THE OPERATION OF A CATHODE RAY TUBE

Similar documents
THE OPERATION OF A CATHODE RAY TUBE

CHAPTER 4 OSCILLOSCOPES

CATHODE-RAY OSCILLOSCOPE (CRO)

CHAPTER 3 OSCILLOSCOPES AND SIGNAL GENERATOR

The Cathode Ray Tube

Electrical and Electronic Laboratory Faculty of Engineering Chulalongkorn University. Cathode-Ray Oscilloscope (CRO)

OSCILLOSCOPE AND DIGITAL MULTIMETER

J.J. Thomson, Cathode Rays and the Electron

CATHODE RAY OSCILLOSCOPE. Basic block diagrams Principle of operation Measurement of voltage, current and frequency

3B SCIENTIFIC PHYSICS

Using an oscilloscope - The Hameg 203-6

Teltron Delection Tube D

Computer Graphics Hardware

Experiment 9A: Magnetism/The Oscilloscope

THERMIONIC GUN CATHODE-GRID ASSEMBLY TEST PROCEDURE

CR7000. CRT Analyzer & Restorer. Easily Test And Restore CRTs With The Most Complete Tests Available For Added Profit And Security.

B. TECH. VI SEM. I MID TERM EXAMINATION 2018

INSTRUMENT CATHODE-RAY TUBE

Tutorial Cathode Rays Year 12 Physics - Module 9.3 Motors and Generators

INSTRUMENT CATHODE-RAY TUBE

CATHODE RAY OSCILLOSCOPE (CRO)

These are used for producing a narrow and sharply focus beam of electrons.

3B SCIENTIFIC PHYSICS

LabView Exercises: Part II

Elements of a Television System

4. Alignment and Adjustments

Analog Circuits Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras. Module - 04 Lecture 12

Display Systems. Viewing Images Rochester Institute of Technology

E X P E R I M E N T 1

The Knowledge Bank at The Ohio State University. Ohio State Engineer

Capstone Experiment Setups & Procedures PHYS 1111L/2211L

2.2. VIDEO DISPLAY DEVICES

Cathode Ray Oscilloscope

Lecture 17 Microwave Tubes: Part I

Types of CRT Display Devices. DVST-Direct View Storage Tube

University of Utah Electrical & Computer Engineering Department ECE1050/1060 Oscilloscope

INSTALATION PROCEDURE

Electrical & Electronic Measurements: Class Notes (15EE36) Module-5. Display Devices

Table of Contents. Introduction...v. About the CD-ROM...vi. Standards Correlations... vii. Ratios and Proportional Relationships...

Experiment: Real Forces acting on a Falling Body

Television brian egan isnm 2004

RICHLAND COLLEGE School of Engineering Business & Technology Rev. 0 W. Slonecker Rev. 1 (8/26/2012) J. Bradbury

Computer Graphics: Overview of Graphics Systems

University of Utah Electrical Engineering Department EE1050/1060 Oscilloscope. Name:, Lab TA:

Overview. Teacher s Manual and reproductions of student worksheets to support the following lesson objective:

Section 2.1 How Do We Measure Speed?


Screens; media that use additive primaries

Part 1: Introduction to Computer Graphics

THE CATHODE -RAY OSCILLOSCOPE

Time Varying Signals Part A Chemistry 838

The Venerable Triode. The earliest Triode was Lee De Forest's 1906 Audion.

The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun

Brown, A., Merkert, J., & Wilson, R. (2014). Build your own particle accelerator. Science in School, (30),

Service Manual for D9100 Series Digital-Control Color Monitor

ORDERING Page 6 BASLER RELAY STANDARDS, DIMENSIONS, ACCESSORIES Request bulletin SDA

Part 1: Introduction to computer graphics 1. Describe Each of the following: a. Computer Graphics. b. Computer Graphics API. c. CG s can be used in

MARK SCHEME for the November 2004 question paper 9702 PHYSICS

4.9 BEAM BLANKING AND PULSING OPTIONS

COMPOSITE VIDEO LUMINANCE METER MODEL VLM-40 LUMINANCE MODEL VLM-40 NTSC TECHNICAL INSTRUCTION MANUAL

OPERATING INSTRUCTIONS FOR SYLVANIA. Type I08 Cathode-Ray Oscilloscope. Sylvania Electric Products Inc. Industrial Apparatus. Emporium, Pennsylvania

FIR Center Report. Development of Feedback Control Scheme for the Stabilization of Gyrotron Output Power

A quick and dirty magnet design for the magnetized beam LDRD proposal Jay Benesch 10/16/2015

MclNTOSH MODEL C-4 and C-4P

ELECTRICAL ADJUSTMENT INSTRUCTIONS

OPERATION NOTES FOR PSIDEX AUDIO PGP-1A PRE-AMPLIFIER DESCRIPTION INSTALLATION

Introduction & Colour

decodes it along with the normal intensity signal, to determine how to modulate the three colour beams.

S op o e p C on o t n rol o s L arni n n i g n g O bj b e j ctiv i e v s

? Me ???????? ?????? & > Dec. 14, ??? 2,455,992 ???.. ????? T. T. GOLDSMITH, Jr., ET AL CATHODE-RAY TUBE AMUSEMENT DEVICE. Filed Jan, 25, 1947

Light Emitting Diodes (LEDs)

Comp 410/510. Computer Graphics Spring Introduction to Graphics Systems

Operating Manual. Automated Gear. Apollo Design Technology, Inc Fourier Drive Fort Wayne, IN USA

Graphing Your Motion

LOOK AT THE NETWORK OF METAL STRIPS ON THE BACKSIDE OF THE PROTOTYPING BOARD

About vacuum power tubes.

3. Displays and framebuffers

CMPE 466 COMPUTER GRAPHICS

HIGH RESOLUTION MONITOR

Analysis of WFS Measurements from first half of 2004

PERFORMANCE SPECIFICATION SHEET ELECTRON TUBE, CATHODE RAY TYPE 7AGP19

What is the time? Actually a scope-clock. Introduction:

BLOCK DIAGRAM. Brightness Control -120V. Vertical Blanking, FBT 30V 15V. Protection TDA8172 ( IC601) Circuit -12V 12V. H/V Sync Processor

PAST EXAM PAPER & MEMO N3 ABOUT THE QUESTION PAPERS:

Lab Using The Multimeter And The Trainer

There are many ham radio related activities

Sep 09, APPLICATION NOTE 1193 Electronic Displays Comparison

An Efficient SOC approach to Design CRT controller on CPLD s

SERVICE AND OPERATION MANUAL

AskDrCallahan Calculus 1 Teacher s Guide

Manual #: UMA1074 Rev. 2 October, Hall Research Technologies, Inc 1163 Warner Ave. Tustin, CA 92780

KLYSTRON GUN ARCING AND MODULATOR PROTECTION

L14 - Video. L14: Spring 2005 Introductory Digital Systems Laboratory

Student Experiments ELECTRONICS. Manual P9160-4F.

EA63-7D. Generator Automatic Voltage Regulator Operation Manual. Self Excited Automatic Voltage Regulator

Display Devices & its Interfacing

4. Alignment and Adjustments (Electrical)

PRACTICAL APPLICATIONS OF ELECTRONICS IN ANAESTHESIA. G. A. HAY Department of Medical Physics, University of Leeds

VectorVGA Tempest User Manual

Presented by: Amany Mohamed Yara Naguib May Mohamed Sara Mahmoud Maha Ali. Supervised by: Dr.Mohamed Abd El Ghany

Transcription:

THE OPERATION OF A CATHODE RAY TUBE OBJECT: To acquaint the student with the operation of a cathode ray tube, and to study the effect of varying potential differences on accelerated electrons. THEORY: A heater coil in the back of the CRT, when supplied with 5 to 6.3 volts AC, heats the cathode which in turn emits a high density electron stream. The electrons pass through an aperture and are focused into a beam. They enter an axial electric field (E a ) and are uniformly accelerated in the axial direction by an accelerating potential (V a ). The resulting axial velocity (v x ) can be calculated using the conservation of energy equation: KE = PE, or ½ m e v x ² = e V a, or v x = [2 e V a /m e ] 1/2. (1) After the electrons leave E a they continue at the constant velocity (v x ) until they reach the deflecting plates. If an electric field (E d ) exists between the deflection plates due to an applied voltage (V d ), the electrons are accelerated (deflected) toward the more positive plate and they acquire a velocity (v y ) perpendicular to the plates. The force exerted on an electron due to the deflecting field is F E = e E d. As this force acts for a time t 1, then the speed v y can be found: Therefore, v y = a t 1, where a = F E /m e = e E d /m e. v y = e E d t 1 /m e. (2) Since the electric field strength, E d, is constant between parallel plates, V d = E d d, or E d = V d /d. (3) where d is the separation of the two parallel deflecting plates. The time they are in the field is related to the plate length (s) by v x = s/t 1, or t 1 = s/v x. (4) Therefore, from Eqs. (2), (3), & (4) : v y = e (V d /d) (s/v x )/m e, or v y = (e V d s)/(m e v x d). (5) Having been affected by the voltages V a and V d, the electrons are deflected at an angle with respect to the tube axis where can be determined from tan ( ) = Opposite side/adjacent side = D/L. (6) where D is the deflection distance on the screen and L is the distance from the midpoint of the parallel plates to screen. The velocities are proportional to the lengths, because the time interval is the same; thus tan( ) = v y /v x = D/L. (7)

The Cathode Ray Tube 2 Using Eq. (1) and Eq. (5) we can get the ratio of velocities in terms of the voltages: v y /v x = (V d s)/(2 d V a ). (8) Finally, then, using Eq. (8) in Eq. (7) we get: D/L = tan( ) = v y /v x = (V d s)/(v a 2 d), or D = (V d sl)/(v a 2d) (9) The electrons then continue at constant velocity in a straight line until they strike the screen and activate the phosphorescent coating on the inside, causing it to glow. Note: in this experiment we are going to test Eq.(9). Note that s, L and d all depend on the shape of the CRT and can t be changed. Only V d and V a can be varied in this experiment. Part 1: Electric Fields and Voltages POWER SUPPLY WIRE CONNECTIONS: DO NOT CONNECT ANY POWER CORDS YET. Coming out of the back of the CRT are three sets of wires. One set contains six color coded wires, the other two sets each contain two wires. A wiring diagram appears on the last page. You may wish to refer to it as you make the connections. Connections for the heater coil: With the high voltage (HV) supply turned off and unplugged, connect the double pronged yellow wires to the 6.3 Vac or 5 Vac terminals on the supply. Connections for the accelerating plates: With the high voltage (HV) supply turned off and unplugged, connect the positive side (red output) to the A terminal of the resistor network (gray box). Connect the negative side (black output) to the B terminal of the resistor network (gray box). Connect the green and brown wires of the CRT to this negative terminal. Connect the red wire to the positive (A) terminal. Connect the blue wire to the middle terminal. Connect one side of the heater coil to the negative (B) terminal of the resistor network. Connect the positive side of the HV supply to the ground terminal at the back of the HV supply. Finally, connect a DMM to the + and -- terminals to measure the acceleration voltage difference, V a. Connections for the deflection plates: With the variable dc voltage supply turned off and unplugged, connect either the X or Y pair of wires from the CRT to the + and -- outputs of the variable dc voltage supply. Connect either the + or -- side to the ground terminal (middle terminal) of the supply. Connect the other pair of deflection plate wires to this common ground terminal. Finally, connect a DMM to the + and -- terminals to measure the deflection voltage difference, V d. Once you have completed the wiring, ask your instructor to check it before you plug in the power supplies.

The Cathode Ray Tube 3 PROCEDURE : 1. Make sure that the high voltage control is turned all the way down (V a = 0) and turn on the HV supply. Allow the heater coil to warm up. You should see the coil glowing in the back of your CRT. Now increase the high voltage to 500 V. Use the meter on the HV supply to read the voltage. Varying the potentiometer control on the gray box changes the resistances between its three terminals which changes the relative sizes of the voltages V b and V c. This will affect the collimation of the electron beam. Turn the pot control to obtain the best focus of the dot. 2. Rotate the CRT horizontally (in the plane of the table) until the dot is at a convenient starting position. Record its position. (This is with V d = 0). When reading the CRT, put your eye so that the dot, your eye, and your eye's reflection are in the same line. 3. Now turn on the variable dc voltage supply and take readings as you vary V d from zero to its maximum value or until the dot goes outside the grid. (A good place to record the voltage is at every ¼ inch grid mark.) Make the position of the dot at V d =0 correspond to D=0. 4. Now reverse the deflection plate terminals with respect to the variable voltage supply and again take readings as you vary V d from zero to its maximum value or until the dot goes outside the grid. 5. Decrease V a to 400 V and repeat the procedure in step 3 in order to get a second set of data for deflection in one direction. You do not have to reverse the deflection plate terminals as in step 4. However, use the deflection plate connections which allow the largest deflection voltage to be used. 6. Decrease V a to 300 V and repeat the procedure in step 5 in order to obtain a third set of data. REPORT: 1. Graph the following two relationships: A. D vs V d (3 straight lines with different slopes on one graph) [* See note on last page.] B. V a *D vs V d (again plot all 3 data sets on a second graph) and calculate the effective (sl/2d) value for the deflection plates (the slope). 2. What is the correlation between the slopes of the lines in 1A and the accelerating potential V a? What does theory (Eq. 9) say the slopes of the lines should depend on? 3. What does theory (Eq. 9) say the slopes of the three lines for graph 1 B should be? How well does your data support this prediction? 4. The following two explanations should be in words and should be based on basic laws and relations (such as Newton s 2nd Law, conservation of energy, and the definition of electric field). (a) Explain how and why changing the deflecting potential (V d ) will affect the deflection of the electron beam. (b) Explain how and why changing the accelerating potential (V a ) will affect the deflection of the electron beam.

The Cathode Ray Tube 4 5. Discuss sources of experimental uncertainty. Do these sources of experimental uncertainty account for any discrepancies between theory and the results of your experiment? Part 2: Magnetic Fields PROCEDURE: 1. With V d set at 0, take a bar magnet and hold it several feet away from the right side of the CRT. Point the bar magnet at the right side of the CRT and bring the magnet slowly closer to the CRT. Observe the deflection of the beam. Does the deflection of the beam depend on how near the front or back of the right side of the CRT you point the magnet? 2. Repeat the procedure with the opposite side of the magnet pointing toward the right side of the CRT. 3. Repeat on the left side. 4. Now hold the magnet several feet above the CRT and slowly bring the magnet toward the top of the CRT. Observe the deflection of the beam. 5. Again repeat the procedure with the opposite side of the magnet pointing toward the top of the CRT. 6. Now hold the magnet a foot or so below the CRT (i.e., under the desk). Does the desk shield the CRT from the magnet? 7. Finally, point the magnet directly at the beam and approach the beam carefully. Observe the deflection. When at the screen face, slowly move the magnet up (still pointing it parallel to the beam) and then to one side. REPORT: 1. Record your results for all parts above. 2. Can you devise a general rule that covers all of your observations?

The Cathode Ray Tube 5 Note on drawing graphs We normally plot the independent variable on the horizontal axis (x), and the dependent variable on the vertical axis (y). For graph A, the distance of deflection, D, depends on the deflecting voltage, V d, so normally we would plot D on the vertical axis and V d on the horizontal. From theory, we have Eq. 9: D = V d (sl/2dv a ), and this is what we are trying to check with our graphs. D (in.) If you measured the deflecting voltage for each ¼ inch of deflection, V d (Volts) so that you have different x values (V d s) for the same y values (D s) in the three different runs, and if you have trouble with your plotting routines doing this, you may reverse the above graph and plot V d vs D. This will allow you to have different y values (Vd s) for the same x value (D), and may make plotting your three runs on the same graph easier. However, if you do this, you should note this in your report and explain the reason for the change. Also, be aware that from Eq. 9, we see that the slope of the D vs V d curve is (sl/2dv a ), but the slope of the V d vs D curve (flipping y and x ) gives the inverse slope of (2dV a /sl). Supply Wiring Diagram

The Cathode Ray Tube 6