Exceeding the Limits of Binary Data Transmission on Printed Circuit Boards by Multilevel Signaling

Similar documents
High-Speed ADC Building Blocks in 90 nm CMOS

Comparison of NRZ, PR-2, and PR-4 signaling. Qasim Chaudry Adam Healey Greg Sheets

10 Gb/s Duobinary Signaling over Electrical Backplanes Experimental Results and Discussion

Brian Holden Kandou Bus, S.A. IEEE GE Study Group September 2, 2013 York, United Kingdom

LOW POWER DIGITAL EQUALIZATION FOR HIGH SPEED SERDES. Masum Hossain University of Alberta

Emphasis, Equalization & Embedding

Duobinary Transmission over ATCA Backplanes

Combating Closed Eyes Design & Measurement of Pre-Emphasis and Equalization for Lossy Channels

Combating Closed Eyes Design & Measurement of Pre-Emphasis and Equalization for Lossy Channels

Draft Baseline Proposal for CDAUI-8 Chipto-Module (C2M) Electrical Interface (NRZ)

100Gb/s Single-lane SERDES Discussion. Phil Sun, Credo Semiconductor IEEE New Ethernet Applications Ad Hoc May 24, 2017

ELECTRICAL PERFORMANCE REPORT

Features. For price, delivery, and to place orders, please contact Hittite Microwave Corporation:

MR Interface Analysis including Chord Signaling Options

Ali Ghiasi. Nov 8, 2011 IEEE GNGOPTX Study Group Atlanta

Presentation to IEEE P802.3ap Backplane Ethernet Task Force July 2004 Working Session

HMC-C060 HIGH SPEED LOGIC. 43 Gbps, D-TYPE FLIP-FLOP MODULE. Features. Typical Applications. General Description. Functional Diagram

Approach For Supporting Legacy Channels Per IEEE 802.3bj Objective

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

Component BW requirement of 56Gbaud Modulations for 400GbE 2 & 10km PMD

Datasheet SHF A

CDAUI-8 Chip-to-Module (C2M) System Analysis #3. Ben Smith and Stephane Dallaire, Inphi Corporation IEEE 802.3bs, Bonita Springs, September 2015

Datasheet SHF A Multi-Channel Error Analyzer

Clause 74 FEC and MLD Interactions. Magesh Valliappan Broadcom Mark Gustlin - Cisco

The Case of the Closing Eyes: Is PAM the Answer? Is NRZ dead?

Measurements and Simulation Results in Support of IEEE 802.3bj Objective

Equalizing XAUI Backplanes with the MAX3980

Practical De-embedding for Gigabit fixture. Ben Chia Senior Signal Integrity Consultant 5/17/2011

EL302 DIGITAL INTEGRATED CIRCUITS LAB #3 CMOS EDGE TRIGGERED D FLIP-FLOP. Due İLKER KALYONCU, 10043

Proposal for 10Gb/s single-lane PHY using PAM-4 signaling

Simulations of Duobinary and NRZ Over Selected IEEE Channels (Including Jitter and Crosstalk)

32 G/64 Gbaud Multi Channel PAM4 BERT

Measurements Results of GBd VCSEL Over OM3 with and without Equalization

100G EDR and QSFP+ Cable Test Solutions

New Serial Link Simulation Process, 6 Gbps SAS Case Study

InfiniBand Trade Association

Practical Receiver Equalization Tradeoffs Applicable to Next- Generation 28 Gb/s Links with db Loss Channels

C65SPACE-HSSL Gbps multi-rate, multi-lane, SerDes macro IP. Description. Features

Quad Copper-Cable Signal Conditioner

10mm x 10mm. 20m (24AWG) 15m (28AWG) 0.01μF TX_IN1 V CC[1:4] TX_OUT1 TX_OUT2 TX TX_IN3 TX_IN2 TX_OUT3 TX_OUT4 SERDES TX_IN4 RX_OUT1 RX_IN1 RX_OUT2

SHF Communication Technologies AG

Synchronizing Multiple ADC08xxxx Giga-Sample ADCs

Improving IBIS-AMI Model Accuracy: Model-to-Model and Model-to-Lab Correlation Case Studies

Ethernet Media Converters

Ali Ghiasi. Jan 23, 2011 IEEE GNGOPTX Study Group Newport Beach

Generation of Novel Waveforms Using PSPL Pulse Generators

ECE 5765 Modern Communication Fall 2005, UMD Experiment 10: PRBS Messages, Eye Patterns & Noise Simulation using PRBS

52Gb/s Chip to Module Channels using zqsfp+ Mike Dudek QLogic Barrett Bartell Qlogic Tom Palkert Molex Scott Sommers Molex 10/23/2014

CDAUI-8 Chip-to-Module (C2M) System Analysis. Stephane Dallaire and Ben Smith, September 2, 2015

Next Generation Ultra-High speed standards measurements of Optical and Electrical signals

Ordering information. 40Gb/s QSFP+ ER4 Optical Transceiver Product Specification. Features

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2011

Signal Integrity Design Using Fast Channel Simulator and Eye Diagram Statistics

PAM4 signals for 400 Gbps: acquisition for measurement and signal processing

Why Engineers Ignore Cable Loss

EE241 - Spring 2005 Advanced Digital Integrated Circuits

Synthesized Clock Generator

Dual Link DVI Receiver Implementation

InfiniBand Trade Association

QSFP SV-QSFP-40G-PSR4

Performance Evaluation of Proposed OFDM. What are important issues?

HMC-C064 HIGH SPEED LOGIC. 50 Gbps, XOR / XNOR Module. Features. Typical Applications. General Description. Functional Diagram

Clock Generation and Distribution for High-Performance Processors

SIGNAL INTEGRITY SIMULATION AND MODELING

High-end bi-directional aspect ratio converter with digital and analog outputs COPYRIGHT 2008 AXON DIGITAL DESIGN BV ALL RIGHTS RESERVED

Timing Error Detection: An Adaptive Scheme To Combat Variability EE241 Final Report Nathan Narevsky and Richard Ott {nnarevsky,

More Insights of IEEE 802.3ck Baseline Reference Receivers

Half-Rate Decision-Feedback Equalization Di-Bit Response Analysis and Evaluation EDA365

ISSCC 2006 / SESSION 18 / CLOCK AND DATA RECOVERY / 18.6

J R Sky, Inc. tel: fax:

The Challenges of Measuring PAM4 Signals

Performance comparison study for Rx vs Tx based equalization for C2M links

Summary of NRZ CDAUI proposals

CU4HDD Backplane Channel Analysis

Memory Interfaces Data Capture Using Direct Clocking Technique Author: Maria George

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT /12/14 BIT 10 TO 65 MSPS DUAL ADC

GT Dual-Row Nano Vertical SMT High Speed Characterization Report For Differential Data Applications

Model 7330 Signal Source Analyzer Dedicated Phase Noise Test System V1.02

ASNT_PRBS20B_1 18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control

How advances in digitizer technologies improve measurement accuracy

Digital Delay / Pulse Generator DG535 Digital delay and pulse generator (4-channel)

ASNT8140. ASNT8140-KMC DC-23Gbps PRBS Generator with the (x 7 + x + 1) Polynomial. vee. vcc qp. vcc. vcc qn. qxorp. qxorn. vee. vcc rstn_p.

Dual HD input, frame synchronizer, down converter with embedder, de-embedder and CVBS encoder COPYRIGHT 2008 AXON DIGITAL DESIGN BV

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT /12/14 BIT 10 TO 105 MSPS ADC

Dual HD input, frame synchronizer, down converter, embedder, CVBS encoder COPYRIGHT 2008 AXON DIGITAL DESIGN BV ALL RIGHTS RESERVED

ASNT8142-KMC Generator of DC-to-23Gbps PRBS with Selectable Polynomials

COM Study for db Channels of CAUI-4 Chip-to-Chip Link

SECQ Test Method and Calibration Improvements

7000 Series Signal Source Analyzer & Dedicated Phase Noise Test System

Dual channel high-end HD-SDI to SD-SDI/composite down converter with de-embedding function COPYRIGHT 2008 AXON DIGITAL DESIGN BV ALL RIGHTS RESERVED

HMC958LC5 HIGH SPEED LOGIC - SMT. Typical Applications. Features. Functional Diagram. General Description

Further Investigation of Bit Multiplexing in 400GbE PMA

40G SWDM4 MSA Technical Specifications Optical Specifications

Module 11 : Link Design

Keysight Method of Implementation (MOI) for VESA DisplayPort (DP) Standard Version 1.3 Cable-Connector Compliance Tests Using E5071C ENA Option TDR

CAUI-4 Application Requirements

XLAUI/CAUI Electrical Specifications

Open electrical issues. Piers Dawe Mellanox

Systematic Tx Eye Mask Definition. John Petrilla, Avago Technologies March 2009

100G SR4 Link Model Update & TDP. John Petrilla: Avago Technologies January 2013

Transcription:

Exceeding the Limits of Binary Data Transmission on Printed Circuit Boards by Multilevel Signaling Markus Grözing, Manfred Berroth INT, in cooperation with Michael May Agilent Technologies, Böblingen Prof. Dr.-Ing. Manfred Berroth 1

Outline Motivation Backplane channel characteristics Multilevel penalty versus multilevel benefit Transmitter & receiver equalization Simulation of PAM 2 / PAM 4 transmission Conclusions & Outlook 2

Motivation Computer mass market, i.e. processor memory interface DDR3 ~ 1 Gbit/s FBDIMM 4.8 Gbit/s tomorrow: 7 to 20 Gbit/s Cables transmission length: 2 to 20 cm Backplanes, multi-chip modules, i.e. i.e. HDMI 1.3 10 Gbit/s network cross connects, mainframes today: few Gbit/s tomorrow: > 10 Gbit/s transmission length: up to 1m Optical networks, i.e. LAN, MAN and WAN today: 2,5 to 10 Gbit/s tomorrow: 40 to 100 Gbit/s trans. length: 10 m to 1000 km 3

Backplane channel characteristics time & frequency domain 4

FR4 Backplane (Illustration similar to measured backplane) 10 GbE XAUI = 2x 4x 3.125 Gbit/s 2x 2in (daughter card) + 30in (backplane) = 34in = 86cm Backplane-Illustration from Analysis of Backplanes, Stephen Anderson, Xilinx, Minneapolis, OIF-Contribution Number: OIF2004.005.01, Working Group: PLL 5

12-Port S-Parameters: Port Definition Differential ports Single ended ports Single ended ports Differential ports 1 1 3 2 4 2 3 5 7 6 8 4 5 9 11 10 12 6 Illustration from: Minimizing Multiple Aggressor Differential Crosstalk in High Speed Interconnects using Measurement-based Modeling, Mike Resso, Agilent Technologies 6

6-Port differential S-Parameters of 86cm Traces Insertion Loss Return Loss FEXT NEXT 7

Transmission Characteristic of 86cm Trace m1: IL (1.67 GHz) = 8.9 db m2: IL (3.33 GHz) = 22.5 db m3: IL (5.00 GHz) = 27.1 db S 43 [db] m4: IL (6.67 GHz) = 54.6 db Frequency [GHz] 8

Unit Pulse (1V, 1T) -Response of 86 cm Trace T=300 ps 3.33 Gbaud voltage [mv] T=150ps 6.67 Gbaud T=75ps 13.33 Gbaud time [ns] 9

Multilevel penalty versus Multilevel benefit 10

Multilevel Penalty Example: 20 Gbit/s, 0.5 V pp 50 ps 1/2 V PAM Signal Power Eye Area 2 1 1 100 ps 1/6 V 4 Penalty 1 / 9-9.5 db 2 / 3-1.8 db Picture of PAM4-Eye-Measurement from Proposals for CEI25 Channels Based on lower-k Dielectric Materials for Backplanes and Daughterboards, Helmut Preisach, Alcatel Lucent, Stuttgart, OIF-Contribution Number: OIF2007.135.00, Working Group: PLL 11

Multilevel Benefit: Consider SNR @ f Nyquist 0-10 20 Gbit/s PAM4 = 10 Gbaud 20 Gbit/s PAM2 = 20 Gbaud S21 [db] -20-30 Overall SNR gain Multilevel SNR loss (9,5 db) SNR gain due to reduced symbol rate -40 Noise Level SNR new SNR old NEXT FEXT Thermal Noise -50 0,0E+00 2,0E+09 4,0E+09 6,0E+09 8,0E+09 1,0E+10 frequency [Hz] 12

Transmitter & Receiver Equalization FIR-filter (FFE) in transmitter FIR FIR-filter in transmitter DFE in receiver FIR+DFE 13

Transmitter & Receiver Equalization FIR-filter transmitter electrical channel FIR-filter receiver DFE receiver data in FIR FIR DFE data out clock FIR FIR DFE T T T T T T T T c 0 c 0 c -1 c -1 c 1 digital domain c -2 analog domain c -2 c 2 digital domain 14

1 Re f 2 Example of Simulation Setup in ADS TRANSIENT Tran Tran2 StopTime=10.0 nsec MaxTimeStep=1.0 psec TRANSIENT Tran Tran1 StopTime=30.0 nsec MaxTimeStep=1.0 psec VtLFSR_DT SRC7 Vlow= -e_1 V Vhigh=e_1 V Rate=10 GHz Delay=0.5 nsec Taps= bin("10000000000000100") Seed= bin("10101010101010101") Rout=1 Ohm VtLFSR_DT SRC4 Vlow= -e_0 V Vhigh=e_0 V Rate=10 GHz Delay=0.4 nsec Taps= bin("10000000000000100") Seed= bin("10101010101010101") Rout=1 Ohm VtLFSR_DT SRC13 Vlow= -e3 V Vhigh=e3 V Rate=10 GHz Delay=0.1 nsec Taps= bin("10000000000000100") Seed= bin("10101010101010101") Rout=1 Ohm VtLFSR_DT SRC14 Vlow= -e4 V Vhigh=e4 V Rate=10 GHz Delay=0.0 nsec Taps= bin("10000000000000100") Seed= bin("10101010101010101") Rout=1 Ohm Var Eqn VAR VAR1 e_1= 0 e_0= 4.0 e1= 0 e2= 0 e3= 0 e4= 0 DT DT DT DT DT DT R R1 R=50 Ohm Var Eqn VAR VAR2 e_1= -1.7593 e_0= 4.0 e1= 0 e2= 0 e3= 0 e4= 0 L L1 L=0.25 nh R= VtLFSR_DT SRC6 Vlow=-e1 V Vhigh=e1 V Rate=10 GHz Delay=0.3 nsec Taps= bin("10000000000000100") Seed= bin("10101010101010101") Rout=1 Ohm VtLFSR_DT SRC8 Vlow=-e2 V Vhigh=e2 V Rate=10 GHz Delay=0.2 nsec Taps= bin("10000000000000100") Seed= bin("10101010101010101") Rout=1 Ohm InOrg Var Eqn VAR VAR3 e_1= -1.7593 e_0= 4.0 e1= -1.6056 e2= 0 e3= 0 e4= 0 C C2 C=0.35 pf Var Eqn VtPulse SRC18 Vlow= -1 V t Vhigh=1 V Delay=0.0 psec Edge= cosine Rise=1 psec Fall=1 psec Width=99 psec Period=10 nsec VAR VAR4 e_1= -1.7593 e_0= 4.0 e1= -1.6056 e2= 0.6329 e3= 0 e4= 0 VCVS SRC5 G=1 R1=50 Ohm R2=50 Ohm Var Eqn In VtPulse SRC21 Vlow=0 V Vhigh=e_0 V Delay=0.4 nsec Edge= cosine Rise=1 psec Fall=1 psec Width=99 psec Period=10 nsec VtPulse SRC23 Vlow=0 V Vhigh=e2 V Delay=0.2 nsec Edge= cosine Rise=1 psec Fall=1 psec Width=99 psec Period=10 nsec VtPulse SRC24 Vlow=0 V Vhigh=e4 V Delay=0.0 nsec Edge= cosine Rise=1 psec Fall=1 psec Width=99 psec Period=10 nsec VAR VAR5 e_1= -1.7593 e_0= 4.0 e1= -1.6056 e2= 0.6329 e3= -0.2325 e4= 0 S2P SNP1 File= "DD_2N" Var Eqn Var Eqn VAR VAR7 e_1= 0 e_0= 4.0 e1= -1.1920 e2= 0 e3= 0 e4= 0 Out VtPulse SRC22 Vlow=0 V t Vhigh=e_1 V Delay=0.5 nsec Edge= cosine Rise=1 psec Fall=1 psec t Width=99 psec Period=10 nsec VtPulse SRC20 Vlow=0 V t Vhigh=e1 V Delay=0.3 nsec Edge= cosine Rise=1 psec Fall=1 psec t Width=99 psec Period=10 nsec VtPulse SRC25 Vlow=0 V t Vhigh=e3 V Delay=0.1 nsec Edge= cosine Rise=1 psec Fall=1 psec t Width=99 psec Period=10 nsec VAR VAR6 e_1= -1.7593 e_0= 4.0 e1= -1.6056 e2= 0.6329 e3= -0.2325 e4= 0.0738 VSum R SUM1 R2 R=50 Ohm Vback Var Eqn VDFE VAR VAR8 e_1= 0 e_0= 4.0 e1= -1.2698 e2= 0.3672 e3= 0 e4= 0 VSum SUM6 Var Eqn SampleHoldSML SAMP5 Fnom=0 Hz Vhold SampleHoldSML SAMP1 Fnom=0 Hz VSum SUM2 VSum SUM4 VAR VAR9 r1=0.174 r2=0.076 r3=0.040 r4=0 r5=0 r6=0 r7=0 r8=0 r9=0 OutHold Clock Comparator CMP2 Vlow=0.0 V Vhigh=100 V VSum SUM3 VSum SUM5 Var Eqn VAR VAR10 r1=0.174 r2=0.076 r3=0.040 r4=0.013 r5=0.022 r6=0.012 r7=0 r8=0 r9=0 V_DC SRC16 Vdc=0.5 V VMult MULT1 VMult MULT2 VMult MULT3 VMult MULT4 VMult MULT5 VMult MULT6 VtPulse SRC17 Vlow=0 V Vhigh=1 V Delay=81.1 psec Edge= cosine Rise=1 psec Fall=1 psec Width=50 psec Period=100 psec VCVS SRC15 G=2 V_DC SRC26 Vdc=-r1 V V_DC SRC27 Vdc=-r2 V V_DC SRC28 Vdc=-r3 V V_DC SRC32 Vdc=-r4 V V_DC SRC31 Vdc=-r5 V V_DC SRC30 Vdc=-r6 V VtPulse SRC29 Vlow=1 V Vhigh=0 V Delay=81.1 psec Edge= cosine Rise=1 psec Fall=1 psec Width=50 psec Period=100 psec Vback3 Vcomp Vback1 Vback2 t t SampleHoldSML SAMP2 Fnom=0 Hz SampleHoldSML SAMP3 Fnom=0 Hz SampleHoldSML SAMP4 Fnom=0 Hz SampleHoldSML SAMP8 Fnom=0 Hz SampleHoldSML SAMP7 Fnom=0 Hz SampleHoldSML SAMP6 Fnom=0 Hz 15

Transmitter Swing Limit Peak voltage at transmitter is limited T T T c 0 c -1 c -2 k c = i i= 0 V max Peak voltage at transmitter set to ± 1 V in all simulations (1-norm of FFE equalization vector = 2) 16

Simulation of PAM 2 / PAM 4 transmission with FIR / FIR+DFE 3.33 Gbit/s 6.67 Gbit/s 10.00 Gbit/s 13.33 Gbit/s 17

Eye Quality Measures Eye Area [in pvs] A ~ ½ * T open * V open µ H (~ integrated charge on decision latch input ) V open T open µ L Eye Quality factor (= signal-to-noise ratio at optimum sampling time) BER estimation from Q-factor (assuming Gaussian distribution of sampled voltage, is too conservative in most cases) Q = µ σ H H BER = µ + σ e L L Q 2 2 Q 2π 18

Transmission Characteristic of 86cm Trace m1: IL (1.67 GHz) = -8.9 db m2: IL (3.33 GHz) = -22.5 db Insertion Loss [db] m3: IL (5.00 GHz) = -27.1 db m4: IL (6.67 GHz) = -54.6 db Frequency [GHz] 19

86 cm 3.33 Gbit/s PAM2 (no equalization) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.67 500 50 3.6 1.9 x 10-4 20

86 cm 3.33 Gbit/s PAM2 FIR (0 Pre-, 1 Post-FIR-Tap) Preemphasis horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.89 670 89 13.3 1.4x 10-40 21

Summary 3.33 Gbit/s 86 cm Quality Measure V open T open A open Q EQ Taps PAM [mv] [ps] [pvs] - - 2 500 201 50 3.6 FIR 1 post 2 670 267 89 13.3 22

86 cm 6.67 Gbit/s PAM2 FIR (no equalization) horizontal eye opening vertical eye height eye quality factor Q estimated optimum BER UI mv - - - - 23

86 cm 6.67 Gbit/s PAM2 FIR (0 Pre-, 1 Post-FIR-Tap) Preemphasis horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.63 140 6.6 3.5 2.5 x 10-4 24

86 cm 6.67 Gbit/s PAM2 FIR (1 Pre-, 1 Post-FIR-Taps) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.48 130 4.7 4.3 1.1x 10-5 25

86 cm 6.67 Gbit/s PAM2 FIR (2 Pre-, 3 Post-FIR-Taps) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.58 130 5.7 10.3 4.7x 10-25 26

86 cm 6.67 Gbit/s PAM2 FIR+DFE (2 Pre-FIR-, 4 DFE-T.) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.65 290 14.1 9.7 1.6x 10-22 27

86 cm 6.67 Gbit/s PAM2 FIR+DFE (3 Pre-FIR, 9 DFE-T.) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.75 340 19.1 19.4 6 x 10-84 28

86 cm 6.67 Gbit/s PAM4 FIR (no equalization) horizontal eye opening vertical eye height eye quality factor Q estimated optimum BER UI mv - - - - 29

86 cm 6.67 Gbit/s PAM4 FIR (1 Pre-, 1 Post-FIR-Tap) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.41 170 10.5 7.1 7 x 10-13 30

86 cm 6.67 Gbit/s PAM4 FIR (2 Pre-, 3 Post-FIR-Taps) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.46 210 14.5 15.1 2 x 10-51 31

86 cm 6.67 Gbit/s PAM4 FIR+DFE (2 Pre-FIR-, 4 DFE-T.) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.43 240 15.5 11.6 4 x 10-31 32

86 cm 6.67 Gbit/s PAM4 FIR+DFE (3 Pre-FIR-, 9 DFE-T.) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.45 300 20.3 17.0 4 x 10-65 33

Summary 6.67 Gbit/s 86 cm Quality Measure V open T open A open EQ Taps PAM [mv] [ps] [pvs] FIR 1 pre 2 130 72 4.7 1 post 4 170 123 10.5 FIR 2 pre 2 130 87 5.7 3 post 4 210 138 14.5 FIR 2 2 290 97.5 14.1 +DFE 4 4 240 129 15.5 FIR 3 2 340 112 19.1 +DFE 9 4 300 135 20.3 Q 4.3 7.1 10.3 15.1 9.7 11.6 19.4 17.0 34

86 cm 10.00 Gbit/s PAM2 FIR (2 Pre-, 4 Post-FIR-Taps) horizontal eye opening vertical eye height eye quality factor Q estimated optimum BER UI mv - 67 2.6 5 x 10-3 35

86 cm 10.00 Gbit/s PAM2 FIR+DFE (4 Pre-FIR-, 9 DFE-T.) horizontal eye opening vertical eye height eye quality factor Q estimated optimum BER UI mv - 172 2.5 7 x 10-3 36

86 cm 10.00 Gbit/s PAM4 FIR (2 Pre-, 3 Post-FIR-Taps) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.29 110 3.2 12.8 4 x 10-38 37

86 cm 10.00 Gbit/s PAM4 FIR+DFE (3 Pre-FIR-, 9 DFE-T.) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.37 180 6.7 13.7 3 x 10-43 38

Summary 10.00 Gbit/s 86 cm Quality Measure V open T open A open EQ Taps PAM [mv] [ps] [pvs] FIR 2 pre 4 post 2 - - - FIR 2 pre 3 post 4 110 58 3.2 FIR 4 +DFE 9 2 - - - FIR 3 +DFE 9 4 180 74 6.7 Q 2.6 12.8 2.5 13.7 39

34 in 13.33 Gbit/s PAM2 FIR (19 FIR-Taps) horizontal eye opening vertical eye height eye quality factor Q estimated optimum BER ps mv - 10 2.3 1 x 10-2 40

86 cm 13.33 Gbit/s PAM2 FIR+DFE (4 Pre-FIR-, 9 DFE-T.) horizontal eye opening vertical eye height eye quality factor Q estimated optimum BER UI mv - 93 2.2 2 x 10-2 41

86 cm 13.33 Gbit/s PAM4 FIR (2 Pre-, 3 Post-FIR-Taps) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.13 20 0.2 4.5 3 x 10-6 42

86 cm 13.33 Gbit/s PAM4 FIR+DFE (3 Pre-FIR-, 9 DFE-T.) horizontal eye opening vertical eye opening eye area eye quality factor Q estimated optimum BER UI mv pvs 0.27 90 1.8 9.1 6 x 10-20 43

EQ FIR Summary 13.33 Gbit/s 86 cm Quality Measure V open T open A open Taps PAM [mv] [ps] [pvs] 19 2 - - - Q 2.3 FIR FIR +DFE FIR +DFE 2 pre 3 post 4 9 3 9 4 2 4 20-90 19-40 0.2-1.8 4.5 2.2 9.1 44

Summary PAM X / EQ versus Bit Rate Bit Rate [Gbit/s] 3.33 6.67 10.0 13.33 IL @ f bit /2 [db] -8.9-22.5-27.1-54.6 Modul. EQ-Meth. none +/- - - - PAM 2 FIR FIR+DFE + Overkill + + - - - - PAM 4 FIR FIR+DFE Overkill Overkill + + + + - + 45

Conclusion: Multilevel Benefit! Insertion loss @ f bit /2: ~ 10 db: PAM 2 w/o any equalization PAM 2 with FIR (1-tap, preemphasis) ~ 20 db: PAM 2 with FIR, PAM 2 with FIR+DFE PAM 4 with FIR PAM 4 with FIR+DFE ~ 30 db: PAM 4 with FIR PAM 4 with FIR+DFE ~ 40 db: PAM 4 with FIR+DFE Benefit 1: for low loss channels IL @ f bit /2 < ~25 db PAM 4 offers better eye opening with less equalization effort Benefit 2: for high loss channels IL @ f bit /2 > ~25 db transmission only possible with PAM 4 46

Summary Residual ISI after limited/non-ideal equalization is the most important limiting factor for the possible backplane transmission throughput Equalization is a MUST for PAM4-transmission, too, but the EQ-effort may be lower than for PAM2 PAM4 clearly offers the potential for an increase in transmission throughput FFE+DFE PAM4 offers the largest throughput Main challenges for real-world-implementation: PAM4-DFE-circuit implementation at high speed PAM4 needs transmission-amplitude dependant decision levels 47

48

BACK UP Decision Latch Sensitivity 49

90 nm CMOS Decision Flip-Flop Layout _V CLK I Bias V D Q D Q in,d A=1 V out,d CLK _CLK _V in V out V in _V out V CLK V SS 50

90nm CMOS Flip-Flop: Measured Phase Margin 360 200 mv Single-ended input voltage swing as parameter phase margin [degrees] 270 180 90 0 25 mv 50 mv 100 mv 35 mv decision latch requires ~ 2.5 pvs diff,pp input eye area for error-free operation 400 mv 300 mv 0 10 20 30 40 50 f Toggle = f bit @ 5, 10 Gbit/s. f Toggle = ¼ f bit @ 20, 30, 40 Gbit/s Phase margin 10 GHz: 324 @ 200 mv input bit rate [Gbit/s] 274 @ 50 mv 51

BACK UP Simulations with Crosstalk 52

Differential NEXT & FEXT w/4-port VNA Modified illustration from Minimizing Multiple Aggressor Differential Crosstalk in High Speed Interconnects using Measurement-based Modeling, Mike Resso, Agilent Technologies 53

86 cm 6.67 Gbit/s FFE PAM2 +NEXT w NEXT w/o NEXT horizontal eye opening UI 0.56 0.58 vertical eye height mv 181 183 eye quality factor Q 9.7 10.3 estimated optimum BER 1 x 10-22 5 x 10-25 54

86cm 6.67 Gbit/s FFE+DFE PAM2 +NEXT w NEXT w/o NEXT horizontal eye opening UI 0.73 0.75 vertical eye height mv 427 426 eye quality factor Q 17.5 19.4 estimated optimum BER 1 x 10-68 6 x 10-84 55

86cm 13.3 Gbit/s FFE+DFE PAM4 +NEXT w NEXT w/o NEXT horizontal eye opening UI 0.26 0.26 vertical eye height mv 140 140 eye quality factor Q 7.9 9.1 estimated optimum BER 8 x 10-16 6 x 10-20 56

Back UP Channel capacity limiting factors 57

Channel Capacity Limiting Factors 1. Residual ISI after limited, non-ideal equalization 2. Crosstalk near-end (NEXT) and far-end (FEXT) 3. Circuit deficiencies duty cycle distortion, resolution and offset of deciders 4. Timing jitter transmitter and receiver 5. Thermal noise transmitter & receiver circuitry, termination resistors 58