Using SOAs as Booster and/or Pre-Amplifier for 4x25-Gb/s 40-km 1310-nm PMD

Similar documents
Reducing input dynamic range of SOA-preamplifier for 100G-EPON upstream

Experimental results of SOA pre-amplification for 25G-EPON IEEE P802.3ca Task Force Meeting, March 2017 Vancouver BC, Canada

100G CWDM Link Model for DM DFB Lasers. John Petrilla: Avago Technologies May 2013

EVLA Fiber Selection Critical Design Review

100G SR4 Link Model Update & TDP. John Petrilla: Avago Technologies January 2013

Optical transmission feasibility for 400GbE extended reach PMD. Yoshiaki Sone NTT IEEE802.3 Industry Connections NG-ECDC Ad hoc, Whistler, May 2016

100G MMF 20m & 100m Link Model Comparison. John Petrilla: Avago Technologies March 2013

Improving the Performance of Advanced Modulation Scheme. Yoshiaki Sone NTT IEEE802.3bs 400 Gb/s Ethernet Task Force, San Antonio, Novenver 2014.

100GBASE-SR4 Extinction Ratio Requirement. John Petrilla: Avago Technologies September 2013

40GBASE-ER4 optical budget

100G-FR and 100G-LR Technical Specifications

Proposal for 400GE Optical PMD for 2km SMF Objective based on 4 x 100G PAM4

Ordering information. 40Gb/s QSFP+ ER4 Optical Transceiver Product Specification. Features

Component BW requirement of 56Gbaud Modulations for 400GbE 2 & 10km PMD

SMF Ad Hoc report. Pete Anslow, Ciena, SMF Ad Hoc Chair. IEEE P802.3bm, Geneva, September 2012

40G SWDM4 MSA Technical Specifications Optical Specifications

SOA / PIN based OLT receiver update. David Piehler, Ruomei Mu 17 July 2007

400G-FR4 Technical Specification

Technical Feasibility of Single Wavelength 400GbE 2km &10km application

40G SWDM4 MSA Technical Specifications Optical Specifications

64G Fibre Channel strawman update. 6 th Dec 2016, rv1 Jonathan King, Finisar

PIN-PD based ONU for 10GE-PON (3)

Module 11 : Link Design

Comparison of options for 40 Gb/s PMD for 10 km duplex SMF and recommendations

100GBASE-DR2: A Baseline Proposal for the 100G 500m Two Lane Objective. Brian Welch (Luxtera)

Semiconductor Optical Amplifiers High Power Operation. Boris Stefanov, Leo Spiekman, David Piehler Alphion Corporation

Issues for fair comparison of PAM4 and DMT

WWDM Transceiver Update and 1310 nm eye-safety

Improved extinction ratio specifications. Piers Dawe Mellanox

Toward Baseline for 400GBASE-ZR Optical Specs

100G PSM4 & RS(528, 514, 7, 10) FEC. John Petrilla: Avago Technologies September 2012

Recommended Changes to Optical PMD Proposal

SFCxxB16GExD SFP Dual Fibre CWDM ITU CWDM / 16dB / Gigabit Ethernet

100GBASE-FR2, -LR2 Baseline Proposal

A Ptolemy Based Optical Network Simulator

SFCxxB24GExD SFP Dual Fibre CWDM CWDM / 24dB / Gigabit Ethernet

Further information on PAM4 error performance and power budget considerations

500 m SMF Objective Baseline Proposal

WaveReady WRT Gbps Extended-Reach DWDM Tunable Transponder with XFP Client Interface

Updated Considerations on 400Gb/s Ethernet SMF PMDs

Features: Compliance: Applications: Warranty: QSFP-40G-LR4-GT 40GBASE-LR4 QSFP+ SMF Module Cisco Compatible

10GBASE-LRM Interoperability & Technical Feasibility Report

Planning Tool of Point to Poin Optical Communication Links

TP2 and TP3 Parameter Measurement Test Readiness

MTS/T-BERD 8000 Platform

MTS/T-BERD 8000 Platform Optical Spectrum Analyzer Modules

50 Gb/s per lane MMF baseline proposals. P802.3cd, Whistler, BC 21 st May 2016 Jonathan King, Finisar Jonathan Ingham, FIT

Baseline Proposal for 200 Gb/s Ethernet 40 km SMF 200GBASE-ER4 in 802.3cn

Emerging Subsea Networks

Emcore SITU2831 Externally Modulated RF Amplified Fiber Optic Transmitter and SIRU3000 Fiber Optic Receiver

Tunable SFP+ DWDM 10G 80Km ZR SLSSD-10GE-ZR-T

Systematic Tx Eye Mask Definition. John Petrilla, Avago Technologies March 2009

Low-Power Solution for 10GE-PON

200GBASE-DR4: A Baseline Proposal for the 200G 500m Objective. Brian Welch (Luxtera)

The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting postamplifier

OmniStar GX2 Headend Optics Platform

On Figure of Merit in PAM4 Optical Transmitter Evaluation, Particularly TDECQ

An Approach To 25GbE SMF 10km Specification IEEE Plenary (Macau) Kohichi Tamura

QSFP SV-QSFP-40G-PSR4

Proposed NG-EPON wavelength planning decision flow. Ed Harstead, member Fixed Networks Division CTO, Alcatel-Lucent January 2014

Overcoming Nonlinear Optical Impairments Due to High- Source Laser and Launch Powers

Analysis on Feasibility to Support a 40km Objective in 50/200/400GbE. Xinyuan Wang, Yu Xu Huawei Technologies

Very Long Haul Multi-rate Gigabit Ethernet SFP CWDM Transceivers with Digital Diagnostics

Simula'on Study on 100G EPON Wavelength Plan A. Eugene (Yuxin) Dai Cox Communica'ons IEEE 802.3ca 100G EPON TF November, 2016 San Antonio, Texas, USA

6ch LC duplex QSFP Receiver ROSA (4ch x 6Gbps) + μ-bosa (2.5Gbps) (2km) FVQ2-4R1B-SM2

CWDM / 12 Gb/s Medium Power SM Video Digital Diagnostic SFP+ Transceiver

MX/HD-SDI-3G. Transmit HD-SDI-3G signals over Fiber

LASERS. Fabry Perot (FP) Distributed Feedback (DFB) Vertical Cavity Surface Emitting Laser (VCSEL)

SPCxxB10100D SFP+ Dual Fiber CWDM CWDM / 10dB / 10 Gigabit Ethernet

Intel Ethernet SFP+ Optics

100G SR4 TxVEC Review Comment r01-43

H5000 Outdoor Mini Virtual HUB

2.5 Gb/s Transponder with Mux/Demux (1310 and 1550 nm) 54TR Series

100Gb/s QSFP28 ER4 Lite Optical Transceiver DC-FC31C-40. Product Specification

MTS/T-BERD Platforms WDMPMD Module

CWDM / 3 Gb/s Medium Power SM Video Digital Diagnostic SFP Transceiver

Parameter Symbol Min. Typ. Max. Unit. Supply Voltage Vcc V. Input Voltage Vin -0.3 Vcc+0.3 V. Storage Temperature Tst C

1550 nm TX / 1310 nm RX / 3 Gb/s Medium Power 1-Fibre SM Video SFP Transceiver

PAM8 Baseline Proposal

Small Form-factor Pluggable (SFP) Optical Module Cartridges (Ethernet) For Densité Frames and Grass Valley/Telecast Standalone Fiber Products

Maps of OMA, TDP and mean power. Piers Dawe Mellanox Technologies

GbE SFP CWDM Transceiver (120km) RCP12SVX

OmniStar GX2 Headend Optics Platform GX2 LM1000E Series

Ver.0.3 Sept NTC2-HFER-3SOH. 100Gbps CFP2 Transceiver 1/7. 100Gb/s CFP2 Optical Transceiver Module. Feature. Application

Next Generation Ultra-High speed standards measurements of Optical and Electrical signals

50 Gb/s per lane MMF objectives. IEEE 50G & NGOATH Study Group January 2016, Atlanta, GA Jonathan King, Finisar

Fiber Broadband Network Systems

SPDxx040100D SFP+ Dual Fibre DWDM 100GHz DWDM / 40 km / 10 Gigabit Ethernet

Cost Effective High Split Ratios for EPON. Hal Roberts, Mike Rude, Jeff Solum July, 2001

SECQ Test Method and Calibration Improvements

CFPQD010C10D CFP Dual Fibre 1310nm* / 10km / 100GBASE-LR4 & OTN OTU4

PRE-QSFP28-ER4L 100Gb/s QSFP28 ER4 Lite Optical Transceiver, 25-32km

SFP-Bxx-ttrr. Up to 80km Sinlge-Mode SFP Transceiver. Features. Applications. Benefits

Measurements Results of GBd VCSEL Over OM3 with and without Equalization

In support of 3.5 db Extinction Ratio for 200GBASE-DR4 and 400GBASE-DR4

Optical Sampling Modules 80C01 80C02 80C07B 80C08C 80C10 80C11 80C12

Performance Results: High Gain FEC over DMT

Product Specification 10km Multi-rate 100G QSFP28 Optical Transceiver Module FTLC1151SDPL

Ver. 1.0sb 1550nm Erbium Doped Fiber Amplifier MX-A5100 Series Technical Specification

from ocean to cloud ADAPTING THE C&A PROCESS FOR COHERENT TECHNOLOGY

Transcription:

Using SOAs as Booster and/or Pre-Amplifier for 4x25-Gb/s 40-km 1310-nm PMD Ramón Gutiérrez-Castrejón, email: RGutierrezC@ii.unam.mx Universidad Nacional Autonoma de Mexico-UNAM (collaboration with Marcus Duelk, Bell Labs / Alcatel-Lucent)

Outline Feasibility with SOA pre-amplifier only Feasibility with SOA booster only Feasibility with SOA booster & pre-amplifier Conclusions 2

Feasibility with SOA pre-amplifier only (SOA after the fiber link) 3

SOA as Pre-Amplifier 400 GHz Channel Spacing BER analysis in channel #2 (worst FWM scenario) 1308.57 nm 1310.85 nm 1313.15 nm 1315.46nm 4

Minimum -log(ber) for Long Fiber Links (10-40 km) 0 dbm EML output power +2 dbm EML output power +4 dbm EML output power Extinction ratio of EML transmitter 4 db ER 6 db ER 6 db NF 4.6 8.1 9 db NF 2.9 5.0 6 db NF 6.5 11.7 9 db NF 4.1 7.1 6 db NF 8.8 15.8 9 db NF 5.5 9.8 Noise figure of SOA preamplifier 8 db ER 11.9 7.3 17.4 10.5 24.1 14.6 10 db ER 15.3 9.3 22.7 13.6 32.0 19.2 Minimum log(ber) value = worst-case BER obtained for longest fiber link (40 km = 22 db span loss) Gray-shaded areas do not meet BER 1E-12 requirement! see gutierrez_01_1107 for more information 5

Feasibility with SOA booster only (SOA before the fiber link) 6

SOA as Booster Amplifier 400 GHz Channel Spacing BER analysis in channel #2 (worst FWM scenario) Tx1 1308.57 nm DFB1 EAM OFE Rx 1310.85 nm Tx2 DFB2 EAM 0-40 km SSMF OFE Rx 1313.15 nm Tx3 DFB3 EAM Mux SOA TP2 TP3 Demux OFE Rx Tx4 1315.46nm DFB4 EAM OFE Rx 7

Power Budget Analysis for a 10-dB ER Signal EAM output Aging & accuracy MUX & splice loss SOA booster output Total power @ TP2 Fiber loss (40 km) Total power @ TP3 Aging & accuracy DEMUX & splice loss OFE input Saturated SOA Power** Loss +2.2 dbm +1.2 dbm -1.0 db -1.5 dbm -2.7 db +8.1 dbm +9.6 db +14.1 dbm -13.9 dbm -22.0 db -7.9 dbm -15.4 dbm -1.5 db -19.1 dbm -3.7 db -19.1 dbm Unsaturated SOA Power** Loss -21.8 dbm -22.8 dbm -1.0 db -25.5 dbm -2.7 db -3.2 dbm +22.3 db +2.8 dbm -25.2 dbm -22.0 db -19.2 dbm -26.7 dbm -1.5 db -30.4 dbm -3.7 db -30.4 dbm Despite high output power (+14.1 dbm @ TP2) the per-channel power at the OFE is well below the required power sensitivity! SOA with 23 db small-signal gain and +8 dbm P sat is assumed ** per-lane average power, except total power values @ TP2 / TP3 8

Feasibility with SOA booster and pre-amplifier (SOA before & after the fiber link) 9

SOA as Booster & Pre-Amplifier 400 GHz Channel Spacing BER analysis in channel #2 (worst FWM scenario) 1308.57 nm 1310.85 nm 1313.15 nm Mux SOA TP2 TP3 SOA Demux 1315.46nm 10

Output Characteristics of Booster SOA 20 40 Power @ TP2 [dbm] 15 10 5 0-30 -20-10 0 10 OSNR @ TP2 [db] 30 20 10 0 NF = 6 db NF = 9 db -30-20 -10 0 10 EML Output Power [dbm] EML Output Power [dbm] Impact of Booster SOA: Higher output power @ TP2 higher input power into SOA pre-amplifier (TP3) lower OSNR degradation in SOA pre-amplifier OSNR degradation in SOA booster lower input OSNR into SOA pre-amplifier Nonlinear eye distortions in SOA booster (e.g., FWM) More nonlinear effects in optical fiber (tbd) 11

Output OSNR of SOA Pre-Amplifier vs Input OSNR Output OSNR of SOA Preamp [db] 36 34 32 30 28 26 24 22 20 18 16 low input power (-16 dbm total @ TP3) high input power (-9 dbm total @ TP3) output OSNR = input OSNR SOA Preamp NF=6 db 20 22 24 26 28 30 32 34 36 38 40 42 44 Input OSNR into SOA Preamp [db] SOA noise figure = 6 db Curves valid for all extinction ratio (ER) values Power values @ TP2: High: per-channel power = +7 dbm total power = +13 dbm Low: per-channel power = 0 dbm total power = +6 dbm Power values @ TP3 for 40-km fiber link: High: per-channel power = -15 dbm total power = -9 dbm Low: per-channel power = -22 dbm total power = -16 dbm 12

Output OSNR of SOA Pre-Amplifier vs Input OSNR Output OSNR of SOA Preamp [db] 36 34 32 30 28 26 24 22 20 18 16 low input power (-16 dbm total @ TP3) high input power (-9 dbm total @ TP3) output OSNR = input OSNR SOA Preamp NF=9 db 20 22 24 26 28 30 32 34 36 38 40 42 44 Input OSNR into SOA Preamp [db] SOA noise figure = 9 db Curves valid for all extinction ratio (ER) values Power values @ TP2: High: per-channel power = +7 dbm total power = +13 dbm Low: per-channel power = 0 dbm total power = +6 dbm Power values @ TP3 for 40-km fiber link: High: per-channel power = -15 dbm total power = -9 dbm Low: per-channel power = -22 dbm total power = -16 dbm 13

Improving Output OSNR by Using Booster SOA Output OSNR of SOA Preamp [db] 36 34 32 30 28 26 24 22 20 18 16 low input power (-16 dbm total @ TP3) high input power (-9 dbm total @ TP3) output OSNR = input OSNR 20 22 24 26 28 30 32 34 36 38 40 42 44 2 Input OSNR into SOA Preamp [db] 1 SOA Preamp NF=9 db Data point 1: Low input power +6 dbm total @ TP2-16 dbm total @ TP3 Input OSNR = 40 db Corresponds to high output power case (+4 dbm per EML) from gutierrez_01_1107 Output OSNR = 26 db Data point 2: High input power +13 dbm total @ TP2-9 dbm total @ TP3 Input OSNR = 32 db Output OSNR = 29 db could improve OSNR by 3 db by using booster amplifier 14

BER Analysis Using Identical SOAs for a 40-km Link -log(ber) 16 14 12 10 8 6 4 2 0 SOA booster & preamp ER=10dB, NF=6 db ER=10dB, NF=9 db ER= 8dB, NF=6 db -35-30 -25-20 -15-10 -5 0 EAM output power [dbm] BER 1E-12 reference Identical SOA (23 db small-signal gain, +8 dbm P sat ) for booster and preamplifier This configuration barely meets the BER requirements for the most favorable scenario (ER=10 db, NF=6 db) Other booster/pre-amplifier combinations tested as well, similar results Improvement in received OSNR is traded off with an increase in nonlinear eye distortions in booster SOA! 15

Comparison to Pre-Amplifier Only for a 40-km Link -log(ber) SOA booster & preamp ER=10dB, NF=6 db ER=10dB, NF=9 db ER= 8dB, NF=6 db SOA preamp only ER=10dB, NF=6 db BER 1E-12 reference EAM output power [dbm] The configuration with only one SOA as pre-amplifier performs better in terms of BER but at higher EML output powers EML output power >0 dbm yields better BER performance 16

Conclusions Three 4x25-Gb/s PMDs at 1310-nm for 40-km reach have been numerically analyzed, namely: SOA as pre-amplifier only Best BER performance for long fiber links EML output power of +2 to +4 dbm required EML extinction ratio of 8 to 10 db required SOA as booster only Not feasible SOAs as pre-amplifier and booster Booster amplifier may improve received OSNR Nonlinear eye distortion under high output power critical BER performance worse than pre-amplifier only configuration 17