In retrospect: The Structure of Scientific Revolutions

Similar documents
Thomas Kuhn's "The Structure of Scientific Revolutions"

INTRODUCTION TO NONREPRESENTATION, THOMAS KUHN, AND LARRY LAUDAN

Science: A Greatest Integer Function A Punctuated, Cumulative Approach to the Inquisitive Nature of Science

Lecture 3 Kuhn s Methodology

HPS 1653 / PHIL 1610 Introduction to the Philosophy of Science

Normal Science and Normal Kuhn.

Endless Forms. Citation. As Published Publisher. Version

Thomas S. Kuhn ( )

Kant on wheels. Available online: 24 Jun 2010

Four kinds of incommensurability. Reason, Relativism, and Reality Spring 2005

Scientific Revolutions as Events: A Kuhnian Critique of Badiou

8/28/2008. An instance of great change or alteration in affairs or in some particular thing. (1450)

Thomas Kuhn and the Psychology of Scientific Revolutions

Hypatia, Volume 21, Number 3, Summer 2006, pp (Review) DOI: /hyp For additional information about this article

Kuhn. History and Philosophy of STEM. Lecture 6

Thomas Kuhn. 1. Life and Career

Conceptual Change, Relativism, and Rationality

TROUBLING QUALITATIVE INQUIRY: ACCOUNTS AS DATA, AND AS PRODUCTS

Kuhn s normal and revolutionary science

Hoyningen Symposium Systematicity: The Nature of Science

Introduction to The Handbook of Economic Methodology

บทปร ท ศน หน งส อ The Three Cultures: Natural Sciences, Social Sciences, and the Humanities in the 21 st Century

Kuhn s Notion of Scientific Progress. Christian Damböck Institute Vienna Circle University of Vienna

Philip Kitcher and Gillian Barker, Philosophy of Science: A New Introduction, Oxford: Oxford University Press, 2014, pp. 192

Can Television Be Considered Literature and Taught in English Classes? By Shelby Ostergaard 2017

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters!

Thomas Kuhn s Concept of Incommensurability and the Stegmüller/Sneed Program as a Formal Approach to that Concept

Relativism and the Social Construction of Science: Kuhn, Lakatos, Feyerabend

PHILOSOPHY OF SOCIAL SCIENCE INTS 4522 Spring Jack Donnelly and Martin Rhodes -

History of Science from Newton to the present Spring Semester 2008

FORTHCOMING IN RAVON #61 (APRIL 2012) Thomas Recchio. Elizabeth Gaskell s Cranford: A Publishing History. Burlington: Ashgate

The topic of this Majors Seminar is Relativism how to formulate it, and how to evaluate arguments for and against it.

Incommensurability and Partial Reference

1 Kuhn on Specialization. dr. Vincenzo Politi

A Copernican Revolution in IS: Using Kant's Critique of Pure Reason for Describing Epistemological Trends in IS

GALE LITERATURE CRITICISM ONLINE. Centuries of Literary, Cultural, and Historical Analysis EMPOWER DISCOVERY

A Brief History and Characterization

Review Articles KUHN*S SECOND THOUGHTS. Brit. J. Phil. Set. aa (1971), Printed in Great Britain 287

Kuhn Formalized. Christian Damböck Institute Vienna Circle University of Vienna

Kuhn and the Structure of Scientific Revolutions. How does one describe the process of science as a human endeavor? How does an

FIFTY KEY CONTEMPORARY THINKERS

Discourse analysis is an umbrella term for a range of methodological approaches that

Cover Page. The handle holds various files of this Leiden University dissertation.

Qualitative Design and Measurement Objectives 1. Describe five approaches to questions posed in qualitative research 2. Describe the relationship betw

THE STRUCTURE OF SCIENTIFIC REVOLUTIONS

Action, Criticism & Theory for Music Education

AN ABSTRACT OF THE THESIS OF

Gestalt, Perception and Literature

Teaching Art History to Children: A Philosophical Basis

Can Kuhn s Taxonomic Incommensurability Be an Image of Science?

Colloque Écritures: sur les traces de Jack Goody - Lyon, January 2008

Deep Ecology A New Paradigm 19 September 2012 Page 1 of 6

University of Bristol - Explore Bristol Research

Texas Southern University. From the SelectedWorks of Anthony M Rodriguez Ph.D. Michael A Rodriguez, Ph.D., Texas Southern University

SocioBrains THE INTEGRATED APPROACH TO THE STUDY OF ART

Problems of Information Semiotics

Bird, A. (2012). What Can Cognitive Science Tell Us About Scientific Revolutions? Theoria, 75, DOI: /theoria.6391

Rereading Kuhn REVIEW ARTICLE. Jouni-Matti Kuukkanen

Is There Anything Wrong with Thomas Kuhn? Markus Arnold, University of Klagenfurt

Words or Worlds: The Metaphysics within Kuhn s Picture of. Science. Justin Price

Caught in the Middle. Philosophy of Science Between the Historical Turn and Formal Philosophy as Illustrated by the Program of Kuhn Sneedified

"History of Modern Economic Thought"

Course Description: looks into the from a range dedicated too. Course Goals: Requirements: each), a 6-8. page writing. assignment. grade.

Literary Theory and Literary Criticism Prof. Aysha Iqbal Department of Humanities and Social Sciences Indian Institute of Technology, Madras

The Concept of Nature

INTUITION IN SCIENCE AND MATHEMATICS

WRITING A PRÈCIS. What is a précis? The definition

AP European History Chapter 28: The Age of Anxiety

Archives Home News Archives

HIST 4933 Final Papers

Piero Gleijeses, Conflicting Missions: Havana, Washington, and Africa, (Chapel Hill: University of North Carolina Press, 2002).

Term Paper Prospectus And Bibliographic Assignment History 11

WHY CURRENT STUDIES OF HUMAN CAPACITIES CAN NEVER BE SCIENTIFIC. Hubert Dreyfus

Arnold I. Davidson, Frédéric Gros (eds.), Foucault, Wittgenstein: de possibles rencontres (Éditions Kimé, 2011), ISBN:

Master of Arts in Psychology Program The Faculty of Social and Behavioral Sciences offers the Master of Arts degree in Psychology.

Periodical illustrations: Non-Rockwell collection RC

Corcoran, J George Boole. Encyclopedia of Philosophy. 2nd edition. Detroit: Macmillan Reference USA, 2006

The Barrier View: Rejecting Part of Kuhn s Work to Further It. Thomas S. Kuhn s The Structure of Scientific Revolutions, published in 1962, spawned

A person represented in a story

Incommensurability and the Bonfire of the Meta-Theories: Response to Mizrahi Lydia Patton, Virginia Tech

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

THE REPRESENTATIVENESS OF HOMO OECONOMICUS AND ITS RATIONALITY

GALBRAITH'S PARADIGM: A CASE STUDY IN SCIENTIFIC REVOLUTION. Mark Steven Waldman

NOTES ON COLLINGWOOD S PRINCIPLES OF ART

RUSS 194, Fall , HUM hoogenboom-at-macalester.edu

The Free Online Scholarship Movement: An Interview with Peter Suber

Bauman. Peter Beilharz

Introduction: Mills today

APHRA BEHN STAGE THE SOCIAL SCENE

IX. The Nature and Necessity of Scientific Revolutions

Literary Theory and Criticism

Homework Due Thursday, Oct. 23. Please type your responses on a separate sheet.

ON PARADIGMS, THEORIES AND MODELS. Fecha de recepción: 7 de agosto de Fecha de aprobación: 7 de octubre de 2002.

Hebrew Bible Monographs 18. Colin Toffelmire McMaster Divinity College Hamilton, Ontario, Canada

Frequently Asked Questions about Rice University Open-Access Mandate

The Shimer School Core Curriculum

A Confusion of the term Subjectivity in the philosophy of Mind *

THE SOCIAL RELEVANCE OF PHILOSOPHY

Marx: A Very Short Introduction Free Download pdf

days of Saussure. For the most, it seems, Saussure has rightly sunk into

Transcription:

In retrospect: The Structure of Scientific Revolutions The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Kaiser, David. "In retrospect: The Structure of Scientific Revolutions." Nature 484 (2012), 164 166. http://dx.doi.org/10.1038/484164a Nature Publishing Group Version Author's final manuscript Accessed Fri Feb 09 14:14:03 EST 2018 Citable Link http://hdl.handle.net/1721.1/106157 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

In Retrospect: Thomas Kuhn s Structure of Scientific Revolutions David Kaiser Fifty years ago, a short book appeared under the quirky title The Structure of Scientific Revolutions. Its author, Thomas Kuhn (1922-1996), had begun his academic life as a physicist but had migrated to the history and philosophy of science. His main argument in the book his second, following a study of the Copernican revolution in astronomy was that scientific activity unfolded according to a recurring pattern, a structure, which we can discern by studying its history. Kuhn was not at all confident about how Structure would be received. He had been denied tenure at Harvard University a few years before, and he wrote to several correspondents after the book was published that he felt he had stuck his neck very far out. Within months, however, some people began to proclaim a new era in the understanding of science. One biologist even joked that all commentary could now be dated with precision: his own efforts had appeared in the year 2 B.K., before Kuhn. A decade later, Kuhn was so inundated with correspondence about the book that he despaired of ever again getting any work done. By the mid-1980s, Structure had achieved blockbuster status. Nearly a million copies had been sold and more than a dozen foreign-language editions published. The book became the most-cited academic work in all of the humanities and social sciences between 1976 and 1983 cited more often than classic works by Sigmund Freud, Ludwig Wittgenstein, Noam Chomsky, Michel Foucault, or Jacques Derrida. The book was required reading for undergraduates in classes across the curriculum, from history and philosophy to sociology, economics, political science and the sciences. Before long, Kuhn s phrase paradigm shift was showing up everywhere from business manuals to cartoons in The New Yorker. 1

Kuhn began thinking about his project 15 years before it was published, while he was working on his doctorate in theoretical physics at Harvard. He became interested in developmental psychology, avidly reading works by Swiss psychologist Jean Piaget about the stages of cognitive development in children. Kuhn saw similar developmental stages in entire sciences. First, he said, a field of study matured by forming a paradigm a set of guiding concepts, theories and methods on which most members of the relevant community agree. There follows a period of normal science, during which scientists further articulated what the paradigm might imply for specific situations. In the course of that work, anomalies necessarily arise findings that differ from expectations. Kuhn had in mind episodes like the accidental discoveries of X-rays in the late nineteenth century and nuclear fission in the early twentieth. Often, Kuhn argued, the anomalies were brushed aside or left as problems for future research. But once enough anomalies have accumulated, and all efforts to assimilate them to the reigning paradigm have met with frustration, the field enters a state of crisis. Resolution comes only with a revolution, and the inauguration of a new paradigm that can address the anomalies. Then the whole process repeats with a new phase of normal science. Kuhn was especially struck by the cyclic nature of the process, which ran counter to then-conventional ideas about scientific progress. At the heart of Kuhn s account stood that tricky notion of the paradigm. British philosopher Margaret Masterman famously isolated 21 distinct ways in which Kuhn used the slipperty term throughout his slim volume. Even Kuhn himself came to realize that he had saddled the word with too much baggage: in later essays, he separated his intended meanings into two clusters. One sense referred to a scientific community s reigning theories and methods. The second meaning, which Kuhn argued was both more original and more important, referred to exemplars or model problems, the worked examples on which students and young scientists cut their teeth. As Kuhn appreciated from his own training, scientists entered the field by immersive apprenticeship; they had to hone what 2

Hungarian chemist and philosopher of science Michael Polanyi had called tacit knowledge by working through large collections of exemplars rather than by memorizing explicit rules or theorems. More than most scholars of his era, Kuhn taught historians and philosophers to view science as practice rather than syllogism. Most controversial became Kuhn s claim that scientists have no way to compare concepts on either side of a scientific revolution. For example, the notion of mass in the Newtonian paradigm is not the same as in the Einsteinian one, Kuhn urged; each concept draws its meaning from separate webs of ideas, practices, and results. If scientific concepts are bound up in specific ways of seeing the world, like a person who sees only one aspect of a Gestalt psychologist s duck-rabbit figure, then how is it possible to compare one concept to another? To Kuhn, the concepts were incommensurable: no common measure could be found with which to relate them, because scientists, he argued, always interrogate nature through a given paradigm. Perhaps the most radical thrust of Kuhn s analysis, then, was that science might not be progressing toward a truer representation of the world, but simply moving away from previous representations. Knowledge need not be cumulative: when paradigms change, whole sets of questions and answers get dropped as irrelevant, rather than incorporated into the new era of normal science. In the closing pages of his original edition, Kuhn adopted the metaphor of Darwinian natural selection: scientific knowledge surely changes over time, but does not necessarily march towards an ultimate goal. And so, 50 years later, we are left with our own anomaly. How did an academic book on the history and philosophy of science become a cultural icon? Structure was composed as an extended essay rather than a formal monograph; it was written as an entry on the history of science for the soon-to-be-defunct International Encyclopedia of Unified Science. Kuhn never intended the slim volume to be definitive. He often described the book (even in its original preface) as a first pass at material he intended to address in more detail later. 3

To my eye, the book has the feel of a physicist s toy model: an intentionally strippeddown and simplified schematic an exemplar with which one hopes to capture important phenomena. The thought-provoking thesis is argued with earnestness and clarity, not weighed down with jargon or lumbering footnotes. The more controversial claims are advanced in a suggestive rather than declarative mode. Perhaps most important, the book is short: it can be read comfortably in a single sitting. For the new fiftieth-anniversary edition, the University of Chicago Press has included an introductory essay by renowned Canadian philosopher Ian Hacking. Like Kuhn, Hacking has a gift for clear exposition. The new introduction provides a helpful guide to some of the thornier philosophical issues lurking in the book, and gives hints as to how historians and philosophers of science have parted with Kuhn. The field of science studies has changed markedly since 1962. Few philosophers still subscribe to radical incommensurability; many historians focus on sociological or cultural features that received no play in Kuhn s work; and topics in the life sciences now dominate many scholars attention, unlike Kuhn s close focus on examples from physics. Nonetheless, we may still admire Kuhn s dexterity in broaching challenging ideas with a fascinating mix of examples from psychology, history, philosophy, and beyond. We need hardly agree with each of Kuhn s propositions to enjoy and benefit from this classic book. David Kaiser is Germeshausen Professor of the History of Science at the Massachusetts Institute of Technology in Cambridge. His latest book is How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival (W. W. Norton, 2011). 4