Component BW requirement of 56Gbaud Modulations for 400GbE 2 & 10km PMD

Similar documents
Technical Feasibility of Single Wavelength 400GbE 2km &10km application

Further information on PAM4 error performance and power budget considerations

100GBASE-FR2, -LR2 Baseline Proposal

Optical transmission feasibility for 400GbE extended reach PMD. Yoshiaki Sone NTT IEEE802.3 Industry Connections NG-ECDC Ad hoc, Whistler, May 2016

50 Gb/s per lane MMF objectives. IEEE 50G & NGOATH Study Group January 2016, Atlanta, GA Jonathan King, Finisar

Improving the Performance of Advanced Modulation Scheme. Yoshiaki Sone NTT IEEE802.3bs 400 Gb/s Ethernet Task Force, San Antonio, Novenver 2014.

Proposed reference equalizer change in Clause 124 (TDECQ/SECQ. methodologies).

100G CWDM Link Model for DM DFB Lasers. John Petrilla: Avago Technologies May 2013

Issues for fair comparison of PAM4 and DMT

Further Investigation of Bit Multiplexing in 400GbE PMA

Proposal for 400GE Optical PMD for 2km SMF Objective based on 4 x 100G PAM4

Updated Considerations on 400Gb/s Ethernet SMF PMDs

Comparison of options for 40 Gb/s PMD for 10 km duplex SMF and recommendations

PAM8 Baseline Proposal

Ordering information. 40Gb/s QSFP+ ER4 Optical Transceiver Product Specification. Features

100G MMF 20m & 100m Link Model Comparison. John Petrilla: Avago Technologies March 2013

100G-FR and 100G-LR Technical Specifications

64G Fibre Channel strawman update. 6 th Dec 2016, rv1 Jonathan King, Finisar

100GBASE-DR2: A Baseline Proposal for the 100G 500m Two Lane Objective. Brian Welch (Luxtera)

Experimental results of SOA pre-amplification for 25G-EPON IEEE P802.3ca Task Force Meeting, March 2017 Vancouver BC, Canada

SMF Ad Hoc report. Pete Anslow, Ciena, SMF Ad Hoc Chair. IEEE P802.3bm, Geneva, September 2012

100G SR4 Link Model Update & TDP. John Petrilla: Avago Technologies January 2013

Improved extinction ratio specifications. Piers Dawe Mellanox

An Approach To 25GbE SMF 10km Specification IEEE Plenary (Macau) Kohichi Tamura

Toward Baseline for 400GBASE-ZR Optical Specs

Using SOAs as Booster and/or Pre-Amplifier for 4x25-Gb/s 40-km 1310-nm PMD

Investigation of PAM-4/6/8 Signaling and FEC for 100 Gb/s Serial Transmission

400G-FR4 Technical Specification

On Figure of Merit in PAM4 Optical Transmitter Evaluation, Particularly TDECQ

Investigation of PAM-4/6/8 Signaling and FEC for 100 Gb/s Serial Transmission

10GBASE-LRM Interoperability & Technical Feasibility Report

Reducing input dynamic range of SOA-preamplifier for 100G-EPON upstream

EVLA Fiber Selection Critical Design Review

Baseline Proposal for 200 Gb/s Ethernet 40 km SMF 200GBASE-ER4 in 802.3cn

6ch LC duplex QSFP Receiver ROSA (4ch x 6Gbps) + μ-bosa (2.5Gbps) (2km) FVQ2-4R1B-SM2

200GBASE-DR4: A Baseline Proposal for the 200G 500m Objective. Brian Welch (Luxtera)

The Case of the Closing Eyes: Is PAM the Answer? Is NRZ dead?

Refining TDECQ. Piers Dawe Mellanox

40G SWDM4 MSA Technical Specifications Optical Specifications

Simula'on Study on 100G EPON Wavelength Plan A. Eugene (Yuxin) Dai Cox Communica'ons IEEE 802.3ca 100G EPON TF November, 2016 San Antonio, Texas, USA

3G-SDI Extender via Single Mode Fiber LC Simplex Connector Extends 3G-SDI Link Up To 20 Kilo Meters

SHQP28-100G-LR4-B. 103/112Gb/s QSFP28 Transceiver Hot Pluggable, Duplex LC, +3.3V, 1310nm DML/PIN, Single mode, 10km, 0~70 C

40G SWDM4 MSA Technical Specifications Optical Specifications

DataCom: Practical PAM4 Test Methods for Electrical CDAUI8/VSR-PAM4, Optical 400G-BASE LR8/FR8/DR4

40GBASE-ER4 optical budget

In support of 3.5 db Extinction Ratio for 200GBASE-DR4 and 400GBASE-DR4

Analysis on Feasibility to Support a 40km Objective in 50/200/400GbE. Xinyuan Wang, Yu Xu Huawei Technologies

100GBASE-SR4 Extinction Ratio Requirement. John Petrilla: Avago Technologies September 2013

40GBd QSFP+ SR4 Transceiver

Features: Compliance: Applications: Warranty: QSFP-40G-LR4-GT 40GBASE-LR4 QSFP+ SMF Module Cisco Compatible

PAM4 signals for 400 Gbps: acquisition for measurement and signal processing

100G PSM4 & RS(528, 514, 7, 10) FEC. John Petrilla: Avago Technologies September 2012

10Gbps SFP+ Optical Transceiver, 10km Reach

Probabilistic Shaping of High-Order QAM for Optical Fiber Systems

100Gb/s Single-lane SERDES Discussion. Phil Sun, Credo Semiconductor IEEE New Ethernet Applications Ad Hoc May 24, 2017

100G QSFP28 SR4 Transceiver

SECQ Test Method and Calibration Improvements

Emcore SITU2831 Externally Modulated RF Amplified Fiber Optic Transmitter and SIRU3000 Fiber Optic Receiver

Ali Ghiasi. Nov 8, 2011 IEEE GNGOPTX Study Group Atlanta

Systematic Tx Eye Mask Definition. John Petrilla, Avago Technologies March 2009

QSFP-100G-LR4-AR-LEG. 100Gbase-LR4 QSFP28 Transceiver

Module 11 : Link Design

Performance comparison study for Rx vs Tx based equalization for C2M links

Exceeding the Limits of Binary Data Transmission on Printed Circuit Boards by Multilevel Signaling

PIN-PD based ONU for 10GE-PON (3)

The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting postamplifier

50 Gb/s per lane MMF baseline proposals. P802.3cd, Whistler, BC 21 st May 2016 Jonathan King, Finisar Jonathan Ingham, FIT

Further Clarification of FEC Performance over PAM4 links with Bit-multiplexing

10Gbps 10km Range SFP+ Optical Transceiver

Parameter Symbol Min. Typ. Max. Unit. Supply Voltage Vcc V. Input Voltage Vin -0.3 Vcc+0.3 V. Storage Temperature Tst C

Features: Compliance: Applications: Warranty: 49Y7928-GT QSFP+ 40G BASE-SR Transceiver IBM Compatible

TP2 and TP3 Parameter Measurement Test Readiness

Overcoming Nonlinear Optical Impairments Due to High- Source Laser and Launch Powers

Recommended Changes to Optical PMD Proposal

Miniature, Ruggedized 20 GHz RF over Fiber Transmitter

32 G/64 Gbaud Multi Channel PAM4 BERT

10Gbps 10km Range 1310nm SFP+ Optical Transceiver

Intel Ethernet SFP+ Optics

LOW POWER DIGITAL EQUALIZATION FOR HIGH SPEED SERDES. Masum Hossain University of Alberta

Measurements Results of GBd VCSEL Over OM3 with and without Equalization

PRE-QSFP-LR4L 100G QSFP 28 Dual Range Optical Transceiver, 10km. Product Features: General Product Description:

Summary of NRZ CDAUI proposals

SFP-10G-LR (10G BASE-LR SFP+) Datasheet

EMPOWERFIBER 10Gbps 2km SFP+ Optical Transceiver EPP C

SHF Communication Technologies AG

QSFP SV-QSFP-40G-PSR4

10G- XFP- LR- AO. 10Gbs XFP Transceiver

802.3cd (comments #i-79-81).

1 Gang-sized Multi-format video to Optical DVI Converter, MVDF DATA SHEET

Combating Closed Eyes Design & Measurement of Pre-Emphasis and Equalization for Lossy Channels

Combating Closed Eyes Design & Measurement of Pre-Emphasis and Equalization for Lossy Channels

Model DM8000-U Optical Transmitter Direct Modulation, DWDM, Low Distortion, Wideband

Brian Holden Kandou Bus, S.A. IEEE GE Study Group September 2, 2013 York, United Kingdom

ModBox-1310nm-1550nm-NRZ 1310nm & 1550 nm, 28 Gb/s, 44 Gb/s Reference Transmitters

DATA SHEET. Two (2) fibers Detachable DisplayPort Extender, DPFX-100-TR

System Evolution with 100G Serial IO

DATA SHEET. Two (2) fibers Detachable HDMI 2.0 Extender,

CDAUI-8 Chip-to-Module (C2M) System Analysis #3. Ben Smith and Stephane Dallaire, Inphi Corporation IEEE 802.3bs, Bonita Springs, September 2015

DATA SHEET. Two (2) fibers Detachable DisplayPort 1.2 Extender, DPFX-200-TR

ModBox-1310nm-1550nm-28Gbaud-PAM nm & 1550 nm, 28 Gbaud PAM-4 Reference Transmitter

Transcription:

Component BW requirement of 56Gbaud Modulations for 400GbE 2 & 10km PMD IEEE 802.3bs 400GbE Task Force Plenary meeting, San Diego, CA July 14 18, 2014 Fei Zhu, Yangjing Wen, Yusheng Bai Huawei US R&D Center Santa Clara, CA 95050

Outline Introduction recap from May interim Update on Nx 56Gbaud alternatives - Sensitivity & Tolerance to MPI, w/ realistic ER BW requirement of Nx 56Gbaud Alternatives Summary Page 2

Readings from the straw polls of May 16 Norfolk Interim SMF duplex is clearly preferred for 400GbE 2km and 10km (Stassar_01_0614) 4A. I believe that 2km 400GbE SMF PMD will use a duplex fiber solution Yes: 70 No: 6 4B. I believe that 10km 400GbE SMF PMD will use a duplex fiber solution Yes: 85 No: 0 less number of optical carriers is clearly preferred for 400GbE 2km and 10km 5. For 2km duplex SMF 400GbE PMD, I believe the TF should select a proposal based on an effective bit rate per wavelength per direction of a) 25G: 5; b) 50G: 51; c) 100G: 77; d) 400G: 10 6. For 10 km duplex SMF 400GbE PMD, I believe the TF should select a proposal based on an effective bit rate per wavelength per direction of a) 25G: 5; b) 50G: 53; c) 100G: 74; d) 400G: 11 Page 3

The 400GbE 2km and 10km PMD candidates 400G Notes: 1) the Decision tree (in black) from: Cole_3bs_01a_0514 2) 400G per l PM-16QAM option (in blue) is proposed in Zhu_3bs_0X_0514 400GbE PM-16QAM 3) Symbol rate (in red) is added to highlight the focus of this presentation --- Tx and Rx BW requirement of Nx56Gbaud 400GbE alternatives Page 4

BER BER BER Nx 56Gbaud Alternatives: Sensitivity & Tolerance to MPI 10-1 10-2 No MPI 30dB MPI 25dB MPI 20dB MPI 10-1 10-2 10-1 10-2 No MPI 30dB MPI 25dB MPI 20dB MPI 10-3 10-3 112Gbps PAM4 (ER 6dB) 10-3 10-4 10-4 10-4 10-5 56Gbps NRZ (ER 6dB) 10-6 -15-14 -13-12 -11-10 -9 ROP, dbm 10-5 No MPI 30dB MPI 25dB MPI 20dB MPI 10-6 -11-10 -9-8 -7-6 -5-4 -3-2 ROP, dbm 10-5 10-6 448Gbps PM-16QAM (1x Vpi drive, ER 25dB) -22-21 -20-19 -18-17 -16-15 -14-13 ROP, dbm Rx Sensitivity (@ BER of 1e-3, Tx/Rx 3dB BW=0.75x Baudrate, 5 th order Bessel) 56Gbps NRZ 112Gbps PAM4 448Gbps PM-16QAM No MPI -12.6 dbm - 8.4 dbm - 18.4 dbm -30dB MPI -12.5 dbm - 7.1 dbm -18.3 dbm -25 db MPI - 12.2 dbm? - 17.9 dbm The difference from Zhu_3bs_0X_0514: realistic ER of 6dB is applied in simulation for IM format NRZ and PAM4. Page 5

Receiver Sensitivity (dbm) Nx 56Gbaud Alternatives: Dependence on Rx BW -6-6.5-7.5-8.5-9.5-10.5-11.5-12.5-13.5-14.5-15.5-16.5-17.5 Tx BW = 0.75 x BaudRate, PM-16QAM Tx BW = 0.75 x BaudRate, PAM4 Tx BW = 0.75 x BaudRate, NRZ Tx BW = 0.5 x BaudRate, PM-16QAM Tx BW = 0.5 x BaudRate, PAM4 Tx BW = 0.5 x BaudRate, NRZ -18.5 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Receiver Bandwidth (x BaudRate) Observations: Given a Tx BW, an optimal receiver bandwidth exists for each format; Optimal Rx BW for PM-16QAM, PAM4 and NRZ are similar: ~ 0.5x Symbol rate (i.e., 3dB BW 28GHz), whether Tx 3dB BW is set at 0.75x or 0.5x BaudRate; PM-16QAM is less sensitive to Tx BW, due to the nature of phase modulation. Dashed lines: Tx 3dB BW (5 th order Bessel) setting = 0.5x Baudrate, (or 28GHz); Solid lines: Tx 3dB BW setting = 0.75x Baudrate, (or, 42GHz) Page 6

Receiver Sensitivty (dbm) Power Penalty (db) Nx 56Gbaud Alternatives: Impact of Tx BW -6-6.5-7.5-8.5-9.5-10.5-11.5-12.5-13.5-14.5-15.5-16.5-17.5 PM-16QAM PAM4 NRZ Rx 3dB BW 0.5x Baudrate -18.5 0.4 0.5 0.6 0.7 0.8 0.9 1 Transmitter Bandwidth (x BaudRate) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 PM-16QAM PAM4 NRZ 0 0.4 0.5 0.6 0.7 0.8 0.9 1 Transmitter Bandwidth (x BaudRate) Notes: 1) At optimal Rx BW of 0.5x Symbol rate (i.e., 28GHz); 2) Rx sensitivity is defined @ BER 1e-3; 3) Power Penalty (PP) is referenced to Tx 3dB BW of 1x Baudrate; 4) No Rx EQ is applied in case of NRZ; 5) No Tx pre-emphasis in all formats considered. Nx 56Gbaud Alternatives Required Tx BW (@ Rx 3dB BW = 0.5x Baudrate) @ 0.2dB PP @ 0.5dB PP 448 Gbps PM-16QAM 0.58x (or 32 GHz) 0.47x (or 26 GHz) 112 Gbps PAM4 0.70x (or 39 GHz) 0.56x (or 31 GHz) 56 Gbps NRZ (No Rx EQ) 0.76x (or 43 GHz) 0.60x (or 34 GHz) Page 7

Transmitter BW decomposed Power Penalty assumed 0.2 db 0.5 db Nx 56Gbaud 400GbE alternatives Total Tx 3dB BW (5 th order Bessel) Decomposed component 3dB BW (each component assumed 3 rd order Bessel filter, at equal contribution ) Driver Modulator 448 Gbps PM-16QAM 32 GHz 45 GHz 45 GHz 112 Gbps PAM4 39 GHz 54 GHz 54 GHz 56 Gbps NRZ (no EQ) 43 GHz 59 GHz 59 GHz 448 Gbps PM-16QAM 26 GHz 36 GHz 36 GHz 112 Gbps PAM4 31 GHz 43 GHz 43 GHz 56 Gbps NRZ (no EQ) 34 GHz 46 GHz 46 GHz The above assumes no Tx analog or digital BW pre-emphasis, so it is a baseline of the fundamental property of modulation formats; It is possible to reduce component BW requirement with digital or analog pre-emphasis. However, preemphasis could boost noise, and increase linearity requirement, in particular, for PAM4 and 16QAM; Pre-emphasis can be quite useful. But proper noise & distortion model need to be established for proper assessment. Page 8

Receiver Sensitivity (dbm) Power Penalty (db) 8x 56Gbaud NRZ: Role of Rx EQ -10.5-11 -11.5-12 -12.5 No Equalizer 5-tap FFE Only 5-tap FFE +1-tap DFE -13 0.4 0.5 0.6 0.7 0.8 0.9 1 Transmitter Bandwidth (x BaudRate) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 No Equalizer 5-tap FFE Only 5-tap FFE +1-tap DFE 0 0.4 0.5 0.6 0.7 0.8 0.9 1 Transmitter Bandwidth (x BaudRate) Notes: 1) At optimal Rx BW of 0.5x Symbol rate (i.e., 28GHz); 2) Rx sensitivity is defined @ BER 1e-3; 3) Power Penalty (PP) is referenced to Tx 3dB BW of 1x Baudrate; 4) No Tx pre-emphasis is applied. 8x 56Gbaud NRZ Required Tx BW (@ Rx 3dB BW = 0.5x) Tx 3dB BW Decomposed (0.5dBpp, @ Rx 3dB BW=0.5x) @ 0.2dB PP @ 0.5dB PP driver modulator No Rx EQ 0.76x (or 43 GHz) 0.60x (or 34 GHz) 46 GHz 46 GHz 5-tap FFE only 0.72x (or 40 GHz) 0.57x (or 32 GHz) 44 GHz 44 GHz 5-tap FFE + 1-tap DFE* 0.68x (or 38 GHz) 0.51x (or 29 GHz) 40 GHz 40 GHz Page 9

Simulation Parameters 448Gbps PM-16QAM 112Gbps PAM4 56Gbps NRZ Lyubomirsky_400_01_1113 Tx: RIN -145 db/hz - 140 db/hz ER 25 db (IQ) 6 db (IM) 4 db Laser LW 0.1 MHz 0.7 MHz Not available (not important) 3dB BW Variable to find minimum required @ 0.2 / 0.5dB PP 16 GHz Filter shape 5 th order Bessel 4 th order Bessel Rx: 3dB BW 0.75x & 0.5x Baudrate 0.75x Baudrate Filter shape 5 th order Bessel (PIN + TIA) 4 th order Bessel Responsibility 0.05 A/W (Cohdet) 0.85 A/W (DD) 0.4 A/W Rx noise 30 pa/sqrt (Hz) 18 pa/sqrt (Hz) LO LW/Power 0.1 MHz / 13dBm N/A N/A Rx EQ 9-tap MIMO FIR 9-tap SISO FIR None/5-tap FFE/ 5-tap FFE+1-tap DFE None/5-tap FFE /5-tap FFE+1-tap DFE Page 10

Components for Nx 56Gbaud Alternatives Lasers 8 x 56Gbps NRZ 4 x 112Gbps PAM4 1x 448Gbps PM-16QAM 8 (DML?) (can DML still make it at 56Gbaud?) 4 (EML) 1 (shared LO) (Linewidth ~300kHz) Modulators IM in DML or EML IM in EMLs PM-IQM Drivers 8 (limiting) 4 (linear) 4 (linear) Receivers & TIAs MUX & DeMUX optics Rx EQ* 8 (DD: single-ended PIN w/ limiting TIA) Yes (8:1 & 1:8) extra loss May be needed (to reduce Tx BW requirement) 4 (DD: single-ended PIN w/linear TIA) Yes (4:1 & 1:4) extra loss Needed (4 A/Ds + DSP) (more tolerant to BW limit, but still sensitive to residual CD in 1310nm) 1 ICR (CohDet: Optical Hybrid, 4 balanced PIN w/ linear TIA) N/A Needed (4 A/Ds + DSP) (more tolerant to BW limit & residual CD in 1310nm) Scalability?? (>8 lanes lead to large CD Penalty)?? (more lanes more MUX/DeMUM IL) Yes ( readily scalable to 1.6TbE) * Essentially the same table from Zhu_3bs_0X_0514, slightly updated (in red) Page 11

Summary Tx 3dB BW required (likely) of Nx 56Gbaud candidates are analyzed via simulation. Modulation Generation/Detection 400GbE Options Max Rx Sensitivity/l (-30dB MPI, @ BER 1x10-3 ) Required Tx 3d BW (@ Rx 3dB BW=0.5x ) Tx 3dB BW decomposed driver modulator NRZ, IM-DD (ER=6dB) 8 x 56 Gbps -12.3 dbm/lane 32GHz (5-tap FFE) 44 GHz 44 GHz PAM4, IM-DD (ER=6dB) 4 x 112 Gbps -6.6 dbm/lane 31GHz (9-tap SISO) 43 GHz 43 GHz PM-16QAM, IQ CohRx (1x Vpi drive, ER 25dB) 1x 448 Gbps -17.8 dbm 26GHz (9-tap MIMO) 36 GHz 36 GHz This is not to define the specs for Tx or Rx BW, rather to clarify some myth about component BW requirement for Nx 56Gbaud 400GbE alternatives, and some myth around power consumption. More investigations are needed to understand how much pre-emphasis or Rx EQ would help to reduce component BW requirement before specification can be reached; The role of EQ in Tx /Rx would have direct impact on power, and would have direct impact on component cost too. Page 12

THANK YOU