High Dynamic Range Master Class

Similar documents
High Dynamic Range Master Class. Matthew Goldman Senior Vice President Technology, TV & Media Ericsson

UHD 4K Transmissions on the EBU Network

HDR and WCG Video Broadcasting Considerations. By Mohieddin Moradi November 18-19, 2018

UHD + HDR SFO Mark Gregotski, Director LHG

New Standards That Will Make a Difference: HDR & All-IP. Matthew Goldman SVP Technology MediaKind (formerly Ericsson Media Solutions)

4K UHDTV: What s Real for 2014 and Where Will We Be by 2016? Matthew Goldman Senior Vice President TV Compression Technology Ericsson

HDR Demystified. UHDTV Capabilities. EMERGING UHDTV SYSTEMS By Tom Schulte, with Joel Barsotti

UHD & HDR Overview for SMPTE Montreal

Panasonic proposed Studio system SDR / HDR Hybrid Operation Ver. 1.3c

Ultra HD Forum State of the UHD Union. Benjamin Schwarz Ultra HD Forum Communications Chair November 2017

REAL-WORLD LIVE 4K ULTRA HD BROADCASTING WITH HIGH DYNAMIC RANGE

Understanding ultra high definition television

UHD FOR BROADCAST AND THE DVB ULTRA HD-1 PHASE 2 STANDARD

High Dynamic Range What does it mean for broadcasters? David Wood Consultant, EBU Technology and Innovation

High Dynamic Range Television (HDR-TV) Mohammad Ghanbari LFIEE December 12-13, 2017

Efficiently distribute live HDR/WCG contents By Julien Le Tanou and Michael Ropert (November 2018)

TR 038 SUBJECTIVE EVALUATION OF HYBRID LOG GAMMA (HLG) FOR HDR AND SDR DISTRIBUTION

Revised for July Grading HDR material in Nucoda 2 Some things to remember about mastering material for HDR 2

Improving Quality of Video Networking

Wide Color Gamut SET EXPO 2016

An Overview of the Hybrid Log-Gamma HDR System

DELIVERY OF HIGH DYNAMIC RANGE VIDEO USING EXISTING BROADCAST INFRASTRUCTURE

High Efficiency Video coding Master Class. Matthew Goldman Senior Vice President TV Compression Technology Ericsson

Quick Reference HDR Glossary

UHD Features and Tests

Alphabet Soup. What we know about UHD interoperability from plugfests. Ian Nock Fairmile West Consulting

HDR A Guide to High Dynamic Range Operation for Live Broadcast Applications Klaus Weber, Principal Camera Solutions & Technology, April 2018

DVB-UHD in TS

Is it 4K? Is it 4k? UHD-1 is 3840 x 2160 UHD-2 is 7680 x 4320 and is sometimes called 8k

MANAGING HDR CONTENT PRODUCTION AND DISPLAY DEVICE CAPABILITIES

pdf Why CbCr?

HDR Overview 4/6/2017

TECHNICAL SUPPLEMENT FOR THE DELIVERY OF PROGRAMMES WITH HIGH DYNAMIC RANGE

The Current State of UHD HDR

HDR & WIDE COLOR GAMUT

Test of HDMI in 4k/UHD Consumer Devices. Presented by Edmund Yen

HDR Seminar v23 (Live Presentation) 4/6/2016

HIGH DYNAMIC RANGE SUBJECTIVE TESTING

Technology Day Italy. 4K Broadcast Chain. David A. Smith February 2017

An Introduction to Dolby Vision

SMPTE Education Webcast Series Sponsors. Thank you to our sponsors for their generous support:

Ultra HD Forum Draft: Ultra HD Forum Phase B Guidelines

SpectraCal C6-HDR Technical Paper

ATSC Standard: Video HEVC

supermhl Specification: Experience Beyond Resolution

HLG Look-Up Table Licensing

ATSC Candidate Standard: A/341 Amendment SL-HDR1

HDR A Guide to High Dynamic Range Operation for Live Broadcast Applications Klaus Weber, Principal Camera Solutions & Technology, December 2018

quantumdata 980 Series Test Systems Overview of UHD and HDR Support

HDR Reference White. VideoQ Proposal. October What is the problem & the opportunity?

Luma Adjustment for High Dynamic Range Video

ATSC Standard: Video HEVC With Amendments No. 1, 2, 3

Visual Color Difference Evaluation of Standard Color Pixel Representations for High Dynamic Range Video Compression

UHD HDR Resource Kit

DECIDING TOMORROW'S TELEVISION PARAMETERS:

ATSC Proposed Standard: A/341 Amendment SL-HDR1

Frame Compatible Formats for 3D Video Distribution

New Technologies for Premium Events Contribution over High-capacity IP Networks. By Gunnar Nessa, Appear TV December 13, 2017

MOVIELABS/DOLBY MEETING JUNE 19, 2013

High Dynamic Range Content in ISDB-Tb System. Diego A. Pajuelo Castro Paulo E. R. Cardoso Raphael O. Barbieri Yuzo Iano

By David Acker, Broadcast Pix Hardware Engineering Vice President, and SMPTE Fellow Bob Lamm, Broadcast Pix Product Specialist

Standards, HDR, and Colorspace. Alan C. Brawn Principal, Brawn Consulting

ATSC 3.0 Next Gen TV ADVANCED TELEVISION SYSTEMS COMMITTEE 1

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS Infrastructure of audiovisual services Coding of moving video

High dynamic range television for production and international programme exchange

Ultra HD Forum Introduction

HEVC: Future Video Encoding Landscape

Improved High Dynamic Range Video Coding with a Nonlinearity based on Natural Image Statistics

Rec. ITU-R BT RECOMMENDATION ITU-R BT PARAMETER VALUES FOR THE HDTV STANDARDS FOR PRODUCTION AND INTERNATIONAL PROGRAMME EXCHANGE

one century of international standards

Agenda minutes each

HDR and Its Impact on Workflow. How to integrate the benefits of High Dynamic Range into existing video production and distribution.

IP, 4K/UHD & HDR test & measurement challenges explained. Phillip Adams, Managing Director

DCI Requirements Image - Dynamics

A Color Gamut Mapping Scheme for Backward Compatible UHD Video Distribution

Smart TV with Bixby Voice Universal Browse Connect & Share Samsung OneRemote 3

UHD Worldwide Service Deployment Update. Thierry Fautier Ultra HD Forum President VP Video Strategy, Harmonic April 18

THE current broadcast television systems still works on

High Quality HDR Video Compression using HEVC Main 10 Profile

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Test Equipment Depot Washington Street Melrose, MA TestEquipmentDepot.com

quantumdata TM G Video Generator Module for HDMI Testing Functional and Compliance Testing up to 600MHz

MPEG + Compression of Moving Pictures for Digital Cinema Using the MPEG-2 Toolkit. A Digital Cinema Accelerator

Real-time HDR/WCG Conversion with Colorfront Engine Video Processing

High dynamic range television for production and international programme exchange

TECH 3320 USER REQUIREMENTS FOR VIDEO MONITORS IN TELEVISION PRODUCTION

Boundless 360 Design Bezel Color: Carbon Silver Stand Color: Carbon Silver Bezel-free Design

Boundless 360 Design Bezel Color: Carbon Silver Stand Color: Carbon Silver Bezel-free Design

What is the history and background of the auto cal feature?

Video System Characteristics of AVC in the ATSC Digital Television System

Operational practices in HDR television production

Beyond the Resolution: How to Achieve 4K Standards

HEVC/H.265 CODEC SYSTEM AND TRANSMISSION EXPERIMENTS AIMED AT 8K BROADCASTING

Smart TV with Bixby Voice Universal Browse Connect & Share Samsung OneRemote 3

Digital Video Subcommittee SCTE STANDARD SCTE HEVC Video Constraints for Cable Television Part 2- Transport

AMIRA & ALEXA Mini Color by Numbers

RELEASE V1.0 dated White Paper Software-Based Encoding

HEVC, the key to delivering an enhanced television viewing experience Beyond HD

Today s Speaker. SMPTE Standards Update: 3G SDI Standards. Copyright 2013 SMPTE. All rights reserved. 1

decodes it along with the normal intensity signal, to determine how to modulate the three colour beams.

Transcription:

High Dynamic Range Master Class Matthew Goldman Senior Vice President Technology, TV & Media Ericsson & Executive Vice President, Society of Motion Picture & Television Engineers

Do we see or do we make? Ericsson 2016 2016-08-31 Page 2

try this Are these cubes A) All straight B) Some curved or C) All curved? Let s find out. Ericsson 2016 2016-08-31 Page 3

What color are the tiles? Ericsson 2016 2016-08-31 Page 4

Surprised? We make color we don t see color Ericsson 2016 2016-08-31 Page 5

we make images we do not see them like a camera UHDTV discussions often don t consider the human visual system (HVS) The eye is relatively low resolution, so the HVS builds detail over time via saccadic motion and eye tracking and using contrast and color, combining input data with internal reference models based on memory This is not at all how cameras work Ericsson 2016 2016-08-31 Page 6

Recap: 5 Ultra-HD Immersive Viewing Image Technologies SD HD 1920x1080 4K UHD 3840x2160 8K UHD 7680x4320 Image Resolution Wide Color Gamut 8b = Visible Banding 10-bit Sampling High Dynamic Range High Frame Rate Ericsson 2016 2016-08-31 Page 7

Visual perception - Resolution 1 arc minute* *limit of Fovea Centralis 0.5 arc minute Ericsson 2016 2016-08-31 Page 8

Proper Viewing Distance to See Spatial Resolution Proper Viewing Distance (D) HD (1080p) ~= 3H 4K UHD (2160p) ~= 1.5H H 1 arc minute HDTV field-of-view ~30 4K UHDTV field-of-view ~60 x x D = (W/2)/tan(x) D Screen size = (H 2 +W 2 ) W H Ericsson 2016 2016-08-31 Page 9

Screen Size vs. Viewing Distance (2160p) Source: http://www.rtings.com/info/4k-ultra-hd-uhd-vs-1080p-full-hd-tvs Ericsson 2016 2016-08-31 Page 10

High Dynamic Range (HDR) HDR immersion not limited to strict viewing distance Benefits large screens (including HD) and tablets and phones From transmit side, HDR is potentially more economically viable to deploy than 4K UHDTV Once you have seen HDR, you realize how much better than current TV it is Cameras can capture HDR now, but we can t see it at home Pictures are richer, more lifelike and sharper with HDR. Seeing is believing. Ericsson 2016 2016-08-31 Page 11

HDR and perceived resolution Low contrast image looks softer as some detail is harder to see More dynamic range can reveal more detail especially edges and looks sharper (although the pixel resolution is the same) Which image has higher resolution? Ericsson 2016 2016-08-31 Page 12

HDR and perceived resolution Low contrast image looks softer as some detail is harder to see More dynamic range can reveal more detail especially edges and looks sharper (although the pixel resolution is the same) Ericsson 2016 2016-08-31 Page 13

Contrast effects on resolution Snellen chart: Impact of size/distance on resolution Pelli-Robson chart: Impact of contrast on resolution Ericsson 2016 2016-08-31 Page 14

This is (simplistically) how it works SD/HD/4K TV Today: Low dynamic range means subtle contrast differences in the original content (and which many cameras can capture) are not maintained detail is missing. HDR TV: High dynamic range means subtle contrast differences in the original content can be captured and transmitted to the consumers, revealing previously hidden detail. Ericsson 2016 2016-08-31 Page 15

Dynamic range and the HVS Light Grey Dark Grey Ericsson 2016 2016-08-31 Page 16

Dynamic range and the HVS Light Grey? Dark Grey? Ericsson 2016 2016-08-31 Page 17

Another example Is A or B lighter? 30 fps 8 bit sample depth 50//60, 100/120 fps 10/12 bit sample depth Ericsson 2016 2016-08-31 Page 18

Another example They are the same 30 fps 8 bit sample depth 50//60, 100/120 fps 10/12 bit sample depth Ericsson 2016 2016-08-31 Page 19

HDR+ for any image resolution 8b = Visible Banding High Dynamic Range 10-bit Sampling The combination of HDR, WCG and higher sample precision technologies acts as a single feature! Whether Wide Color Gamut 3840 x 2160p 1920 x 1080p or Ericsson 2016 2016-08-31 Page 20

Luminous Intensity Candela per square meter (cd/m 2 ) or nit Cinema today: 48 cd/m 2 In dark viewing environment Reference white for TV production: 100 cd/m 2 Rec. ITU-R BT.1886 Based on 1930s CRT! Typical LCD TV today (standard dynamic range, SDR): 300-400 cd/m 2 HDR TVs, now to future: 1,000 to 4,000 cd/m 2 Ericsson 2016 2016-08-31 Page 21

Comparing SDR to HDR Standard Dynamic Range, Lowlight Exposure Standard Dynamic Range, Highlight Exposure High Dynamic Range, (simulated by tone mapping) Images source: K. McCoy. Licensed under CC BY-SA 3.0 via Wikimedia Commons Ericsson 2016 2016-08-31 Page 22

HDR is not about brighter display! SDR: Video generally 1.25x; Cinema generally 2.7x HDR: May be up to 100x Source: Report ITU-R BT.2390 Ericsson 2016 2016-08-31 Page 23

HDR: Specular light Impact Images courtesy of Dolby Laboratories Ericsson 2016 2016-08-31 Page 24 Ericsson 2016 2016-08-31 Page 24

Human Visual System Capability TV today Digital Cinema Television: 100 cd/m 2 peak white (Rec. ITU-R BT.1886) Based on 1930s CRT Cinema: 48 cd/m 2 peak white in dark viewing environment 10-8 10-4 10-2 10 0 10 2 10 4 10 6 10 8 Light Level cd/m2 (nit) 10-6 Simultaneous dynamic range Ericsson 2016 2016-08-31 Page 25

Human Visual System Capability TV today Digital Cinema HDR TV Television: 100 cd/m 2 peak white (Rec. ITU-R BT.1886) Based on 1930s CRT Cinema: 48 cd/m 2 peak white in dark viewing environment 4Q15: 1000-1200 cd/m 2 Future: Likely much higher 10-8 10-4 10-2 10 0 10 2 10 4 10 6 10 8 Light Level cd/m2 (nit) 10-6 Simultaneous dynamic range Ericsson 2016 2016-08-31 Page 26

Wide Color Gamut (WCG) Capture more of reality richer colors Outer triangle: UHDTV primaries Rec. ITU-R BT.2020 Inner triangle: HDTV primaries Rec. ITU-R BT.709 Ericsson 2016 2016-08-31 Page 27 Source: Report ITU-R BT.2246

WCG & HDR are closely linked Outer triangle: UHDTV primaries Rec. ITU-R BT.2020 Inner triangle: HDTV primaries Rec. ITU-R BT.709 BT.2020 + Z Y Z Ericsson 2016 2016-08-31 Page 28 X Y BT.709 + Z X

Visual Quality: sample Bit depth Today, all direct-to-consumer digital TV uses 8-bit sampling Banding (posterization) with 8b, especially in plain areas Sky, backgrounds, graphics, logo Very noticeable with slow changes, such as fades Significantly improved PQ with 10-bit sample bit depth No bandwidth cost in the compressed domain HEVC Main-10 Profile allows 8-bit or 10-bit operation HDR and WCG exacerbates issues with 8-bit sampling Ericsson 2016 2016-08-31 Page 29 Visible banding 8-bit 10-bit

Television = tele + vision From camera to display To see what s happening from a far distance, the scene needs to be captured, transmitted to a remote location, then reconstituted Cameras convert scene light to an electrical signal, suitable of being transmitted over long distances, using an opto-electronic transfer function (OETF) Display convert an electrical signal back to scene light using an electro-optical transfer function (EOTF) For over 60 years, the cathode ray tube (CRT) was the universal display technology used The response of a CRT to an input signal is not linear and its EOTF is commonly known as gamma L = V γ where γ = 2.35 for HDTV (ITU-R BT.709) Scene Capture Ericsson 2016 2016-08-31 Page 30 OETF Transmission Medium EOTF Scene Display

Sample Bit Depth Step size / Luminance (dl/l) is the measure of visibility Levels below the Barten s contrast sensitivity function (dashed curve) are masked from the HVS Mapping signal levels to display luminance (EOTF) is known as the gamma curve (a straight line in log space) 8-bit gamma-coded has large, visible steps across the range 10-bit gamma-coded reduces this dramatically Ericsson 2016 2016-08-31 Page 31

Recent / on-going Standards SMPTE ST 2084:2014 High Dynamic Range Electro-Optical Transfer Function of Mastering Reference Displays Defines display referred curve with absolute luminance values based on human visual model Called Perceptual Quantizer (PQ) ST 2086:2014 Mastering Display Color Volume Metadata Supporting High Luminance and Wide Color Gamut Images Specifies mastering display primaries, white point, and min/max luminance Draft ST 2094-x Content-Dependent Metadata for Color Volume Transformation of High Luminance and Wide Color Gamut Images Specifies dynamic metadata used in the color volume transformation of source content mastered with HDR and/or WCG imagery, when such content is rendered for presentation on a display having a smaller color volume New project: HDR & WCG Signaling on Streaming Interfaces To define a signaling representation & carriage mechanism for real-time interfaces to identify HDR and WCG content so that it is properly processed in a production facility as well as correctly displayed in professional reference displays using SMPTE interface standards Ericsson 2016 2016-08-31 Page 32

Recent / on-going Standards ITU-R WP6C Rec. ITU-R BT.2100 Parameter values for high dynamic range television systems for production & international programme exchange Report ITU-R BT.2390 High dynamic range television for production and international programme exchange (companion report to BT.2100) Interim Report from RG-24 HDR-TV HDR signalling requirements for programme production and international exchange arising from Recommendation ITU-R BT.2100 Possibly modify Rec. ITU-R BT.1120-8 Digital interfaces for HDTV studio signals, and Rec. ITU-R BT.2077-1 Real-time serial digital interfaces for UHDTV signals Transfer function signaling could enable auto-selection of appropriate EOTF by a display: BT.1886 EOTF if the SDR-TV (i.e., BT.709 HD or BT.2020 UHD) flag is received BT.2100 PQ EOTF if the PQ flag is received BT.2100 HLG EOTF if the HLG flag is received Ericsson 2016 2016-08-31 Page 33

HDR Transfer functions Production reference for CRT peak white level is 100 nits Now referred to as standard dynamic range (SDR) SDR camera OETF comes from a desire to simplify analog TV electronics Inverse of CRT gamma (EOTF) Rec. ITU-R BT.2100 defines 2 HDR transfer functions: SMPTE ST 2084 Perceptual Quantization (PQ) EOTF Hybrid Log Gamma (HLG) OETF (originally from BBC/NHK) Pros & Cons for each Consequences for the production chain 10-bit levels over wider range Ericsson 2016 2016-08-31 Page 34

Perceptual Quantization (PQ) EOTF (SMPTE ST 2084) F Y D EOTF E max c 1 m 1 m1 2 E c,0 2 c 3 10000 Y E 1 1 m 2 Ericsson 2016 2016-08-31 Page 35 Where: E denotes a nonlinear color value {R, G, B } or { L, M, S } in PQ space [0,1] F D is the luminance of a displayed linear component {R D, G D, B D } or Y D or I D, in cd/m 2 Y denotes the normalized linear color value, in the range [0:1] So that when R =G =B, the displayed pixel is achromatic m 1 = 261016384 =0.1593017578125 m 2 = 25234096 128=78.84375 c 1 = 34244096=0.8359375=c3-c2+1 c 2 = 24134096 32=18.8515625 c 3 = 23924096 32=18.6875

Hybrid Log Gamma (HLG) OETF E OETF E a ln E 2 E b c 0 E 1 1 E Where: E is the signal for each colour component {Rs, Gs, Bs} proportional to scene linear light and scaled by camera exposure, normalized to the range [0:12] E is the resulting non-linear signal {R, G, B } in the range [0:1] a = 0.17883277, b = 0.28466892, c = 0.55991073 Source: Report ITU-R BT.2390 Ericsson 2016 2016-08-31 Page 36

Both End-to-End HDR Systems Rec. ITU-R BT.2100 Parameter values for high dynamic range television systems for production & international programme exchange Common reference opto-optical transfer function (OOTF); compensates for non-linearity between displayed light and the light captured by the camera End-to-end HDR systems, both identical in mastering environment SMPTE ST 2084 PQ EOTF HLG OETF Ericsson 2016 2016-08-31 Page 37 Source: BBC Research & Development

Live Broadcast Chain SDR Scene Acquisition Compression & Transmission Display OETF EOTF ITU-R BT.709 ITU-R BT.1886 (peak white 100 nits) Ericsson 2016 2016-08-31 Page 38

Live Broadcast Chain HDR+ Scene Acquisition Compression & Transmission Display??? High Dynamic Range Content >16 f-stops High Dynamic Range Display Ericsson 2016 2016-08-31 Page 39

HDR+: the wider ecosystem Camera sensor OETF & Map to Color Space Compress content exchange) Professional Decode Graphics & Production Compress (DTH) Full Size & Ad Insert Consumer Decode STB Graphics Overlay EOTF, Remap & Display Downconverted Ericsson 2016 2016-08-31 Page 40

SDR Production Today Video Racking CCU ctrl Video CCU ctrl Racking Video Router Vision Mixer (Switcher) Video To Studio Other sources Graphics Ericsson 2016 2016-08-31 Page 41

HDR Production The reference monitor dilemma HDR Reference Monitors today do not have a standard So we can either: Define the standard (as with SDR TV today), or Signal what was used The choice affects interoperability of content Ericsson 2016 2016-08-31 Page 42

Joint HDR/SDR Production HDR HDR to SDR Conversion SDR These all need to have matched levels... or you can never create the SDR version Ericsson 2016 2016-08-31 Page 43

Backward compatibility checklist 1. What exactly is meant by backward compatibility? 2. Which technologies are we trying to address? 1. Dynamic range 2. Color gamut / Color space 3. Sample bit depth 4. Spatial resolution 5. Temporal resolution 6. Video coding standard for delivery-to-consumer (DTH) 3. What is good enough picture quality? 1. For legacy, conventional HD service 2. For new Ultra HD service (1080p or 2160p HDR+) 4. What new costs will backward compatibility create? 1. In production 2. In post-production 3. In distribution 4. In delivery to consumer Ericsson 2016 2016-08-31 Page 44 Before we all sign up to a backward compatibility scheme, have we really understood what will happen at each stage of the content chain?

HDR+ backward compatibility Q1: Are we trying to make an HDR signal that also can be viewed on any conventional SDR TV/display? (stream backward compatibility) Or Q2: Are we trying to make a signal that can be converted by an intermediate step to be shown on any conventional SDR TV/display? (display backward compatibility) Or Q3: Are we planning to simulcast, as we do today with HD/SD, and are planning to do with UHD/HD? Ericsson 2016 2016-08-31 Page 45 Historical note: Prior to HD being launched, backward compatibility was a big concern after in-depth review, not so much

Backward Compatibility Options? We could Create a signal that works with existing HD/UHD STBs/DTVs But then we re restricted to 8-bit AVC 1080i Create a signal that decodes with a new STB but looks okay on an SDR TV Create a signal that is optimal for HDR (1080p or 2160p) And then either: Use the existing transmission for SDR, or Convert in new STBs Ericsson 2016 2016-08-31 Page 46

What About Legacy HD Services? Existing HD SDR TV services will remain Large populations of SDR-only or AVC-only STBs/DTVs What does this mean? Cost-effectively producing both HDR and SDR means one production chain HDR must be suitable for deriving SDR SDR HD transmission will remain and so is available for use by SDR-only UHDTVs SDR HD transmission will remain unless there is an effective way to do backward compatibility with a single service that does not compromise either the new HDR image or the legacy SDR image Ericsson 2016 2016-08-31 Page 47

Backward Compatibility to legacy HD Dynamic range: ITU-R BT.2100 (PQ or HLG) BT.709/BT.1886 (Gamma) Color space: ITU-R BT.2020 BT.709 Sample bit depth: 10b 8b (for delivery-to-consumers) Spatial resolution: 3840x2160 1920x1080 or 1280x720 (as applicable) Temporal resolution: 50-60 fps progressive 25-30 fps interlaced Video coding standard: HEVC to AVC or MPEG-2 (for delivery-to-consumers) With broadcast quality images in both HDR and SDR formats For legacy conventional HD service For new Ultra HD service (1080p or 2160p HDR+) Simulcast required unless all of these conditions are met* Ericsson 2016 2016-08-31 Page 48 *Note: the above still excludes modulation, transport, and audio BC!

HDR+ Approaches: PQ10 -based SMPTE ST 2084 PQ HDR + Rec. ITU-R BT.2020 color One of two HDR+ formats defined in new Rec. ITU-R BT.2100 Image parameter values for high dynamic range television for use in production and international programme exchange Single layer baseline is non backwards compatible HDR10 = PQ10 + reference display metadata Metadata = SMPTE ST 2086 HDR static metadata + MaxCLL + MaxFALL Specified by Blu-ray Disc Association, DECE, CTA, UHD Alliance for pre-produced content Uses HEVC Color Remapping Information SEI message Ericsson 2016 2016-08-31 Page 49

So Called HDR10 media profile BDA: Ultra HD Blu-ray Video Characteristics Ericsson 2016 2016-08-31 Page 50

HDR+ Approaches: PQ10 -based (2) Backwards compatibility possible by using proprietary add-on schemes involving dual layers or single layer + HDR enhancement metadata Some examples Dolby Vision: Dual layer, HDR baseline + SDR reconstruction enhancement layer Dolby Vision Live: Single layer, HDR baseline + optional Display Adaptation metadata (SMPTE ST 2094-1 & 2094-10 HDR dynamic metadata) Also optional ICtCp color space + optional closed-loop Re-shaper Technicolor SL-HDR1 (formerly Prime ): Single layer, SDR baseline + HDR Reconstruction metadata (SMPTE ST 2094-1 & 2094-30 HDR dynamic metadata) Qualcomm: HDR10 + Dynamic Range Adjustment metadata Ericsson 2016 2016-08-31 Page 51

HDR+ Approaches: HLG10 -based Hybrid-Log Gamma (HLG) HDR + Rec. ITU-R BT.2020 color One of two HDR+ formats defined in new Rec. ITU-R BT.2100 Image parameter values for high dynamic range television for use in production and international programme exchange Single layer with no metadata Backwards compatible for Live TV (if BT.2020 color space container maintained) Possibly backward compatible to HD (BT.709) color space with tone mapping algorithm But some in industry do not believe doing BC this way is necessary for 4K (very limited in-field) Instead, plan to simulcast conventional HD SDR with 4K HDR+ Ericsson 2016 2016-08-31 Page 52

HDR+ for On-Demand Assets Fewer constraints than live production Post-production can produce for just that specific content Knows about pictures in the future A much more controlled environment Could exist in multiple formats if needed Although more economical if there is only 1 format for all Ericsson 2016 2016-08-31 Page 53

Live TV challenges Live TV ecosystems have special needs To get on-air in early adoption (2017-2019?), must keep the solution simple and forgiving, to work as best as possible with existing live workflows Some proposed HDR schemes require metadata or dual layer streams This information may get dropped until the HDR Live TV ecosystem matures (islands of implementations always occur in technology displacements) For early Live TV workflows, use HDR schemes that do not require metadata or dual layers so that if lost/missing/not produced, renderer is still able to produce broadcast quality HDR images Bread & butter will be conventional HD for a long time Simulcast likely required in early deployments Ericsson 2016 2016-08-31 Page 54

Live TV Content delivery is not like on-demand, blu-ray, or cinema An impressive swim from wake RWT Live Jean Wake Split Time 1:22:12 Several HDR+ schemes had been proposed, based on discussions with Hollywood studios / Blu-ray Disc Association / display manufacturers. None of whom, however, produce Live TV programming! Ericsson 2016 2016-08-31 Page 55

Live TV Content production Jean Wake Split Time 1:22:12 This is the basic picture Now in real time we are adding lower thirds Ericsson 2016 2016-08-31 Page 56

Live TV Content production An impressive swim from wake RWT Live Jean Wake Split Time 1:22:12 Jean Wake Split Time 1:22:12 Adding transitions and logos, freeze frames, slow motion, repositioning, etc. Adding logos and captioning downstream Ericsson 2016 2016-08-31 Page 57

Live TV Content delivery This content often needs further downstream image manipulation (mixing, wipes, fades, keying, graphics) Logo replacement Up Next Squeeze & Tease Down-conversion Format conversion Ericsson 2016 2016-08-31 Page 58

Just insert at the final encode In Live TV, what/where is the final encoder? Use Case 1 Broadcast Network/Source Use Case 2 Broadcast Network/Source Broadcast Affiliate/Remote Use Case 3 Broadcast Network/Source Broadcast Affiliate/Remote Subsequent Broadcaster (e.g., international distribution*) Ericsson 2016 2016-08-31 Page 59 *or MVPD (Cable or Satellite Provider ) in some regions

Dual-layer & HDR Enhancement metadata operational problems Dual layer and single layer + HDR enhancement metadata are difficult to apply to Live TV workflows If there are dual-layers or enhancement metadata that need to be reconstituted into a single stream to be processed and re-encoded, then how do I do the following?: Transition between two sources, for example in a live studio program? Apply effects (which layer am I applying them to?) Add graphics (which layer am I applying them to?) Format or standards convert (which layer am I converting and how?) Add logos or closed captions Cut between programs and adverts Ericsson 2016 2016-08-31 Page 60

Video Loudness! Remember audio loudness issues? Ericsson 2016 2016-08-31 Page 61

Video Loudness! Advertisers may use the opportunity to grab attention by introducing huge steps in light levels Ericsson 2016 2016-08-31 Page 62

Bandwidth impacts Uncompressed Compressed (consumer-grade) 4K (2160p) vs. 1080i HD 400% circa 250% HDR+ (HDR+WCG+10bit) 25-30% circa 0-20% HFR (50-60fps 100-120fps) 200% circa 30% In some cases, bandwidth also required to simulcast legacy HD bitstreams in addition to new UHD HDR+ bitstreams Ericsson 2016 2016-08-31 Page 63

So what about 1080p HDR+? If bandwidth constraints prevent a broadcaster from offering all of the new technologies, then focus on the best bang for the bit 1080p50/60 HDR+ Take advantage of all modern displays ability to up-convert 1080p to 4K (2160p) Of course, HDR+ support required to render HDR+ Ericsson 2016 2016-08-31 Page 64

UHD Roadmap (DVB) UHDTV is all about the consumer experience But UHD-1 Phase 1 does not include immersive technologies! UHD-1 Phase 2 defined commercially technical specs expected end 2016 UHD-1 Phase 2 CP A (HDR+) UHD-1 Phase 1 UHD-1 Phase 2 CP B (HFR) 2160p100/120* 2160p50/60* Bit depth: 10-bit Colour Space: BT.2020 Dynamic Range: HDR Backwards compatibility options: Desired Bit depth: 10 bit Colour Space: BT.2020 Dynamic Range: HDR Backwards compatibility options: Desired Audio: Next generation audio (e.g. Object-based) 2160p50/60* Audio: Next generation audio (e.g. Object-based ) Source: DVB CM-UHDTV 2019/2020 Bit depth: 8-bit, 10-bit, Colour Space: Rec. BT.709 and BT.2020 (signalled) Dynamic Range: Standard Audio: Existing DVB Toolbox Hooks for High Frame Rate compatibility included 2017/2018 2014/2015 * The specification also includes fractional variants of the 60fps family (1/1.001) Ericsson 2016 2016-08-31 Page 65

Other Recent/on-going standards activities CTA Draft CTA-861-G A DTV Profile for Uncompressed High Speed Digital Interfaces (core of HDMI). To add HDR dynamic metadata & HLG OETF to HDR support already in CTA-861.3 Ultra HD Forum Ultra HD Forum Guidelines (for UHD Phase A) Supports 1080p and 2160p HDR+ PQ10 and HLG10 for Live TV workflows UHD Alliance UltraHD Premium specs and logo certification program Broadcasting Sub-Group to consider the definition or recommendation of a reference display environment ATSC, SCTE, others Standardizing the use of HDR+ in direct-to-home/consumer systems High Dynamic Range Display Peak Brightness: >1000 nits Black Level: <0.05 nits or Peak Brightness: >540 nits Black Level: <0.0005 nits Ericsson 2016 2016-08-31 Page 66

MPEG HEVC HDR Fast TracK Call for Evidence for HDR/WCG (February 2015) Input contributions showed that low bitrate applications did not perform as expected, including poor texture rendition, color shifts after compression, color boundary overflow & chroma sub-sampling issues January 2016: Decision made not to add new HDR tools to HEVC due to lack of significant improvements of candidate proposals over improved encode-side only techniques (no changes to bitstream syntax or reference decoder) 3 techniques improved the anchors (source images used in evaluation) Luma Adjustment (Ericsson) Preprocessing before encoding Removes subsampling artifacts Chroma QP offset (Ericsson) Encoder optimization Removes chrominance artifacts Luma QP offset (Ericsson & Sharp) Encoder optimization Increases detail Next step: Best practices recommendation & verification testing Ericsson 2016 2016-08-31 Page 67

Luma adjustment (ERICSSON) Ericsson 2016 2016-08-31 Page 68 Original 4:4:4 Conventional 4:2:0 (no compression) Ericsson 4:2:0 (no compression)

Luma adjustment (ERICSSON) Ericsson 2016 2016-08-31 Page 69 Original 4:4:4 Conventional 4:2:0 (no compression) Ericsson 4:2:0 (no compression)

Chroma qp offset (ERICSSON) CfE Anchor Anchor v3.2 matching bit-rate Ericsson 2016 2016-08-31 Page 70

Chroma qp offset (ERICSSON) Green Artifacts CfE Anchor Anchor v3.2 matching bit-rate Ericsson 2016 2016-08-31 Page 71

Chroma qp offset (ERICSSON) Red Artifacts CfE Anchor Anchor v3.2 matching bit-rate Ericsson 2016 2016-08-31 Page 72

Luma QP offset (ERICSSON & SHARP) CfE Anchor Anchor v3.2 matching bit-rate Ericsson 2016 2016-08-31 Page 73

Luma QP offset (ERICSSON & SHARP) More Texture Detail CfE Anchor Anchor v3.2 matching bit-rate Ericsson 2016 2016-08-31 Page 74

Luma QP offset (ERICSSON & SHARP) Sharper Edges CfE Anchor Anchor v3.2 matching bit-rate Ericsson 2016 2016-08-31 Page 75

Summary HDR has the interest to be a major success Highly visible improvement in the immersive viewing experience Both 1080p HD and 2160p 4K UHD initially and 4320p 8K UHD some day A lot of the confusion surrounding the standards and proposals is now resolving Simplicity and content interoperability are key Initially, PQ10 and HLG10 for Live TV workflows Ericsson 2016 2016-08-31 Page 76

Ericsson 2016 2016-08-31 Page 77