microprocessor Report Journal Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 4

IA-32 Pentium Pro Ext Clk FB Clk CLK Gen Delay Line Delay SR Deskew Control Delay Line Delay SR Left Spine Core PD Right Spine Clock distribution network with deskewing circuit (Geannopoulos and Dai 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 5

IA-32 Pentium Pro In Load<1:15,2> Delay Line Load<0:14,2> Out <1:15,2> <0:14,2> Delay Shift Register Delay shift register (Geannopoulos and Dai 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 6

IA-32 Pentium Pro Right Clk Bandwidth Control Delay = n Phase Detector 1 Left Leads Left Clk Delay = n Phase Detector 2 Right Leads Phase detector (Geannopoulos and Dai 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 7

First IA-64 Microprocessor PLL RCDs PLL Core Clock Ref erence Clock Deskew Cluster Clock distribution topology (Rusu and Tam 2000), Copyright 2000 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 8

First IA-64 Microprocessor Global Clock TAP Interf ace Reference Clock Phase Detector Deskew Buffer Digital Filter Control FSM Deskew Settings RCD Regional Clock Grid RCD Regional Feedback Clock Deskew buffer architecture (Rusu and Tam 2000), Copyright 2000 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 9

First IA-64 Microprocessor Input Output Enable Delay Control Register Digitally controlled delay line (Rusu and Tam 2000), Copyright 2000 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 10

First IA-64 Microprocessor Simulated regional clock-grid skew (Rusu and Tam 2000), Copyright 2000 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 11

First IA-64 Microprocessor Measured regional clock skew (Rusu and Tam 2000), Copyright 2000 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 12

Pentium 4 1x-Clk enable clock enable distribution & sync clock enable generator clock enable distribution & sync 2x-Clk enables addr. bus outbound clocks MACRO MACRO bus clock bus clock# Core PLL I/O PLL core Clk distribution I/O data Clk distribution core clock data bus outbound clocks core clock I/O feedback clock divide by 4 data from core data clock outbound deskew state machine D MSFF Q data data to core Q D inbound buffers input buffer MSFF core clock inbound latching clocks inbound clocks gen state machine strobe glitch protection and detection input buffers strobes Core and I/O clock generation (Kurd et al. 2001), Copyright 2001 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 13

Pentium 4 To Test Access Port PLL 3 3-stage binary tree of clock repeaters Domain Buffer 1 Domain Buffer 2 Domain Buffer 3 Phase Detector Phase Detector Local Clock Macro Local Clock Macro Local Clock Macro Sequential Elements Sequential Elements Sequential Elements Domain Buffer 46 Domain Buffer 47 Phase Detector Phase Detector Local Clock Macro Local Clock Macro Sequential Elements Sequential Elements Logical diagram of core clock distribution (Kurd et al. 2001), Copyright 2001 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 14

Stretch 1 Stretch 0 Adjustable Delay Buffer Pentium 4 Stretch 1 Stretch 0 Enable 1 Enable 2 Gclk Stretch 1 Stretch 0 Enable 1 Enable 2 Gclk ClkBuf Ty pe 1 medium f req. pulse clk phase 2 Enable 1 Enable 2 Gclk medium freq. pulse clk phase 1 Stretch 1 Stretch 1 Stretch 0 Enable 1 Stretch 0 Enable 1 SlowClkSy nc Enable 2 Gclk Gclk ClkBuf Ty pe 1 slow freq. pulse clk phase 1 ClkBuf Type 1 Enable Gclk ClkBuf Type 3 medium freq. normal clk phase 1 Stretch 1 Stretch 0 Enable 1 Adjustable Delay Buffer fast f req. pulse clk Enable 2 Gclk ClkBuf Type 2 Example of local clock buffers generating various frequency, phase and types of clocks (Kurd et al. 2001), Copyright 2001 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 15

Microprocessor Examples Clocking for Intel Microprocessors IA-32 Pentium Pro First IA-64 Microprocessor Pentium 4 Sun Microsystems UltraSPARC-III Clocking Clocking and CSEs Alpha Clocking: A Historical Overview Clocking and CSEs IBM Microprocessors Level-Sensitive Scan Design Examples of CSEs Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 16

UltraSPARC Family Characteristics UltraSPARC-I UltraSPARC-II UltraSPARC-III Year 1995 1997 2000 Architecture SPARC V9, 4-issue SPARC V9, 4-issue SPARC V9, 4-issue Die size 17.7x17.8mm 2 12.5x12.5mm 2 15x15.5mm 2 # of transistors 5.2M 5.4M 23M Clock Frequency 167MHz 330MHz 1GHz Supply voltage 3.3V 2.5V 1.6V Process 0.5µm CMOS 0.35µm CMOS 0.15µm CMOS Metal layers 4 (Al) 5 (Al) 7 (Al) Power consumption <30W <30W <80W Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 17

UltraSPARC-III : Clocking Clock distribution delay in UltraSPARC-III (Heald et al. 2000), Copyright 2000 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 18

UltraSPARC-III: Clock Storage Elements Vdd Vdd M P1 M N3 NAND S Clk 1 Inv 4 M N5 M P2 Q Inv 5 Q D M N2 Inv 2 Inv 3 Inv 6 Inv 1 Clk M N1 M N4 Semidynamic flip-flop (Klass 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 19

UltraSPARC-III: Clock Storage Elements Vdd D 1 M P1 M N3 Vdd S NAND Inv 4 M P2 Vdd Q Inv 5 Q D 1 M P1 M N3 M N2a NAND M N2c D 1 S Inv 4 M N5 M P2 Vdd Inv Q 5 Inv 3 Inv 6 Q D 2 NMOS network Inv 3 M N5 Inv 6 D 2 M N2b M N2d D 2 M N4 D N M N4 Clk M N1 Clk M N1 Inv 1 Inv 2 Inv 1 Inv 2 a) b) (a) Logic embedding in a semidynamic flip-flop; (b) Two-input XOR function. (Klass, 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 20

UltraSPARC-III: Clock Storage Elements Vdd Vdd Vdd M P1 M P1 M P2 M P4 M P3 Inv 5 S Inv 5 Q Q S R Inv 6 Q Inv 4 M N3 NAND M N6 M N3 Inv 1-2 Inv 3-4 M N5 M N7 D M N2 Inv 3 D M N2 M N4 D Clk Clk M N1 Inv 1 Inv 2 M N1 a) b) Dynamic versions of semidynamic flip-flop: (a) single-ended; (b) Differential. (Klass 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 21

UltraSPARC-III: Clock Storage Elements Vdd Vdd Vdd M P3 D Vdd M P1 M P4 Vdd M P6 M P2 S M P5 M P7 Inv 5 D M N3 M N2 NAND M N4 Inv 2 Inv 3 M N6 Q M N7 Inv 4 Q Inv 1 Clk M N1 M N5 UltraSPARC-III flip-flop (Heald et al. 2000), Copyright 2000 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 22

Microprocessor Examples Clocking for Intel Microprocessors IA-32 Pentium Pro First IA-64 Microprocessor Pentium 4 Sun Microsystems UltraSPARC-III Clocking Clocking and CSEs Alpha Clocking: A Historical Overview Clocking and CSEs IBM Microprocessors Level-Sensitive Scan Design Examples of CSEs Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 23

Alpha Microprocessor Features 21064 21164 21264 21364 # transistors [M] 1.68 9.3 15.2 152 Die Size [mm 2 ] 16.8x13.9 18.1x16.5 16.7x18.8 21.1x18.8 Process 0.75µm 0.5µm 0.35µm 0.18µm Supply [V] 3.3 3.3 2.2 1.5 Power [W] 30 50 72 125 Clk Freq. [MHz] 200 300 600 1200 Gates/Cycle 16 14 12 12 Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 24

Alpha Microprocessors: Clocking clock grid (a) (b) (c) Alpha microprocessor final clock driver location: (a) 21064, (b) 21164, (c) 21264 Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 25

Alpha Microprocessors: Clocking 21064 clock skew (Gronowski et al. 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 26

Alpha Microprocessors: Clocking 21164 clock skew (Gronowski et al. 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 27

Alpha Microprocessors: Clocking D D Clk Clk D ext. clk PLL GCLK Grid local clk Box Clk Grid Clk D Clk local clk D D Clk cond cond. local clk Clk cond cond. local clk 21264 clock hierarchy (Gronowski et al. 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 28

Alpha Microprocessors: Clocking 21264 clock skew (Gronowski et al. 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 29

Alpha Microprocessors: Clocking NCLK DLL DLL DLL GCLK grid L2LClk L2RClk 21364 major clock domains (Xanthopoulos et al. 2001), Copyright 2001 Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 30

Alpha Microprocessors: Clocking 21364, NCLK clock skew (Xanthopoulos et al. 2001), Copyright 2001 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 31

Alpha µp: Clock Storage Elements P 1 D Clk P 1 N 3 P 5 X P 2 N 4 Q D Clk P 3 X P 2 P 4 N1 N2 Q N1 N2 N 5 21064 modified TSPC latches (Gronowski et al. 1998), Copyright 1998 Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 32

Alpha µp: Clock Storage Elements D X Q D X Q Clk Clk (a) (b) 21164: (a) phase-a latch, (b) phase-b latch (Gronowski et al. 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 33

Alpha µp: Clock Storage Elements D 1 D 1 D 2 X1 D 2 X Q Clk Q Clk D 3 D 4 X2 Clk (a) Embedding of logic into a latch: (a) 21064 TSPC latch, one level of logic; (b) 21164 latch, two levels of logic. (Gronowski et al. 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 34 (b)

Alpha µp: Clock Storage Elements Q Q Clk D 21264 flip-flop (Gronowski et al. 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 35

Alpha Microprocessors: Timing D Q Logic D Q D Q Logic D R D R GCLK Critical Path Definition and Criteria - Identify common clock, D and R - Maximize D - Minimize R D+ U R T cycle GCLK Race Definition and Criteria - Identify common clock, D and R - Minimize D - Maximize R D R+ H cond Critical-path and race analysis for clock buffering and conditioning (Gronowski et al. 1998), Copyright 1998 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 36

Microprocessor Examples Clocking for Intel Microprocessors IA-32 Pentium Pro First IA-64 Microprocessor Pentium 4 Sun Microsystems UltraSPARC-III Clocking Clocking and CSEs Alpha Clocking: A Historical Overview Clocking and CSEs IBM Microprocessors Level-Sensitive Scan Design Examples of CSEs Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 37

Hazard-Free Level-Sensitive Polarity-Hold Latch +Clock Data Out -Clock Eichelberger 1983 Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 38

General LSSD Configuration Inputs (X) Combinational Logic Outputs (Y) Y=Y(X, S n ) Clocked Storage Elements Scan-Out Clock Present State Next State S S Scan-Out n+1 n S n+1 = f {S n, X} Scan-In Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 39

LSSD Shift Register Latch -Scan_In -Data +A Clk -C Clk L 1 Latch -L 1 +L 1 L 2 Latch -L 2 +L 2 +B Clk Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 40

LSSD Double Latch Design State S n Primary Outputs Z X 1 L1 L2 X 2 L1 L2 Primary Inputs X Combinational Logic X 3 L1 L2 S n X n L1 L2 C 1 A Shift Scan In B Shift or Scan In Scan Out Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 41

IBM S/390 Parallel Server Processor CLKG B_CLK A_CLK CLKL SCAN_IN L1 L2 CLK_ENABLE CLKG SELECT_N IN_A IN_B Q (SCAN_OUT) SELECT_A CLKL TEST_DISABLE LSSD SRL with multiplexer used in the IBM S/390 G4 processor (Sigal et al. 1997), reproduced by permission Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 42

IBM S/390 Parallel Server Processor B_CLK A_CLK SCAN_IN Q IN_A IN_B IN_C IN_M IN_N mux_a mux_m_n Q (SCAN_OUT) SELECT_N CLKL SELECT_A TEST_DISABLE Static multiplexer version of the SRL used in the IBM S/390 G4 (Sigal et al. 1997), reproduced by permission Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 43

IBM S/390 Parallel Server Processor CLKG C1 A_CLK SCAN_IN IN L1 L2 Q (SCAN_OUT) C2 B_CLK CLKG C2_ENABLE C2 C1_DISABLE C1 A clocked storage element is used in the non-timing-critical timing macros of the IBM S/390 G4 processor (Sigal et al. 1997), reproduced by permission Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 44

IBM S/390 Parallel Server Processor CLKG C1 B_CLK CLKG C2_ENABLE UNOVERLAP C2 C2 C1_DISABLE C1 The clock-generation element used to detect problems created with fast paths: IBM S/390 G4 processor (Sigal et al. 1997), reproduced by permission Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 45

IBM PowerPC Processor SCAN_GATE SG SEL_EXT i NCLK (a) SEL i CLK OT SEL 0 SEL n-1 CLK SO D 0 D n-1 CLK True Mux CLK Slave Latch OC SEL 0 SEL n-1 SR Master Latch Complement Mux The experimental IBM PowerPC processor (Silberman et al. 1998), reproduced by permission Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 46 (b)

IBM PowerPC 603: Master-Slave Latch ACLK V DD SCAN in C 2 ACLK D in C 1 C 2 D out C 1 C 2 ACLK The PowerPC 603 MSL (Gerosa et al. 1994), Copyright 1994 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 47

IBM PowerPC 603: Local Clk Generator C1_FREEZE C1_TEST SCAN_C1 GCLK ACLK C1 WAITCLK OVERRIDE C2 C2_TEST C2_FREEZE The PowerPC 603 local clock regenerator (Gerosa et al. 1994), Copyright 1994 IEEE Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 48

Summary Intel Microprocessors Active clock deskewing in Pentium processors Sun Microsystems Processors Semidynamic flip-flop (one of the fastest single-ended flip-flops today, soft-edge ) Alpha Processors Performance leader in the 90s Incorporating logic into CSEs IBM Processors Design for testability techniques Low-power champion PowerPC 603 Nov. 14, 2003 Digital System Clocking: Oklobdzija, Stojanovic, Markovic, Nedovic 49