Current Mode Double Edge Triggered Flip Flop with Enable

Similar documents
HIGH SPEED CLOCK DISTRIBUTION NETWORK USING CURRENT MODE DOUBLE EDGE TRIGGERED FLIP FLOP WITH ENABLE

DESIGN AND ANAYSIS OF SHIFT REGISTER USING DUAL DYNAMIC FLIP-FLOP

A Power Efficient Flip Flop by using 90nm Technology

DIFFERENTIAL CONDITIONAL CAPTURING FLIP-FLOP TECHNIQUE USED FOR LOW POWER CONSUMPTION IN CLOCKING SCHEME

An FPGA Implementation of Shift Register Using Pulsed Latches

Design of a High Frequency Dual Modulus Prescaler using Efficient TSPC Flip Flop using 180nm Technology

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

REDUCING DYNAMIC POWER BY PULSED LATCH AND MULTIPLE PULSE GENERATOR IN CLOCKTREE

HIGH PERFORMANCE AND LOW POWER ASYNCHRONOUS DATA SAMPLING WITH POWER GATED DOUBLE EDGE TRIGGERED FLIP-FLOP

Improve Performance of Low-Power Clock Branch Sharing Double-Edge Triggered Flip-Flop

AN EFFICIENT LOW POWER DESIGN FOR ASYNCHRONOUS DATA SAMPLING IN DOUBLE EDGE TRIGGERED FLIP-FLOPS

Low Power Flip-Flop Design for Low Swing LC Resonant Clock Distribution Networks

LOW-POWER CLOCK DISTRIBUTION IN EDGE TRIGGERED FLIP-FLOP

PERFORMANCE ANALYSIS OF AN EFFICIENT PULSE-TRIGGERED FLIP FLOPS FOR ULTRA LOW POWER APPLICATIONS

DESIGN OF DOUBLE PULSE TRIGGERED FLIP-FLOP BASED ON SIGNAL FEED THROUGH SCHEME

Area Efficient Pulsed Clock Generator Using Pulsed Latch Shift Register

Abstract 1. INTRODUCTION. Cheekati Sirisha, IJECS Volume 05 Issue 10 Oct., 2016 Page No Page 18532

Design of a Low Power and Area Efficient Flip Flop With Embedded Logic Module

Low-Power and Area-Efficient Shift Register Using Pulsed Latches

An Efficient Design of Low Power Sequential Circuit Using Clocked Pair Shared Flip Flop

EFFICIENT DESIGN OF SHIFT REGISTER FOR AREA AND POWER REDUCTION USING PULSED LATCH

Dual Edge Adaptive Pulse Triggered Flip-Flop for a High Speed and Low Power Applications

A Modified Static Contention Free Single Phase Clocked Flip-flop Design for Low Power Applications

Design and Analysis of Semi-Transparent Flip-Flops for high speed and Low Power Applications in Networks

ADVANCES in NATURAL and APPLIED SCIENCES

Design of Shift Register Using Pulse Triggered Flip Flop

DESIGN OF A NEW MODIFIED CLOCK GATED SENSE-AMPLIFIER FLIP-FLOP

Power Optimization Techniques for Sequential Elements Using Pulse Triggered Flip-Flops with SVL Logic

ISSN Vol.08,Issue.24, December-2016, Pages:

EFFICIENT POWER REDUCTION OF TOPOLOGICALLY COMPRESSED FLIP-FLOP AND GDI BASED FLIP FLOP

A Low-Power CMOS Flip-Flop for High Performance Processors

Reduction of Area and Power of Shift Register Using Pulsed Latches

DESIGN AND ANALYSIS OF LOW POWER STS PULSE TRIGGERED FLIP-FLOP USING 250NM CMOS TECHNOLOGY

Low Power and Reduce Area Dual Edge Pulse Triggered Flip-Flop Based on Signal Feed-Through Scheme

Design of New Dual Edge Triggered Sense Amplifier Flip-Flop with Low Area and Power Efficient

Modeling and designing of Sense Amplifier based Flip-Flop using Cadence tool at 45nm

Analysis of Digitally Controlled Delay Loop-NAND Gate for Glitch Free Design

DUAL EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH LOW POWER CONSUMPTION

An Efficient Power Saving Latch Based Flip- Flop Design for Low Power Applications

SYNCHRONOUS DERIVED CLOCK AND SYNTHESIS OF LOW POWER SEQUENTIAL CIRCUITS *

A Greedy Heuristic Algorithm for Flip-Flop Replacement Power Reduction in Digital Integrated Circuits

Design of Low Power D-Flip Flop Using True Single Phase Clock (TSPC)

Figure.1 Clock signal II. SYSTEM ANALYSIS

Asynchronous Model of Flip-Flop s and Latches for Low Power Clocking

Design of Pulse Triggered Flip Flop Using Conditional Pulse Enhancement Technique

New Single Edge Triggered Flip-Flop Design with Improved Power and Power Delay Product for Low Data Activity Applications

P.Akila 1. P a g e 60

Low Power High Speed Voltage Level Shifter for Sub- Threshold Operations

LOW POWER DOUBLE EDGE PULSE TRIGGERED FLIP FLOP DESIGN

Design Low-Power and Area-Efficient Shift Register using SSASPL Pulsed Latch

Low Power Different Sense Amplifier Based Flip-flop Configurations implemented using GDI Technique

GLITCH FREE NAND BASED DCDL IN PHASE LOCKED LOOP APPLICATION

Design and analysis of RCA in Subthreshold Logic Circuits Using AFE

Clock Generation and Distribution for High-Performance Processors

Novel Design of Static Dual-Edge Triggered (DET) Flip-Flops using Multiple C-Elements

Efficient Architecture for Flexible Prescaler Using Multimodulo Prescaler

DESIGN OF LOW POWER TEST PATTERN GENERATOR

Low Power D Flip Flop Using Static Pass Transistor Logic

Reduction of Clock Power in Sequential Circuits Using Multi-Bit Flip-Flops

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

AN OPTIMIZED IMPLEMENTATION OF MULTI- BIT FLIP-FLOP USING VERILOG

data and is used in digital networks and storage devices. CRC s are easy to implement in binary

Power Optimization by Using Multi-Bit Flip-Flops

A Symmetric Differential Clock Generator for Bit-Serial Hardware

High Frequency 32/33 Prescalers Using 2/3 Prescaler Technique

DESIGN OF EFFICIENT SHIFT REGISTERS USING PULSED LATCHES

Clock Tree Power Optimization of Three Dimensional VLSI System with Network

CMOS DESIGN OF FLIP-FLOP ON 120nm

High Performance Dynamic Hybrid Flip-Flop For Pipeline Stages with Methodical Implanted Logic

Design and Simulation of a Digital CMOS Synchronous 4-bit Up-Counter with Set and Reset

Timing Error Detection: An Adaptive Scheme To Combat Variability EE241 Final Report Nathan Narevsky and Richard Ott {nnarevsky,

Area Efficient Level Sensitive Flip-Flops A Performance Comparison

International Journal Of Global Innovations -Vol.6, Issue.I Paper Id: SP-V6-I1-P46 ISSN Online:

Fully Static and Compressed Topology Using Power Saving in Digital circuits for Reduced Transistor Flip flop

LFSR Counter Implementation in CMOS VLSI

Novel Low Power and Low Transistor Count Flip-Flop Design with. High Performance

Comparison of Conventional low Power Flip Flops with Pulse Triggered Generation using Signal Feed through technique

Design And Analysis Of Implicit Pulsed Double Edge Triggered Clocked Latch For Low Power Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Minimization of Power for the Design of an Optimal Flip Flop

Energy Recovery Clocking Scheme and Flip-Flops for Ultra Low-Energy Applications

Design of Low Power and Area Efficient Pulsed Latch Based Shift Register

A Novel Pass Transistor Logic Based Pulse Triggered Flip-flop with Conditional Enhancement

A NOVEL DESIGN OF COUNTER USING TSPC D FLIP-FLOP FOR HIGH PERFORMANCE AND LOW POWER VLSI DESIGN APPLICATIONS USING 45NM CMOS TECHNOLOGY

Performance Driven Reliable Link Design for Network on Chips

Design of an Efficient Low Power Multi Modulus Prescaler

Gated Driver Tree Based Power Optimized Multi-Bit Flip-Flops

LOW POWER HIGH PERFORMANCE PULSED FLIP FLOPS BASED ON SIGNAL FEED SCHEME

An efficient Sense amplifier based Flip-Flop design

Design of Low Power Dual Edge Triggered Flip Flop Based On Signal Feed through Scheme

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

Use of Low Power DET Address Pointer Circuit for FIFO Memory Design

High Speed 8-bit Counters using State Excitation Logic and their Application in Frequency Divider

International Journal of Computer Trends and Technology (IJCTT) volume 24 Number 2 June 2015

ISSN:

POWER OPTIMIZED CLOCK GATED ALU FOR LOW POWER PROCESSOR DESIGN

LOW POWER LEVEL CONVERTING FLIP-FLOP DESIGN BY USING CONDITIONAL DISCHARGE TECHNIQUE

Power Efficient Design of Sequential Circuits using OBSC and RTPG Integration

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 ISSN

An Optimized Implementation of Pulse Triggered Flip-flop Based on Single Feed-Through Scheme in FPGA Technology

Transcription:

Current Mode Double Edge Triggered Flip Flop with Enable Remil Anita.D 1, Jayasanthi.M 2 PG Student, Department of ECE, Karpagam College of Engineering, Coimbatore, India 1 Associate Professor, Department of ECE, Karpagam College of Engineering, Coimbatore, India 2 ABSTRACT:-In this paper, a low power current mode double edge triggered flip flop with enable design is presented. A simple current mode conditional gate transmitter design is used to reduce the circuit complexity. The current mode conditional gate transmitter is combined with the current mode double edge triggered flip flop with enable(cmdetffe) to provide one-to-many signalling which is very useful for clock distribution network. In this paper we show that when current-mode (CM) clock distribution network is used, average power can be reduced when compared with voltage-mode (VM) clocks. KEYWORDS: Clock Distribution Network; Current-Mode; Voltage-Mode I.INTRODUCTION Most of the present-day systems are clock based or synchronous. These systems are built from systems, where each subsystem is a finite state machine. The subsystems changes from one state to another depending on a global clock signal which is provided by the clock distribution network. The function of clock distribution network is to synchronize millions/ billions of separate elements. The clock distribution network consumes 70% of total chip power[11]. The state updates within the subsystems are carried out on the rising or falling edge of the clock signal. A clock based system can operate correctly only if all parts of the system gets the clock at the same time, which can happen only if the delay on the clock wire is negligible. The factors influencing the clock distribution network are clock skew, jitter, power, area, slew rate. With advancement in technology, the systems tend to get bigger; as a result the delay on the clock wires cannot be ignored. Thus the problem of clock skew arises in a clock based system. Maximum difference in arrival times of clock signal to any 2 flip flops fed by the network is known as clock skew. The speed of the clock distribution can be increased by decreasing the clock skew. The factors that determine the clock skew in a synchronous digital system are as follows: The resistance, inductance and capacitance of the interconnection material used in the clock distribution network. The shape of the clock distribution network. Fabrication process variation over the area of the chip or the wafer. Number of processing elements in the digital system and the load presented by each module to the clock distribution network. Rise and fall times and the frequency of the clock signal. Buffering schemes and clock buffers used. This clock skew causes designed (unavoidable) variations, process variation, temperature gradients, IR voltage drop in power supply. The clock skew affects the timing budget and needs to be considered for maximum (setup) and minimum (hold) path timings. Power consumption in clocks is due to clock drivers, long interconnections and large clock loads. In microprocessor 40% of total chip power is dissipated by clock. A clock network consumes silicon area and routing area. By minimizing area used, wiring capacitance and power can be reduced. To maintain signal integrity and latch performance, minimum slew rates are required. The speed of the clock distribution network can be increased with the help of current mode technique [2]. It is not possible to build a prefect current mode circuit so we have combined the benefit of voltage mode with the benefit of Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403035 3118

power and reliability of the current mode signalling. Since the number of sinks required is high in the clock distribution network the power consumption can be reduced by feeding current mode flip-flops[13]. The power consumption is reduced by using the symmetric flip-flop. II.OVERVIEW OF EXISTING CM SIGNALING SCHEMES There are two ways of current mode clock distribution. They are one to one signaling and many to one signaling schemes. A. One-to-One Signaling: In a CM signalling scheme, a transmitter utilizes a voltage mode input signal to transmit a current with minimal voltage swing into an interconnect, while a receiver converts current to voltage providing a full swing output voltage. In current mode signalling scheme a CMOS inverter is used as transmitter and the transimpedance amplifier is used as receiver[3]. This type signalling provides delay improvement over voltage mode scheme, but the clock skew is large in clock distribution network[4]. The clock skew can be minimized by using H-tree clock distribution as suggested in[8].the large skew problem is overcome by [6] where the dynamic over-driving technique is used but the mismatch in rise time and fall time arises. In [7] the variation-tolerant CM signalling schemes is used along with the current mode transmitter designed using bias circuitry to rectify the mismatch problem in the clock signal. In one to one current mode signaling the number of transmitter is equal to the receiver. It needs a receiver for each sink this increases the size of the circuit because which in turn increases thepower. B. One-to-Many Signaling: In one-to-many current mode signalling scheme, a transmitter which is designed using NAND-NOR design and the current mode pulsed flip-flop (CMPFF) is used[5]. The number of flip-flop used for receiving the clock signal is proportional to the number of sinks. The advantage of one-to-many current mode signaling is the silicon area. The silicon area decreases when the number of sink increases since it uses one transmitter and many transmitters. The current pulsed flip flop with enable(cmpffe)[1] uses enable signal to avoid unwanted clock signal in the area of the processor where there is no need of clock signal. But the CMPFFE is a positive edge triggered flip flop and consumes more silicon area when compared to the one-to-one current mode signalling. The CMPFFE consumes more power compared to one to one current mode signalling scheme but the static current is reduced. III.PROPOSED WORK A low power current mode double edge triggered flip-flop(cmdetff) is combined with the conditional gated transmitter to do the functions of clock distribution network.the overall block diagram of the system is shown in Fig. 2. A. Conditional Gated Transmitter: Fig. 3. Shows the circuit diagram of a conditional gated transmitter is used to produce the clock signal with constant pulse width. This is done by using a conditional AND gate. The clock signal is given as a input to AND gate and the clock signal which is delayed by using two inverters and a buffer is given as input to another pin of the AND gate. The current signal obtained from the AND gate is used as input of the proposed receiver. Fig. 1. Internal block diagram of Proposed CMDETFF B. Proposed CMDTFF: The proposed current mode double edge triggered flip-flop has two parts. They are Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403035 3119

Current pulse generator, Double edge triggered flip-flop. The internal block diagram of the proposed CMDETFF is shown in Fig. 1. 1) Current Pulse Generator: The current pulse generator uses a global reference voltage generetor, current comparator and inverters. The global reference voltage generator is used to produce a reference current signal. The current comparator compares the current from the global reference voltage generator and the current from the transmitter to produce the current pulse. The circuit diagram of the current pulse generator is shown in Fig. 4. The current pulse is controlled by using EN signal which is given as input to the PMOS transistor Mp2 and NMOS Mn5.The current pulse generated using the current comparator is amplified using the inverters. The current pulse obtained at the pin out1 is used to triggers the double edge triggered flip-flop. Fig. 2. Block diagram of the proposed system 2) Double Edge Triggered Flip Flop: The double edge triggered flip-flop uses the current pulse and operated on both the edges of the clock signal. By using the double edge triggered flip-flop the clock frequency can be halved to achieve the same computational throughput compared to single edge triggered flip-flop. This results in overall system power reduction because clock distribution is a major source of power consumption in a synchronous computation system. The circuit diagram of the double edge triggered flip-flop is shown in the Fig. 5. The clock signal generated by the current pulse generator is given as input to the CLK pin of the double edge triggered flip-flop. The transistor Mn5 and Mn4 receives the clock signal while the transmitter Mn1 receives the inverted clock signal. The data signal is given as input to the pin D and the data signal is passed through the transistor Mn1. The data value passed is inverted to obtain the output signal Qb. This data signal passes through the transistor Mp2 and Mn3 to get the value of Q. Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403035 3120

Fig. 3.conditional gated transmitter Fig. 4. Current pulse generator. Fig. 5. Double edge triggered flip-flop. Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403035 3121

IV.SIMULATION RESULT The clock signal is given as input to transmitter which transmits the signal to the receiver. The current signal from the transmitter is given as input to the receiver. The current signal taken from the transmitter is compared with the current signal generated by the global voltage generator by using current comparator. The internal current-to-voltage pulse generation is done by the current comparator and that signal is amplified by using the inverters. This current-to-voltage pulse is denoted as N_1 in the output waveform shown in Fig. 6. The EN signal is used to control the clock signal which triggers the flip-flop. Here in the simulation waveform D is the data signal given to the flip-flop and the outputs are Q and Qb. Fig. 6. Simulation waveforms confirm the internal current-to-voltage pulse generation (N1) that triggers input data capture. V.RESULT AND DISCUSSION We implemented the current mode pulsed flip-flop with enable(cmpffe) and the proposed current mode double edge triggered flip-flop(cmdetff) in 250nm technology. The TABLE I. shows that the area of the proposed CMDETFF is reduced when compared with the CMPFFE. The power-delay- product has been increased but the static power and the average power is reduced compared with the CMPFFE. TABLE I.RESULT COMPARISON No. of transistors Area (um 2 ) Static power (mw) Power consumption (mw) PDP (nj) CMPFFE 47 31.58 25.88 2.36 103.79 Proposed CMDETFF 47 26.87 21.87 1.91 136.66 Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403035 3122

VI.CONCLUSION In this paper, clock distribution network have been reviewed and the pros and cons of each technique is shown. The symmetric H tree provides zero clock skew which is suitable for high speed applications. The proposed current mode DETFF clock distribution network enables 5% to 6% power reduction when compared to CMPFFE clock distribution network. The proposed CMDETFFF have reduced the area of the current mode flip-flop by 14% to 15%. The clock distribution using flip-flop is used for one to many clock distribution this discards the use of complex current mode receiver. REFERENCES [1] R. Islam and M. Guthaus, Low-Power Clock Distribution Using a Current-Pulsed Clocked Flip-Flop, in IEEE Trans. circuits and systems, vol. 62, no. 4, april 2015. [2] F. Yuan, Cmos Current-Mode Circuits for Data Communications. New York: Springer, Apr. 2007. [3] A. Narasimhan, S. Divekar, P. Elakkumanan, and R. Sridhar, A low power current-mode clock distribution scheme for multi-ghz NoC based SoCs, in Proc. 18th Int. Conf. VLSI Design, Jan. 2005, pp.130 135. [4] N. K. Kancharapu, M. Dave, V. Masimukkula, M. S. Baghini, and D.K. Sharma, A low-power low-skew current-mode clock distribution network in 90 nm CMOS technology, in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2011, pp. 132 137. [5] R. Islam and M. Guthaus, Current-mode clock distribution, in Proc. ISCAS, Jun. 2014, pp. 1203 1206. [6] A. Katoch, H. Veendrick, and E. Seevinck, High speed current-modesignaling circuits for on-chip interconnects, in Proc. ISCAS, May2005, pp. 4138 4141. [7] M. Dave, M. Jain, S. Baghini, and D. Sharma, A variation tolerant current-mode signaling scheme for on-chip interconnects, IEEE Trans.Very Large Scale Integr. (VLSI) Syst., vol. PP, no. 99, pp. 1 12, Jan. 2012. [8] M. Nekili, Y. Savaria, G. Bois, and M. Bennani, Logic-based H-trees for large VLSI processor arrays: A novel skew modelling and highspeed clocking method, in Proc. 5th Int. Conf. Microelectronics,Dec. 1993, pp. 1 4. [9] D. C. Keezer and V. K. Jain, Clock distribution strategies for WSI: A critical survey, in Proc. IEEE Int. Conf. Wafer Scale Integration, Jan. 1991, pp. 277 283. [10] C. Anderson, J. Petrovick, J. Keaty, J. Warnock, G. Nussbaum, J.Tendier, C. Carter, S. Chu, J. Clabes, J. DiLullo, P. Dudley, P. Harvey,B. Krauter, J. LeBlanc, P.-F. Lu, B. McCredie, G. Plum, P. Restle,S. Runyon, M. Scheuermann, S. Schmidt, J. Wagoner, R. Weiss, S.Weitzel, and B. Zoric, Physical design of a fourth-generation power ghz microprocessor, in Proc. ISSCC, Feb. 2001, pp. 232 233. [11] M. R. Guthaus, G. Wilke, and R. Reis, Revisiting automated physical synthesis of high-performance clock networks, ACM Trans. Design Autom. Electron. Syst., vol. 18, no. 2, pp. 31:1 31:27, Apr. 2013. Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0403035 3123