Clinical Study Effect of Pupil Size on Optical Quality Parameters in Astigmatic Eyes Using a Double-Pass Instrument

Similar documents
We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Research Article Visual Motor and Perceptual Task Performance in Astigmatic Students

Predicting of Uncorrected Astigmatism from Decimal Visual Acuity in Spherical Equivalent

Comparison of the Astigmatic Power of Toric Intraocular Lenses Using Three Toric Calculators

DOWNLOAD ASTIGMATIC TECHNIQUE IN ONE STEP RAINBOW HOLOGRAPHY

Novel Microscope Mounted Digital Keratoscope for Intra-Operative Toric IOL Alignment

Richard N. McNeely 1,2, Salissou Moutari 3, Eric Pazo 1,2 and Jonathan E. Moore 1,2*

Total corneal astigmatism in older adults taking into account posterior corneal astigmatism by ray tracing

Douglas Katsev MD Sansum Clinic Chairman Ophthalmology Santa Barbara CA

White Paper. Astigmatism Management With Toric IOLs The Importance of Rotational Stability After IOL Implantation. Xiaolin Gu, M.D., PhD.

Premium treatment starts with premium diagnosis

Handout Course Title : Astigmatisme Management with toric IOL

Effect of Pupil Size on Uncorrected Visual Acuity in Pseudophakic Eyes With Astigmatism

Irregular Corneal Astigmatism & Cataract

* Villegas EL, Alcón E, Artal P. Minimum amount of astigmatism that should be corrected. J Cataract Refract Surg 2014; 40: n My SIA: Ø Centroid

2nd ESASO Anterior Segment Academy April 2016, Milano/Italy

2Optimizing the Refractive

The Short Term Effects of a Single Limbal Relaxing Incision Combined with Clear Corneal Incision

Standard for Reporting Refractive Outcomes of Intraocular Lens Based Refractive Surgery

Toric intraocular lenses

Index. D DALK, 69, 155 Differential sector index (DSI), 92 Discriminant function analysis, DMEK, 23 Donor factors, 156 DSAEK, 23

Clinical outcomes of Transepithelial photorefractive keratectomy to treat low to moderate myopic astigmatism

Management of astigmatism at the time of cataract or refractive lens surgery has evolved to include arcuate keratotomy and toric

Postoperative Astigmatic Outcomes Based on the Haptic Axis of Intraocular Lenses Inserted in Cataract Surgery

Abstract. imedpub Journals Vol.3 No.2:27. Introduction

Arthur Cummings FRCSEd

Assessment & management of irregular astigmatism

No financial interest

AXsys Studay Data and Press Release Reference

4/9/2016. Sources of. Single-angle vs. double-angle plots for astigmatism data. Commercial Toric IOL calculators. Unexpected residual astigmatism!

Over the last decade, a vast improvement on intraocular

LASIK for post penetrating keratoplasty astigmatism and myopia

Prospective study of toric IOL outcomes based on the Lenstar LS 900 W dual zone automated keratometer

Handheld Shack Hartmann Wavefront Sensor. Jim Schwiegerling, Ph.D. Department of Ophthalmology and Optical Sciences The University of Arizona

Astigmatism in Children: Changes in Axis and Amount from Birth to Six Years

Research conducted over the past 15 years has yielded a

Evaluation of Opposite Clear Corneal Incision in Controlling Astigmatism in Cataract Patients Undergoing Phacoemulsification Surgery

Non-penetrating Femtosecond Laser. intrastromal astigmatic keratotomy (ISAK) Patients With Mixed Astigmatism After Previous Refractive Surgery

Femtosecond Cataract Surgery: Correction of Astigmatism and Complex Cases Financial Disclosures Femtosecond Laser Utility in Cataract Surgery

Analysis of WFS Measurements from first half of 2004

Development of a program for toric intraocular lens calculation. considering posterior corneal astigmatism, incisioninduced

Astigmatic axis and amblyopia in childhood

Eyes with regular astigmatism have two orthogonal focal. Accommodation in Astigmatic Children During Visual Task Performance

The efficacy of Toric IOL in comparison to LRI in correcting pre-existing astigmatism in phacoemulsification

Multicolor Scan Laser Photocoagulator MC-500 Vixi

AXsys Study Data and Press Release Reference

Results of Intraoperative Manual Cyclotorsion Compensation for Myopic Astigmatism in Patients Undergoing Small Incision Lenticule Extraction (SMILE)

Disclosure. Getting Up to Date with LASIK. Modern advancements LASIK. What we re curing. Changing the corneal surface

Treatment of astigmatism-related amblyopia in 3- to 5-year-old children

ORIGINAL ARTICLE. Primary Topography-Guided LASIK: Treating Manifest Refractive Astigmatism Versus Topography-Measured Anterior Corneal Astigmatism

AstigmatismamongotherRefractiveErrorsinChildrenofSouthernSriLanka. Astigmatism among other Refractive Errors in Children of Southern Sri Lanka

MC-500 Vixi MC-500. Multicolor Scan Laser Photocoagulator. Multicolor Laser Photocoagulator US EDITION

How to Chose an Ideal High Definition Endoscopic Camera System

Full-Thickness Astigmatic Keratotomy Combined With Small-Incision Lenticule Extraction to Treat High-Level and Mixed Astigmatism

The Pattern of Astigmatism in a Canadian Pre-School Population. Number of words in text: 5371 Number of words in abstract: 199

A novel method for human Astigmatism formulation and measurement

New method of quantifying corneal topographic astigmatism that corresponds with manifest refractive cylinder

POST-OPERATIVE ASTIGMATISM AFTER SICS AND PHACOEMULSIFICATION.

Multicolor Scan Laser Photocoagulator MC-500 Vixi. Multicolor Laser PhotocoagulatorMC-500

Diagnosis and Management of Astigmatism

Research Article Pattern Visual Evoked Potentials Elicited by Organic Electroluminescence Screen

THE CHALLENGES CORNEAL IRREGULARITIES POST-LASIK ECTASIA IS THIS A GOOD LASIK CANDIDATE? 3/5/2015. FITTING THE IRREGULAR CORNEA Challenges & Solutions

The eyes of neonates of all species studied have rather. Severe Astigmatic Blur Does Not Interfere with Spectacle Lens Compensation

CHANGE ON THE HORIZONTAL AND VERTICAL MERIDIANS OF THE CORNEA AFTER CATARACT SURGERY*

CA-800 Tear Module. Rick Gaudenti. Product Manager, Refraction Mar 2017

Impact of DMD-SLMs errors on reconstructed Fourier holograms quality

Arcuate Keratotomy for High Postoperative Keratoplasty Astigmatism Performed With the IntraLase Femtosecond Laser

Connection for filtered air

Clinical Study Troublesome Tinnitus in Children: Epidemiology, Audiological Profile, and Preliminary Results of Treatment

Comparison of Toric Foldable Iris-Fixated Phakic Intraocular Lens Implantation and Limbal Relaxing Incisions for Moderate-to-High Myopic Astigmatism

Human Hair Studies: II Scale Counts

Astigmatism is a common refractive error 1 and an important. The Changing Profile of Astigmatism in Childhood: The NICER Study

Lin Liu, Jun Zou *, Hui Huang, Jian-guo Yang and Shao-rong Chen

Circular Keratotomy to Reduce Astigmatism and Improve Vision in Stage I and II Keratoconus

Astigmatism: Aberration or ametropia?

ORIGINAL ARTICLE. Amblyopia in Astigmatic Infants and Toddlers

BEAMAGE 3.0 KEY FEATURES BEAM DIAGNOSTICS PRELIMINARY AVAILABLE MODEL MAIN FUNCTIONS. CMOS Beam Profiling Camera

Laser Beam Analyser Laser Diagnos c System. If you can measure it, you can control it!

Proposed classification for topographic patterns seen after penetrating keratoplasty

Durham Magneto Optics Ltd. NanoMOKE 3 Wafer Mapper. Specifications

Irregular Astigmatism Diagnosis And Treatment

Humor and Laughter May Influence Health: II. Complementary Therapies and Humor in a Clinical Population

VISERA 4K UHD GET CLOSER. GET CLOSER Four Times the Resolution of Full HD.

Color Reproduction Complex

Cycloplegic Refractions of Infants and Young Children: The Axis of Astigmatism

Phacoemulsification: The first 50 Cases

1. Standard Equipment Subjective Eye Tester Name of Parts Details of Auxiliary Lenses Measuring Performance...

ORIGINAL ARTICLE. Corneal and Refractive Error Astigmatism in Singaporean Schoolchildren: a Vector-Based Javal s Rule

Modulation transfer function of a liquid crystal spatial light modulator

Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex

White Paper. Uniform Luminance Technology. What s inside? What is non-uniformity and noise in LCDs? Why is it a problem? How is it solved?

Journal of the Association of Chartered Physiotherapists in Respiratory Care A guide to writing an experimental study

620 Rejwrts Investigative Ophthalmology

What is the lowest contrast spatial frequency you can see? High. x x x x. Contrast Sensitivity. x x x. x x. Low. Spatial Frequency (c/deg)

Astigmatism: analysis and synthesis of the astigmatic ametropia

Do the near computerised and non-computerised crowded Kay picture tests produce the same measure of visual acuity?

balt5/zov-opx/zov-opx/zov01005/zov a washingd S 12 10/4/05 14:54 Art: OPX Input-nlm ORIGINAL ARTICLE

Just the Key Points, Please

How to write an article for a Journal? 1

Onset and Progression of With-the-Rule Astigmatism in Children with Infantile Nystagmus Syndrome

Transcription:

BioMed Research International Volume 2013, Article ID 124327, 6 pages http://dx.doi.org/1155/2013/124327 Clinical Study Effect of Pupil Size on Optical Quality Parameters in Astigmatic Eyes Using a Double-Pass Instrument Hidenaga Kobashi, Kazutaka Kamiya, Kyohei Yanome, Akihito Igarashi, and Kimiya Shimizu Department of Ophthalmology, University of Kitasato School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan Correspondence should be addressed to Kazutaka Kamiya; kamiyak-tky@umin.ac.jp Received 17 April 2013; Revised 29 May 2013; Accepted 12 June 2013 Academic Editor: David Maintz Copyright 2013 Hidenaga Kobashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. To objectively determine the effects of pupil size on optical quality parameters in astigmatic eyes using a double-pass instrument. Methods. We examined twenty-two eyes of 22 healthy volunteers (mean age ± standard deviation, 27.1 ± 2.8 years) who had no ophthalmic diseases other than refractive errors (manifest cylinder 5 diopters (D)). After we fully corrected cycloplegic refraction, we created with-the-rule astigma tism of 1, 2, and 3 diopters in these eyes and then quantitatively assessed the modulation transfer function (MTF) cutoff frequency and the Strehl2D ratio with 2-, 4-, and 6-mm pupil sizes using the Optical Quality Analysis System. Results. The MTF cutoff frequency and the Strehl2D ratio decreased significantly as the amount of astigmatism increased at each pupil size ( for 2, 4, and 6 mm, analysis of variance). They also decreased significantly with an increase in pupil size at each diopter of astigmatism ( for 0, 1, 2, and 3 D). Multiple comparisons demonstrated a significant difference between measurements made for a 2-mm pupil and for a 6-mm pupil at each diopter of astigmatism ( for0,1,2,and3d,dunnett test) and those made for a 4-mm pupil and for a 6-mm pupil at each diopter of astigmatism ( for 0 D, P < 0.05 1, 2, and 3D).Conclusions. Eyes with larger pupils had lower optical quality even when they were astigmatic. It may be necessary to correct the preexisting astigmatism to acquire excellent visual performance, especially in astigmatic eyes with larger pupils. 1. Introduction Although modern refractive and cataract surgery techniques allow rapid visual recovery, preexisting corneal astigmatism remains a common change to achieve excellent uncorrected visual acuity. Moreover, it has been estimated that approximately 30%, 8%, and 3% of patients have more than 1, 2, and 3 diopters (D), respectively, of preexisting cylindrical refractive errors [1 3]. Several surgical options for the correction of astigmatism have been advocated, such as laser in situ keratomileusis, photorefractive keratectomy, astigmatic keratotomy using limbal or corneal relaxing incisions, and a toric phakic or pseudophakic intraocular lens implantation. At present, we merely consider the amount of astigmatism as well as the axis of astigmatism for these surgical approaches. The optical quality analysis system (OQAS, Visiometrics, Terrassa, Spain), which is designed on the basis of the asymmetric pattern of the double-pass technique, has been shown to be a useful tool for comprehensively evaluating the optical quality of the eye [4 7]. Moreover, it has been demonstrated that this device has excellent repeatability of measurement [6, 7]. We recently showed that pupil size may play an essential role in visual acuity in eyes having astigmatism [8]. However, to our knowledge, the effects of pupil size on optical quality parameters, such as the modulation transfer function (MTF) cutoff frequency or the Strehl ratio, have not so far been objectively assessed in such eyes. The purpose of this study is to prospectively evaluate the effects of pupil size on optical quality parameters in astigmatic eyes using the double-pass instrument. 2. Materials and Methods 2.1. Study Subjects. Twenty-two eyes of 22 healthy volunteers (12 female, 10 male; mean age ± standard deviation (SD),

2 BioMed Research International 27.1 ± 2.8 years) were enrolled in this prospective study. The inclusion criteria for this study were as follows: best spectaclecorrected visual acuity of 20/20 or better, manifest refractive cylinder of 5 diopters (D) or less, manifest spherical equivalent of -4 D or less, and no history of any ophthalmic disease, or ocular surgery. Eyes with keratoconus were excluded from the study by using the keratoconus screening test of Placido disk videokeratography (TMS-2, Tomey, Nagoya, Japan). Ocular higher-order aberrations (HOAs) for a 4-mm pupil were determined with Hartmann-Shack aberrometry (KR- 9000,Topcon,Tokyo,Japan).Thesamplesizesinourstudy offered 85% statistical power at the 5% level to detect a 10- cycles/degree difference in MTF cut-off frequencies between the two groups, when the SD of the mean difference was 15.0 cycles/degree. They also offered 85% statistical power at the 5% level to detect a 0.04-difference in the Strehl ratio between the two groups, when the SD of the mean difference was 0.06. The study was approved by the Institutional Review Board at Kitasato University, School of Medicine. Written informed consent was obtained from all patients after explanation of the nature and possible consequences of the study. 2.2. Experimental Procedure. Manifest and noncycloplegic refractions were examined with the autorefractor (ARK- 700A; Nidek, Gamagori, Japan). Cycloplegia was achieved with three drops of 1% cyclopentolate hydrochloride (Cyplegin; Santen, Osaka, Japan), spaced 5 minutes apart. The autorefractor was also performed at least 30 minutes after the third administration of cyclopentolate hydrochloride and only if the pupillary light reflex was absent. One eye of each subject was chosen randomly for the measurement. Three consecutive sets of measurements with the device were performed in all subjects by a single experienced examiner (H.K.)andwerethenaveragedforstatisticalanalysis.The ARK-700A autorefractor has been reported to have excellent repeatability of the measurements [9]. The manifest refractive errorofthesubjectswasfullycorrectedduringthesemeasurements; the spherical error was automatically corrected by the double-pass system, and the cylindrical error was corrected with an external lens, because the uncorrected refractive error directly affects the optical outcome of the system. To determine the optical quality of different pupil sizes in astigmatic eyes, we varied the artificial pupil size from 2 to 6 mm. If a minor residual astigmatism exists, the subject looks for focusing on the circle of least confusion. Without changing this focal condition, we varied the cylindrical lens power between 1 D and 3 D undercorrection of the astigmatism, at 1-D intervals. In these cases the retinal image of the point source is a Sturm focal. With regard to axis orientation in astigmatic eyes, we assessed optical quality parameters in eyes with with-the-rule astigmatism. 2.3. Optical Quality Measurement. We measured the optical quality parameters of the eye, such as the MTF cutoff frequency and the Strehl2D ratio, in these eyes using the OQAS. Near-infrared light consisting of a laser diode (wavelength, 780 nm) is used because it is more comfortable for the subject and provides retinal image quality estimates that are comparable to those obtained with visible light. The natural pupil diameter was provided by this device from an image of an additional video camera that allowed pupil alignment. We confirmed that the natural pupil diameter was more than 6.0mmaftercycloplegia.Thesizeoftheartificialpupilis controlled by means of a diaphragm wheel located inside the double-pass system. The room illumination was kept low (approximately 25 lux) during testing. Fromtheretinalimageofeachanalyzedeye,themonochromatic MTF was computed. The MTF represents the loss of contrast as a function of the spatial frequency. A twodimensional radially averaged profile of the MTF is used to describe the complete eye s optical quality in the double-pass instrument. To simplify the data and facilitate the clinical comparison of retinal image quality between subjects, the system provides several parameters that are related to the MTF:theMTFcutofffrequencyandtheStrehl2Dratio. The value considered is the cutoff point of the MTF curve on the x-axis; the results are given in cycles per degree, representing the highest spatial frequency at lower contrast. The MTF cutoff in the double-pass system is the frequency at which the MTF reaches a value of 0.01. Because the point spread function (PSF) images recorded by the double-pass instrument can be affected by high-frequency noise, which is inherent in the use of cameras, the frequency for very small MTF values may become unstable, potentially leading to artifacts. To avoid this problem, the device uses an MTF threshold value of 0.01, which corresponds to 1% contrast. Thus, the MTF cutoff frequency in this paper refers to the frequency up to which the eye can focus an object on the retina with a significant 1% contrast. In the visual optics field, the Strehl ratio is often computed in the frequency domain as the ratio between the volume under the MTF curve of the measured eye and that of the aberration-free eye [10]. This provides overall information on the eye s optical quality. The double-pass system computes the Strehl ratio in two dimensions (Strehl2D ratio) as the ratio betweentheareaunderthemtfcurveofthemeasuredeye andthatoftheaberration-freeeye.thiscomputationhasa lower cost in time, which makes it more suitable for clinical practice. A Strehl ratio of 1 is related to a perfect optical system that is only limited by diffraction. The poor-quality data (e.g., blinking artifacts or poor detections of PSF images by the software) were manually excluded. In addition, to assess the repeatability of the measurements for confirming the applicability of the data, the measurementswiththisdeviceweremadein22eyeswitha4mm pupilat2dofastigmatismatthesametimeofdayontwo days. We evaluated the repeatability of the two measurements as described previously using Bland-Altman plots [11]. 2.4. Statistical Analysis. All statistical analyses were performed using SPSS (SPSS Inc, Chicago, IL, USA). One-way repeated-measures analysis of variance (ANOVA), followed by the Dunnett post hoc test for multiple comparisons, was used to compare the differences between groups with different pupil sizes. The results are expressed as mean ± standard

BioMed Research International 3 deviation, and a P valueof<0.05 was considered statistically significant. 3. Results Table 1 shows the demographic data of the study population. We found no significant differences between manifest, noncycloplegic, and cycloplegic refractions (P = 0.99 for spherical equivalent refraction, P = 4 for cylindrical refraction, ANOVA). Figure 1 shows representative examples of the double-pass images in eyes with 3 D of astigmatism at the different pupil sizes (2, 4, and 6 mm). Our results provided by the instrument were analyzed in the low-power principal meridian which showed maximum elongation of the double-pass image. The MTF cutoff frequency decreased significantly as the amount of astigmatism increased ( for 2,4,and 6 mm, ANOVA). It was also significantly affected by pupil size at each diopter of astigmatism ( for0,1,2,and3d, ANOVA). Multiple comparisons demonstrated a significant difference between measurements made for a 2 mm pupil and fora6mmpupilateachdiopterofastigmatism( for 0, 1, 2, and 3 D, Dunnett test) and those made for a 4 mm pupil and for a 6 mm pupil at each diopter of astigmatism (P < 0.001 for 0 D, P = 0.03 for 1 D, P = 0.04 for 2 and 3 D, Figure 2). The Strehl2D ratio also decreased significantly as the amount of astigmatism increased ( for 2,4,and 6 mm, ANOVA). It was also significantly affected by pupil size at each diopter of astigmatism ( for0,1,2,and3d, ANOVA). Multiple comparisons demonstrated a significant difference between measurements made for a 2 mm pupil and fora6mmpupilateachdiopterofastigmatism( for0,1,2,and3d,dunnetttest),andthosemadefora4mm pupilandfora6mmpupilateachdiopterofastigmatism ( for0d,p = 0.002 for 1 D, P = 0.02 for 2 and 3 D, Figure 2). All optical quality parameters were summarized in Table 2. Bland-Altman plots indicate that the mean difference between two measurements with this device (± 95% limits of agreement; LoA) was 0.05 ± 1.89 cycles/degree ( 4.18 to 3.24 cycles/degree) for MTF cutoff frequency and 0.00 ± 0.01 ( 0.03 to 0.02) for Strehl2D ratio (Figure 3). 4. Discussion The results of our study have revealed that both the MTF cutoff frequency and the Strehl2D ratio were better in eyes with less astigmatism at each pupil size. It is quite reasonable that this was in line with previous studies in which eyes with a greater astigmatism had lower optical quality [12, 13]. Our results have also shown that astigmatic eyes with larger pupil sizes had lower optical quality than those with smaller pupil sizes, which was consistent with their previous findings in nonastigmatic eyes [14 16], indicating that pupil size plays an essential role in visual performance in astigmatic eyes as well as in nonastigmatic eyes. Since the level of HOAs appears to be low and almost equivalent in all eyes, as shown in Table 1, Table 1: Demographics of the study population. Mean ± SD (range) Age (years) 27.1 ± 2.8 (23 to 33) Gender (% female) 54.5% Spherical equivalent refraction Manifest (D) 1.02 ± 1.53 ( 3.25 to 0.75) Noncycloplegia (D) 0.98 ± 1.38 ( 3.75 to 0) Cycloplegia (D) 0.96 ± 1.35 ( 3.75 to 0) Cylindrical refraction Manifest (D) 9 ± 1 ( 5 to 0.00) Noncycloplegia (D) 4 ± 9 ( 5 to 0.00) Cycloplegia (D) 3 ± 3 ( 5 to 0.00) Ocular HOAs (μm, for a 4-mm pupil) 1 ± 0.03 (0.04 to 7) D: diopter, SD: standard deviation, HOAs: higher-order aberrations, Measured using an autorefractor. we assume that HOAs did not significantly influence the visual outcomes in this study. We believe that our findings are informative to most surgeons because they do not evaluate pupil size for the surgical correction of astigmatism in a clinical setting. As far as we can ascertain, this is the first study to objectively assess the effect of pupil size on detailed optical quality parameters, such as the MTF cutoff frequency or the Strehl2D ratio, in astigmatic eyes. Coupled with our previous [8] and current findings, it may be necessary to correct the preexisting astigmatism to acquire excellent visual outcomes, especially in astigmatic eyes with larger pupils, from the subjective and objective viewpoints. It is of clinical importance to assess the repeatability of the measurements with this instrument in order to confirm the applicability of the data. It has been demonstrated that the device has good repeatability [6, 7], and that the realignment oftheeyesdoesnotimposeanyadditionalvariationonthe measurements [6, 7]. As shown in Figure3,we confirmed the good repeatability of the measurements in the current study, as evidenced by the narrow 95% LoA. Hence, we believe that this device offers reasonable repeatability in the clinical evaluationoftheopticalqualityoftheeye. There are at least two limitations to this study. First, we used the artificial pupils, which were not at all influenced by these factors, at the spectacle plane, with the OQAS under cycloplegia in the present study. It is known that pupil size can be influenced not only by patient background, for example, by age, manifest refraction, and the accommodative state of the eye, and by various sensory and emotional conditions, but also by measurement conditions affecting the level of retinal illuminance. A further study is needed in order to clarify the exact role of pupil size on visual performance under natural viewing conditions. Second, we objectively assessed optical quality parameters only in eyes with with-the-rule astigmatism. However, these values should be theoretically constant at each type of astigmatism even if the axis orientation was changed, since the PSF image itself was rotated symmetrically with respect to a central point. Moreover, in our preliminary data,wealsoobtainedalmostsimilarresultsnotonlyin eyes with against-the-rule astigmatism, but also in those with

4 BioMed Research International 2 mm 1.0 0.9 4 mm 6 mm MTF MTF MTF 0.8 0.7 0.6 0.0 (a) 1.0 0.9 0.8 0.7 0.6 0.0 (b) 1.0 0.9 0.8 0.7 0.6 0.0 (c) 0 5 10 15 20 25 30 35 Spatial frequency (c/deg) 0 5 10 15 20 25 30 35 Spatial frequency (c/deg) 0 5 10 15 20 25 30 35 Spatial frequency (c/deg) Figure 1: Point spread function (PSF) (left) and modulation transfer function (MTF) (right) images of 3 diopters of astigmatism obtained by the Optical Quality Analysis System: (a) 2-mm pupil, (b) 4-mm pupil, and (c) 6-mm pupil.

BioMed Research International 5 Parameters MTF cutoff frequency (c/deg) Strehl2D ratio Table 2: Optical quality parameters of different pupil sizes in astigmatic eyes. ANOVA: analysis of variance, MTF: modulation transfer function, D: diopters. Astigmatism Artificial pupil size 2 mm 4 mm 6 mm 0D 48.4 ± 4.7 40.8 ± 8.0 32.2 ± 7.3 1D 38.7 ± 7.5 26.6 ± 6.3 21.4 ± 5.8 2D 29.8 ± 8.0 20.7 ± 5.1 16.0 ± 4.6 3D 27.2 ± 8.8 17.3 ± 6.2 12.6 ± 6.5 0D 0 ± 0 6 ± 0.07 7 ± 0.05 1D 1 ± 0.04 6 ± 0.03 2 ± 0.03 2D 6 ± 0.05 2 ± 0.04 0.09 ± 0.01 3D 3 ± 0.04 1 ± 0.04 0.08 ± 0.02 Mean MTF cutoff frequency (c/deg) 60 50 40 30 20 10 0 48.4 (4.7) 40.8 P = 0.03 (8.0) 38.7 (7.5) 32.2 P = 0.04 (7.3) 29.8 26.6 (8.0) 27.2 P = 0.04 (6.3) 21.4 20.7 (8.8) (5.8) (5.1) 16.0 17.3 (4.6) (6.2) 12.6 (6.5) 0 1 2 3 Astigmatism (D) Mean Strehl2D ratio 0 0 (0) P = 0.002 6 (0.07) 1 P = 0.02 P = 0.02 (0.04) 7 6 6 (0.05) (0.03) (0.05) 2 3 2 (0.03) 1 1 (0.04) (0.04) 0.09 (0.04) 0.08 (0.01) (0.02) 0 1 2 3 Astigmatism (D) 2 mm 4 mm 6 mm 2 mm 4 mm 6 mm (a) (b) Figure 2: Optical quality parameters with 2-, 4-, and 6-mm pupil sizes at each diopter of astigmatism. (a) Mean modulation transfer function (MTF) cutoff frequency. (b) Mean Strehl2D ratio. Each parenthesis means values of the standard deviations. Repeated-measures analysis of variance, followed by the Dunnett post hoc test for multiple comparisons, was used to compare the differences between groups with different pupil sizes: c/deg = cycles per degree, D = diopter. Measurement 1-measurement 2 10 8 6 4 2 0 2 4 6 8 MTF cutoff frequency 10 10 20 30 40 Average of measurement 1 and measurement 2 (a) Measurement 1-measurement 2 0 Strehl2D ratio 0.05 0.00 0.05 0 0.05 5 5 Average of measurement 1 and measurement 2 (b) Figure 3: Bland-Altman plots represent the difference between two measurements divided by the mean of these measurements. (a) Modulation transfer function (MTF) cutoff frequency (b) Strehl2D ratio. The solid lines represent mean differences between 2 measurements of MTF cutoff frequency and Strehl2D ratio; dotted lines are the upper and lower borders of the 95% limit of agreement (mean difference ± 1.96 multiplied by standard deviation of the mean difference).

6 BioMed Research International oblique astigmatism (data not shown). Therefore, we believe that the axis orientation does not significantly affect these objective parameters in the current study. 5. Conclusions In summary, our results demonstrated that astigmatic eyes with larger pupil sizes had lower objective visual performance, such as a lower MTF cutoff frequency and a lower Strehl2D ratio. It is suggested that not only subjective but also objective visual performance was influenced by pupil size in astigmatic eyes. We believe that these findings, although simple, are clinically meaningful since most surgeons consider merely the amount of astigmatism and the astigmatic axis for the surgical correction of astigmatism in a clinical setting. Conflict of Interests The authors have no financial or proprietary interests in the materials presented herein. Authors Contributions Hidenaga Kobashi, Kazutaka Kamiya, and Kimiya Shimizu conceived and designed the experiments. Hidenaga Kobashi, Kazutaka Kamiya, Kyohei Yanome, and Akihito Igarashi performed the experiments. Hidenaga Kobashi, Kazutaka Kamiya, and Kyohei Yanome analyzed the data. Hidenaga Kobashi, Kazutaka Kamiya, and Kimiya Shimizu contributed reagents, materials, and analysis tools. Hidenaga Kobashi wrote the paper. Acknowledgment The authors are grateful to Mr. C. W. P. Reynolds for his careful linguistic assistance with this paper. References [6]A.Saad,M.Saab,andD.Gatinel, Repeatabilityofmeasurements with a double-pass system, Cataract and Refractive Surgery,vol.36,no.1,pp.28 33,2010. [7] M. Vilaseca, E. Peris, J. Pujol, R. Borras, and M. Arjona, Intraand intersession repeatability of a double-pass instrument, Optometry and Vision Science,vol.87,pp.675 681,2010. [8] K. Kamiya, H. Kobashi, K. Shimizu, T. Kawamorita, and H. Uozato, Effect of pupil size on uncorrected visual acuity in astigmatic eyes, British Ophthalmology, vol. 96, no. 2, pp. 267 270, 2012. [9] P.M.Allen,H.Radhakrishnan,andD.J.O Leary, Repeatability and validity of the PowerRefractor and the Nidek AR600-A in an adult population with healthy eyes, Optometry and Vision Science,vol.80,no.3,pp.245 251,2003. [10] R. Navarro, P. Artal, and D. R. Williams, Modulation transfer of the human eye as a function of retinal eccentricity, the Optical Society of America A,vol.10,no.2,pp.201 212,1993. [11] J. M. Bland and D. G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement, The Lancet,vol.1,no.8476,pp.307 310,1986. [12] D. E. Mitchell and F. Wilkinson, The effect of early astigmatism on the visual resolution of gratings, Physiology, vol. 243, no. 3, pp. 739 756, 1974. [13] J. Pujol, M. Arjona, J. Arasa, and V. Badia, Influence of amount and changes in axis of astigmatism on retinal image quality, JournaloftheOpticalSocietyofAmericaA,vol.15,no.9,pp. 2514 2521, 1998. [14] D. A. Atchison, G. Smith, and N. Efron, The effect of pupil size on visual acuity in uncorrected and corrected myopia, American Optometry and Physiological Optics,vol.56,no.5, pp. 315 323, 1979. [15] P.ArtalandR.Navarro, Monochromaticmodulationtransfer function of the human eye for different pupil diameters: an analytical expression, the Optical Society of America A,vol.11,no.1,pp.246 249,1994. [16]J.M.Artigas,J.L.Menezo,C.Peris,A.Felipe,andM.Díaz- Llopis, Image quality with multifocal intraocular lenses and the effect of pupil size. Comparison of refractive and hybrid refractive-diffractive designs, Cataract and Refractive Surgery,vol.33,no.12,pp.2111 2117,2007. [1] S.A.Read,M.J.Collins,andL.G.Carney, Areviewofastigmatism and its possible genesis: invited review, Clinical and Experimental Optometry,vol.90,no.1,pp.5 19,2007. [2] T. Ferrer-Blasco, R. Montés-Micó, S. C. Peixoto-de-Matos, J. M. González-Méijome, and A. Cerviño, Prevalence of corneal astigmatism before cataract surgery, Cataract & Refractive Surgery,vol.3,pp.70 75,2009. [3] P. C. Hoffmann and W. W. Hütz, Analysis of biometry and prevalence data for corneal astigmatism in 23 239 eyes, Journal of Cataract and Refractive Surgery,vol.36,no.9,pp.1479 1485, 2010. [4] J. L. Güell, J. Pujol, M. Arjona, F. Diaz-Douton, and P. Artal, Optical Quality Analysis System: instrument for objective clinical evaluation of ocular optical quality, Cataract and Refractive Surgery, vol. 30, no. 7, pp. 1598 1599, 2004. [5] M. Vilaseca, A. Padilla, J. Pujol, J. C. Ondategui, P. Artal, and J. L. Güell, Optical quality one month after Verisyse and Veriflex phakic IOL implantation and Zeiss MEL 80 LASIK for myopia from 5.00 to 16.50 diopters, Refractive Surgery, vol. 25, no. 8, pp. 689 698, 2009.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity