Supplementary information Table S1 Neuroimaging studies in individuals with tinnitus

Similar documents
Tuning the Brain: Neuromodulation as a Possible Panacea for treating non-pulsatile tinnitus?

Structural and functional neuroplasticity of tinnitus-related distress and duration

Regional homogeneity on resting state fmri in patients with tinnitus

Review INTRODUCTION. Ja-Hee Kim 1, Hyo-Jeong Lee 1,2

PERSPECTIVES. Tinnitus: perspectives from human neuroimaging

The Neural Mechanisms of Tinnitus and Tinnitus Distress

SUPPLEMENTARY MATERIAL

Citation for published version (APA): Lanting, C. P. (2010). Functional magnetic resonance imaging of tinnitus Groningen: s.n.

Structural neuroanatomy of tinnitus and hyperacusis in semantic dementia

Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: An exploratory retrospective study

Distress- dependent temporal variability of regions encoding domain- specific and domain- general behavioral manifestations of phantom percepts

Chapter 1 Chapter 1 Introduction Introduction

Jake R. Carpenter-Thompson, 1,2,3 Sara A. Schmidt, 1,3 and Fatima T. Husain 1,3,4. 1. Introduction

TRIALS. Astrid Lehner *, Martin Schecklmann, Peter M Kreuzer, Timm B Poeppl, Rainer Rupprecht and Berthold Langguth

372 VANNESTE AND DE RIDDER

Functional brain imaging of tinnitus-like perception induced by aversive auditory stimuli

Noninvasive and Invasive Neuromodulation for the Treatment of Tinnitus: An Overview

Noninvasive neuromodulation of tinnitus with transcranial current stimulation techniques with insight into neurobiology and neuroimaging

doi: /brain/aws220 Brain 2012: 135; Single-subject oscillatory gamma responses in tinnitus

University of Groningen. Tinnitus Bartels, Hilke

Introduction. Wing Ting To 1 Jan Ost

The neural correlates of tinnitus-related distress

Music Training and Neuroplasticity

Research Article Factor Analysis of Low-Frequency Repetitive Transcranial Magnetic Stimulation to the Temporoparietal Junction for Tinnitus

TITLE: Tinnitus Multimodal Imaging. PRINCIPAL INVESTIGATOR: Steven Wan Cheung CONTRACTING ORGANIZATION: UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Intracranial Mapping of a Cortical Tinnitus System using Residual Inhibition

Tinnitus- related distress: evidence from fmri of an emotional stroop task

Intracranial Mapping of a Cortical Tinnitus System using Residual Inhibition

Pattern of brain blood perfusion in tinnitus patients using technetium-99m SPECT imaging

Jinsheng Zhang on Neuromodulation to Suppress Tinnitus.mp3

Clinical Neurophysiology

Reversing Pathologically Increased EEG Power by Acoustic Coordinated Reset Neuromodulation

CONTRALATERAL PARAHIPPOCAMPAL GAMMA-BAND ACTIVITY DETERMINES NOISE-LIKE TINNITUS LATERALITY: A REGION OF INTEREST ANALYSIS

Electrical Stimulation of the Cochlea to Reduce Tinnitus. Richard S. Tyler, Ph.D. Overview

Surgical treatment by electrical stimulation of the auditory cortex for intractable tinnitus

Supporting Online Material

Tinnitus: The Neurophysiological Model and Therapeutic Sound. Background

Tinnitus Intensity Dependent Gamma Oscillations of the Contralateral Auditory Cortex

Clinically proven: Spectral notching of amplification as a treatment for tinnitus

Do tdcs and TMS influence tinnitus transiently via a direct cortical and indirect somatosensory modulating effect? A combined TMS-tDCS and TENS study

Author's response to reviews

The e ect of musicianship on pitch memory in performance matched groups

Clinical Study Polarity Specific Suppression Effects of Transcranial Direct Current Stimulation for Tinnitus

Effects of Asymmetric Cultural Experiences on the Auditory Pathway

DOI: /

Review: Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques

Heart Rate Variability Biofeedback for Tinnitus: Preliminary Findings from Multiple Case Studies

Abstract REVIEW PAPER DOI: / Peter Ahnblad. International Tinnitus Journal. 2018;22(1):72-76.

Tinnitus, Diminished Sound-Level Tolerance, and Elevated Auditory Activity in Humans with Clinically Normal Hearing Sensitivity

Neural Plasticity and Attention in Normal Hearing and in Tinnitus

The Healing Power of Music. Scientific American Mind William Forde Thompson and Gottfried Schlaug

University of Groningen. Tinnitus Bartels, Hilke

The Use of Alcohol as a Moderator for Tinnitus-Related Distress

Music training and the brain

The laughing brain - Do only humans laugh?

Do musicians have different brains?

Ultra-High-Frequency Acoustic Stimulation and Tinnitus Control: A Positron Emission Tomography Study

The neural correlates of subjectively perceived and passively matched loudness perception in auditory phantom perception

Dysregulation of Limbic and Auditory Networks in Tinnitus

Discrete cortical regions associated with the musical beauty of major and minor chords

Hearing Research 331 (2016) 101e108. Contents lists available at ScienceDirect. Hearing Research. journal homepage:

Acknowledgments 4/2/2013. The Neuroscience of Tinnitus and a Rationale for Treatment Recorded April THE NEUROSCIENCE OF TINNITUS AND

Underlying Mechanisms of Tinnitus: Review and Clinical Implications DOI: /jaaa

Debilitating Tinnitus. Tinnitus Who Gets it?

Preface. system has put emphasis on neuroscience, both in studies and in the treatment of tinnitus.

Neural Substrates of Spontaneous Musical Performance: An fmri Study of Jazz Improvisation

Neuroaesthetics: a review Di Dio Cinzia 1 and Gallese Vittorio 1,2

Music and Emotions in the Brain: Familiarity Matters

Inter-subject synchronization of brain responses during natural music listening

UNDERSTANDING TINNITUS AND TINNITUS TREATMENTS

Abstract. Introduction

Chapter 2 Tinnitus Treatment as a Problem Area

A Cognitive Model of Tinnitus and Hyperacusis; A Clinical Tool for Patient Information, Appeasement and Assessment

NEUROSCIENCE AND VISUAL ART; MOVING THROUGH EMPATHY TO THE INEFFABLE

A NEURAL OSCILLATOR MODEL FOR TINNITUS AND ITS MANAGEMENT BY SOUND THERAPY

Physicians Hearing Services Welcomes You!

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Exploring the Neural Basis of Tinnitus

Research Article The Enigma of the Tinnitus-Free Dream State in a Bayesian World

Individual Differences in Laughter Perception Reveal Roles for Mentalizing and Sensorimotor Systems in the Evaluation of Emotional Authenticity

Overlap of Musical and Linguistic Syntax Processing: Intracranial ERP Evidence

Stewart, Lauren and Walsh, Vincent (2001) Neuropsychology: music of the hemispheres Dispatch, Current Biology Vol.11 No.

Involved brain areas in processing of Persian classical music: an fmri study

Progress in Neurobiology

On the Standardisation of M/EEG procedures in tinnitus research

Altered top-down cognitive control and auditory processing in tinnitus: evidences from auditory and visual spatial stroop

7 th International Conference on Tinnitus Tinnitus: A Treatable Disease May 15 18, 2013, Valencia, Spain

August Acoustics and Psychoacoustics Barbara Crowe Music Therapy Director. Notes from BC s copyrighted materials for IHTP

Can Music Influence Language and Cognition?

Lutz Jäncke. Minireview

Susanne Langer fight or flight. arousal level valence. parasympathetic nervous. system. roughness

GENERAL ARTICLE. The Brain on Music. Nandini Chatterjee Singh and Hymavathy Balasubramanian

Neuroscience and Biobehavioral Reviews

Music and the brain: disorders of musical listening

From "Hopeless" to "Healed"

Inhibition of Oscillation in a Plastic Neural Network Model of Tinnitus Therapy Using Noise Stimulus

Tuning Out the Noise: Limbic-Auditory Interactions in Tinnitus

ANIMAL BEHAVIORAL MODELS OF TINNITUS

Transtympanic Electrical Stimulation for Immediate and Long-Term Tinnitus Suppression

Electrical stimulation and tinnitus: neuroplasticity, neuromodulation, neuroprotection

Transcription:

Supplementary information Table S1 Neuroimaging studies in individuals with tinnitus Method Number of individuals with tinnitus (type of tinnitus) Volume- based morphometry (structural volume) Number of controls (types of controls) Major findings BGC 61 45 A1 28 28 IC, HIP 28 28 THA, VMPFC 11 11 VMPFC 8 7 (HL) and 11 No effect of tinnitus, only of hearing loss 7 7 (HA) and STG, OFC 29 63 42 CC (change gender dependent) 23 11 VMPFC, DMPFC, SMG 31 16 A1 14 14 PFC, ACC, TC BGC and correlation 24 24 No effect of tinnitus, only of hearing loss Correlation 25 A1, INS, (distress) WGC and correlation 77 INS, IFG, FC, LG Diffusion tensor imaging (fractional anisotropy or diffusivity) BGC 8 7 (HL) and 11 No effect of tinnitus, only of hearing loss 13 13 (HL) ATR, SLF, ILF 28 12 FC, PC 10 10 AUD, AMY 14 14 PFC, AUD, CoC Single- photon emission computed tomography WGC 55 8 Abnormal perfusion MTG, TPC Functional MRI (BOLD signal) BGC 13 12 (HL) and PHC, INS, AMY 12 BGC and correlation 20 20 VMPFC BGC, correlation and 34 19 (HL) AUD, MGB, IC, CN, CER, IC AC connectivity WGC 35 A1, A2, IC, MGB 19 19 SMA, INS, ACC, PFC, PUT, CAU, GP, SN, PCC, IFG 16 (THDP) 16 ACC, MCC, PCC, rspcc, INS and 16 (TLDP) Resting- state functional MRI (BOLD signal) BGC and correlation 31 32 MTG, SFG, AG, CUN, MOG, THA Between- group ICA 12* 11 No effect of tinnitus 13* 12 AC decreased connectivity PFC, FUS, OCL; AC increased connectivity STEM, BG, CER, PHC, PFC, PAR, SMC Between- group ICA and seed- to- 4* 6 AC increased connectivity AC, AC AC increased connectivity voxel connectivity AMY, DMPFC Connectivity graph 13* 12 AC increased connectivity PHC Seed- to- voxel connectivity 12 13 (HL) and AC & FEF increased connectivity PHC; DMN; IPS decreased 15 connectivity SMG Seed- to- seed and seed- to- voxel 17 17 AC decreased connectivity VC; VC decreased connectivity TPJ connectivity IFG, INS; OCL decreased connectivity INS, IFG 18 23 No differences Positron- emission tomography (metabolism or blood flow) BGC 11 14 AC 4 metabolism of STG, MTG, SFG 20 20 No effect of tinnitus BGC and WGC 4 6 TTG, MGB, MTG, STG 8 7 AC, STG, IFG, MGB WGC 8 SFG, MFG, MTG, STG, ACC, AMY, SPL 1 PTC, PC, CBLL (gracilys, vermis), IFG, FC, TC, PFC, PUT 1 STG 20 A1 9 AG, MTC, ITC, PCC 11 10 A1, A2 Ref 1 2 3 4 5 6 7 8 9 10 11 12 13 5 14 15 16 10 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Correlation 90 IFC, VMPFC, PCC, ITG, PHC, HC Meta- analysis (10 studies) A1, A2, PHC, MTG, MGB, IFG, PR, ACC, 44 MFG, IFG, AG, CLUS Electroencephalography or magnetoencephalography (oscillatory power or functional connectivity) BGC 10 10 (MH) and power of AC(θ), dacc(β), PHC (β) 45 10 62 PHC, AG, AC, SPFG, PHC for β and γ 46 27 21 sgacc, INS, PHC, PCC, PR, DLPFC for α 47 8 15 PHC (δ, θ), AC (δ,θ,α), INS (δ, θ), ACC (θ) 48 46 21 PHC, AC for γ 49 14 AC for γ 50 82 40 FPC (δ), PCC (β, γ), PHC (β, γ) 51 26 21 AC (θ,γ), AC (α) 52 53 59 ACC (β,γ), PHC (β), OFC, (δ,β,γ) DLPFC (δ,β,γ) 54 BGC and correlation 21 INS (α), sgacc (θ,α), dacc (β,γ), VMPFC/prACC (α) BGC and connectivity 55 84 sgacc (α,β), PHC (α,β); increased connectivity between 55 pracc sgacc dacc OFC VMPFC INS PHC for α 18 AC (γ), SMA (θ), dacc, (β) INS (β); increased 56 connectivity between AC INS DLPFC PHC for γ BGC, correlation and 36 36 OFC (β); PCC (β); increased connectivity between OFC 57 connectivity INS sgacc PHC AC for α WGC 26 dacc (α), pracc (β), AC (γ) 58 63 AC (δ,β)), PFC (δ), OFC (δ), ACC (θ) 59 34 AC (δ) 60 BGC, WGC and connectivity 85 DLFPC (α), sgacc (α), VMPFC (α); Default network 61 (α) 55 55 AUD (β,γ), sgacc (α,β), dacc (α,β), increased 62 connectivity between PCC AUD sgacc dacc PCC for (α,β) WGC and connectivity 9 AC (δ,γ), PCC (δ), DLPFC (α); increased connectivity AC 63 PCC (δ), decreased connectivity OFC PHC (γ), decreased connectivity AC PR (γ) 59 PC (γ), FC (γ), TC (γ), ACC (α); increased connectivity 64 DLPFC ACC for γ Correlation and connectivity 80 pgacc (δ,θ,β); decreased connectivity pgacc AC for β 65 136 - INS (α), pgacc (β), dacc (β); PHC (γ); AUD (β,γ); 66 increased connectivity PHC AC for θ Correlation 10 INS (δ,α,γ) 67 15 AC (β,γ) 68 Connectivity 317 256 increased connectivity sgacc PHC for α 69 28 increased connectivity AC PCC for δ and γ, increased 70 connectivity AC DLPFC for α 28 19 (HL) Increased connectivity AC global network for γ 71 *The auditory network was investigated in this study. The default- mode, dorsal attention and auditory networks were investigated in this study. Auditory, visual, somatosensory, dorsal attention, ventral attention and executive control networks were investigated in this study. The dorsal attention, ventral attention, cognition, auditory, visual, somatosensory and default- mode networks were investigated in this study. A1, primary auditory cortex; A2, secondary auditory cortex; AC, auditory cortex; ACC, anterior cingulate cortex; AG, angular gyrus; AMY, amygdala; ATR, left anterior thalamic radiations; BG, basal ganglia; BGC, between- group comparison; CAU, caudate; CC, cingulate cortex; CoC: corpus callosum; CER, cerebellum; CLUS: claustrum; CN, cochlear nucleus; CUN, cuneus; DMPFC, dorsal medial prefrontal cortex; DMPFC, dorsal medial prefrontal cortex; FC, frontal cortex; FEF, frontal eye fields; FUS, fusiform area; GP, globus pallidus; HA, individuals with hyperacusis; HIP, hippocampus; HL, individuals with hearing loss, but no tinnitus; IC, inferior colliculus; ICA, individual components analysis; IFG, inferior frontal gyrus; ILF, inferior longitudinal fasciculus; INS, insula; IPS, intraparietal sulcus; LG, lingual gyrus; MCC, medial cingulate cortex; MFG, middle frontal gyrus; MGB, medial geniculate body; MH, individuals with musical hallucinosis; MOG, middle occipital gyrus; MTG, medial temporal gyrus; OCL, occipital lobe; OFC, orbitofrontal cortex; PAR, parietal lobe; PC, parietal cortex; PCC, posterior cingulate cortex; PFC, prefrontal cortex; pgacc, pregenual anterior cingulate cortex; PHC, parahippocampus; PR, precuneus; PUT, putamen; rspcc, retrospinal posterior cingulate cortex; SFG, superior frontal gyrus; sgacc, subgenual anterior cingulate cortex; SLF, superior longitudinal fasciculus; SMA, supplementary motor area; SMC, sensorimotor cortex; SMG, supramarginal gyrus; SN, substantia nigra; SPL, superior parietal lobule; STEM, brainstem; STG, superior temporal gyrus; TC, temporal cortex; THA, thalamus; THDP, individuals with high- distress tinnitus; TLDP, individuals with low- distress tinnitus; TPC, temporal parietal cortex; TPJ, temporoparietal junction; TTG, transverse temporal gyrus; VC, visual cortex; VMPFC, ventral medial prefrontal cortex; WGC, within- group comparison; δ: delta frequency band, θ: theta frequency band, α: alpha frequency band, β: beta frequency band, γ: gamma frequency band 43

References 1. Schneider, P. et al. Reduced volume of Heschl's gyrus in tinnitus. Neuroimage 45, 927-39 (2009). 2. Landgrebe, M. et al. Structural brain changes in tinnitus: grey matter decrease in auditory and non- auditory brain areas. Neuroimage 46, 213-8 (2009). 3. Muhlau, M. et al. Structural brain changes in tinnitus. Cereb Cortex 16, 1283-8 (2006). 4. Leaver, A.M. et al. Dysregulation of limbic and auditory networks in tinnitus. Neuron 69, 33-43 (2011). 5. Husain, F.T. et al. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 1369, 74-88 (2011). 6. Mahoney, C.J. et al. Structural neuroanatomy of tinnitus and hyperacusis in semantic dementia. J Neurol Neurosurg Psychiatry 82, 1274-8 (2011). 7. Diesch, E. et al. Enhancement of steady- state auditory evoked magnetic fields in tinnitus. Eur J Neurosci 19, 1093-104 (2004). 8. Leaver, A.M. et al. Cortico- limbic morphology separates tinnitus from tinnitus distress. Front Syst Neurosci 6, 21 (2012). 9. Boyen, K., Langers, D.R., de Kleine, E. & van Dijk, P. Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res 295, 67-78 (2013). 10. Aldhafeeri, F.M., Mackenzie, I., Kay, T., Alghamdi, J. & Sluming, V. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging. Neuroradiology 54, 883-92 (2012). 11. Melcher, J.R., Knudson, I.M. & Levine, R.A. Subcallosal brain structure: correlation with hearing threshold at supra- clinical frequencies (>8 khz), but not with tinnitus. Hear Res 295, 79-86 (2013). 12. Schecklmann, M. et al. Auditory cortex is implicated in tinnitus distress: a voxel- based morphometry study. Brain Struct Funct 218, 1061-70 (2013). 13. Lehner, A. et al. Structural brain changes following left temporal low- frequency rtms in patients with subjective tinnitus. Neural Plast 2014, 132058 (2014). 14. Benson, R.R., Gattu, R. & Cacace, A.T. Left hemisphere fractional anisotropy increase in noise- induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain. Hear Res 309, 8-16 (2014). 15. Lee, Y.J. et al. Evaluation of white matter structures in patients with tinnitus using diffusion tensor imaging. J Clin Neurosci 14, 515-9 (2007). 16. Crippa, A., Lanting, C.P., van Dijk, P. & Roerdink, J.B. A diffusion tensor imaging study on the auditory system and tinnitus. Open Neuroimag J 4, 16-25 (2010). 17. Farhadi, M. et al. Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI. J Cereb Blood Flow Metab 30, 864-70 (2010). 18. Carpenter- Thompson, J.R., Akrofi, K., Schmidt, S.A., Dolcos, F. & Husain, F.T. Alterations of the emotional processing system may underlie preserved rapid reaction time in tinnitus. Brain Res 1567, 28-41 (2014). 19. Seydell- Greenwald, A. et al. Functional MRI evidence for a role of ventral prefrontal cortex in tinnitus. Brain Res 1485, 22-39 (2012). 20. Boyen, K., de Kleine, E., van Dijk, P. & Langers, D.R. Tinnitus- related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Hear Res 312, 48-59 (2014). 21. Smits, M. et al. Lateralization of functional magnetic resonance imaging (fmri) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology 49, 669-79 (2007). 22. Job, A. et al. Abnormal cortical sensorimotor activity during "Target" sound detection in subjects with acute acoustic trauma sequelae: an fmri study. Brain Behav 2, 187-99 (2012). 23. Golm, D., Schmidt- Samoa, C., Dechent, P. & Kroner- Herwig, B. Neural correlates of tinnitus related distress: an fmri- study. Hear Res 295, 87-99 (2013).

24. Chen, Y.C. et al. Aberrant spontaneous brain activity in chronic tinnitus patients revealed by resting- state functional MRI. Neuroimage Clin 6, 222-8 (2014). 25. Davies, J., Gander, P.E., Andrews, M. & Hall, D.A. Auditory network connectivity in tinnitus patients: a resting- state fmri study. Int J Audiol 53, 192-8 (2014). 26. Maudoux, A. et al. Auditory resting- state network connectivity in tinnitus: a functional MRI study. PLoS One 7, e36222 (2012). 27. Kim, J.Y. et al. Alteration of functional connectivity in tinnitus brain revealed by resting- state fmri? A pilot study. Int J Audiol 51, 413-7 (2012). 28. Maudoux, A. et al. Connectivity graph analysis of the auditory resting state network in tinnitus. Brain Res 1485, 10-21 (2012). 29. Schmidt, S.A., Akrofi, K., Carpenter- Thompson, J.R. & Husain, F.T. Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss. PLoS One 8, e76488 (2013). 30. Burton, H. et al. Altered networks in bothersome tinnitus: a functional connectivity study. BMC Neurosci 13, 3 (2012). 31. Wineland, A.M., Burton, H. & Piccirillo, J. Functional connectivity networks in nonbothersome tinnitus. Otolaryngol Head Neck Surg 147, 900-6 (2012). 32. Arnold, W., Bartenstein, P., Oestreicher, E., Romer, W. & Schwaiger, M. Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: a PET study with [18F]deoxyglucose. ORL J Otorhinolaryngol Relat Spec 58, 195-9 (1996). 33. Giraud, A.L. et al. A selective imaging of tinnitus. Neuroreport 10, 1-5 (1999). 34. Geven, L.I., de Kleine, E., Willemsen, A.T. & van Dijk, P. Asymmetry in primary auditory cortex activity in tinnitus patients and controls. Neuroscience 256, 117-25 (2014). 35. Lockwood, A.H. et al. The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 50, 114-20 (1998). 36. Lockwood, A.H. et al. The functional anatomy of gaze- evoked tinnitus and sustained lateral gaze. Neurology 56, 472-80 (2001). 37. Mirz, F., Gjedde, A., Ishizu, K. & Pedersen, C.B. Cortical networks subserving the perception of tinnitus- - a PET study. Acta Otolaryngol Suppl 543, 241-3 (2000). 38. Andersson, G. et al. Regional cerebral blood flow during tinnitus: a PET case study with lidocaine and auditory stimulation. Acta Otolaryngol 120, 967-72 (2000). 39. Langguth, B. et al. Neuronavigated rtms in a patient with chronic tinnitus. Effects of 4 weeks treatment. Neuroreport 14, 977-80 (2003). 40. Langguth, B. et al. The impact of auditory cortex activity on characterizing and treating patients with chronic tinnitus- - first results from a PET study. Acta Otolaryngol Suppl, 84-8 (2006). 41. Plewnia, C. et al. Dose- dependent attenuation of auditory phantom perception (tinnitus) by PET- guided repetitive transcranial magnetic stimulation. Hum Brain Mapp 28, 238-46 (2007). 42. Wang, H. et al. Regional glucose metabolic increases in left auditory cortex in tinnitus patients: a preliminary study with positron emission tomography. Chin Med J (Engl) 114, 848-51 (2001). 43. Schecklmann, M. et al. Neural correlates of tinnitus duration and distress: a positron emission tomography study. Hum Brain Mapp 34, 233-40 (2013). 44. Song, J.J., De Ridder, D., Van de Heyning, P. & Vanneste, S. Mapping tinnitus- related brain activation: an activation- likelihood estimation metaanalysis of PET studies. J Nucl Med 53, 1550-7 (2012). 45. Vanneste, S., Song, J.J. & De Ridder, D. Tinnitus and musical hallucinosis: the same but more. Neuroimage 82, 373-83 (2013). 46. Vanneste, S., Plazier, M., van der Loo, E., Van de Heyning, P. & De Ridder, D. The difference between uni- and bilateral auditory phantom percept. Clin Neurophysiol 122, 578-87 (2011).

47. Vanneste, S. et al. The neural correlates of tinnitus- related distress. Neuroimage 52, 470-80 (2010). 48. Moazami- Goudarzi, M., Michels, L., Weisz, N. & Jeanmonod, D. Temporo- insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients. BMC Neurosci 11, 40 (2010). 49. Vanneste, S., Heyning, P.V. & Ridder, D.D. Contralateral parahippocampal gamma- band activity determines noise- like tinnitus laterality: a region of interest analysis. Neuroscience 199, 481-90 (2011). 50. Ortmann, M., Muller, N., Schlee, W. & Weisz, N. Rapid increases of gamma power in the auditory cortex following noise trauma in humans. Eur J Neurosci 33, 568-75 (2011). 51. Vanneste, S., Plazier, M., van der Loo, E., Van de Heyning, P. & De Ridder, D. The differences in brain activity between narrow band noise and pure tone tinnitus. PLoS One 5, e13618 (2010). 52. Weisz, N. et al. The neural code of auditory phantom perception. J Neurosci 27, 1479-84 (2007). 53. Song, J.J., Vanneste, S., Schlee, W., Van de Heyning, P. & De Ridder, D. Onset- related differences in neural substrates of tinnitus- related distress: the anterior cingulate cortex in late- onset tinnitus, and the frontal cortex in early- onset tinnitus. Brain Struct Funct (2013). 54. Vanneste, S. & De Ridder, D. Brain areas controlling heart rate variability in tinnitus and tinnitus- related distress. PLoS One 8, e59728 (2013). 55. De Ridder, D., Vanneste, S. & Congedo, M. The distressed brain: a group blind source separation analysis on tinnitus. PLoS One 6, e24273 (2011). 56. Vanneste, S., van de Heyning, P. & De Ridder, D. The neural network of phantom sound changes over time: a comparison between recent- onset and chronic tinnitus patients. Eur J Neurosci 34, 718-31 (2011). 57. Vanneste, S., Joos, K. & De Ridder, D. Prefrontal cortex based sex differences in tinnitus perception: same tinnitus intensity, same tinnitus distress, different mood. PLoS One 7, e31182 (2012). 58. Vanneste, S. et al. Does enriched acoustic environment in humans abolish chronic tinnitus clinically and electrophysiologically? A double blind placebo controlled study. Hear Res 296, 141-8 (2013). 59. Tass, P.A., Adamchic, I., Freund, H.J., von Stackelberg, T. & Hauptmann, C. Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci 30, 137-59 (2012). 60. Kahlbrock, N. & Weisz, N. Transient reduction of tinnitus intensity is marked by concomitant reductions of delta band power. BMC Biol 6, 4 (2008). 61. Vanneste, S., Joos, K., Langguth, B., To, W.T. & De Ridder, D. Neuronal correlates of maladaptive coping: an EEG- study in tinnitus patients. PLoS One 9, e88253 (2014). 62. Vanneste, S. & De Ridder, D. Distress state dependent seed based functional connectivity on resting state EEG in tinnitus. Brain Connect (2015). 63. Song, J.J., Punte, A.K., De Ridder, D., Vanneste, S. & Van de Heyning, P. Neural substrates predicting improvement of tinnitus after cochlear implantation in patients with single- sided deafness. Hear Res 299, 1-9 (2013). 64. Adamchic, I., Hauptmann, C. & Tass, P.A. Changes of oscillatory activity in pitch processing network and related tinnitus relief induced by acoustic CR neuromodulation. Front Syst Neurosci 6, 18 (2012). 65. Song, J.J., Vanneste, S. & De Ridder, D. Dysfunctional Noise Cancelling of the Rostral Anterior Cingulate Cortex in Tinnitus Patients. PLoS One 10, e0123538 (2015). 66. De Ridder, D., Congedo, M. & Vanneste, S. The neural correlates of subjectively perceived and passively matched loudness perception in auditory phantom perception. Brain Behav, e00331 (2015).

67. van der Loo, E., Congedo, M., Vanneste, S., Van De Heyning, P. & De Ridder, D. Insular lateralization in tinnitus distress. Auton Neurosci 165, 191-4 (2011). 68. van der Loo, E. et al. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS One 4, e7396 (2009). 69. Vanneste, S., Congedo, M. & De Ridder, D. Pinpointing a Highly Specific Pathological Functional Connection That Turns Phantom Sound into Distress. Cereb Cortex (2013). 70. Silchenko, A.N., Adamchic, I., Hauptmann, C. & Tass, P.A. Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound. Neuroimage 77, 133-47 (2013). 71. Zobay, O., Palmer, A.R., Hall, D.A., Sereda, M. & Adjamian, P. Source space estimation of oscillatory power and brain connectivity in tinnitus. PLoS One 10, e0120123 (2015).