Polarization Engineering for LCD Projection

Similar documents
Projection Displays Second Edition

Projection Displays Second Edition

COPYRIGHTED MATERIAL. Introduction. 1.1 Overview of Projection Displays

LEDs an der Schwelle zum Einsatz in Projektionssystemen: Herausforderungen, Grenzen und Anwendungen

Liquid Crystal Displays

Content. Core Technology (Short introduction) LCMO (Light Controlled Molecular Orientation) technology

SPATIAL LIGHT MODULATORS

Assistant Examiner Kari M. Horney 75 Inventor: Brian P. Dehmlow, Cedar Rapids, Iowa Attorney, Agent, or Firm-Kyle Eppele; James P.

LCOS for Large-Screen HDTV

Technology White Paper Plasma Displays. NEC Technologies Visual Systems Division

High-resolution screens have become a mainstay on modern smartphones. Initial. Displays 3.1 LCD

Measurement of Microdisplays at NPL

IEEE SVCE Chapter. Survival of the Fittest: The Battle for the TV Market

D-ILA PROJECTOR DLA-G15 DLA-S15

Analysis of Pico-Projection Technologies and Attempt at Design of Pico-Projection Optics Wente Yin a a Optical Sciences Center, University of

D-ILA PROJECTOR DLA-G15 DLA-S15

Liquid Crystal Display (LCD)

Liquid Crystal Displays with High Image Quality and Fast Response Time

LCD. Liquid crystal displays and backlighting. Incoherent lightsources Christian Manß

PROCEEDINGS OF SPIE. Volumetric, dashboard-mounted augmented display

HITACHI. VisionCube. Service Manual

UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD. MasterImage 3D, Inc. and MasterImage 3D Asia, LLC Petitioner,

PICOPROJECTORS: TECHNOLOGIES AND GLOBAL MARKETS. SMC090A October Paul W. Bragulla Project Analyst ISBN:

High luminance hybrid light guide plate for backlight module application

Power that Changes. the World. LED Backlights Made Simple 3M OneFilm Integrated Optics for LCD. 3M Optical Systems Division

High performance optical blending solutions

PLEASE SCROLL DOWN FOR ARTICLE

Super High Quality MVA-TFT Liquid Crystal Displays

Development of Simple-Matrix LCD Module for Motion Picture

2D/3D Multi-Projector Stacking Processor. User Manual AF5D-21

2006 Taiwan FPD International Conference May 25-26, 2006 Taipei International Convention Center Brightness Enhancement Films

photo by courtesy of Christiaan Beukes - Sphere Custom Design, RSA FORCE SERIES XXL HOME THEATRES VIDEO-PROJECTORS FOR

Introduction. 1.1 The Case for Projection

PROFESSIONAL D-ILA PROJECTOR DLA-G11

Digital Light Processing

PROFESSIONAL D-ILA PROJECTOR DLA-G11

Joint Development of Ultra-Bright, Inorganic EL Light-Emitting Materials. November 2, 2005 KURARAY CO., LTD.

Digital High Resolution Display Technology. A New Way of Seeing Things.

Spatial Response of Photon Detectors used in the Focusing DIRC prototype

Picoprojectors & Light Engine 2008

Optical Engine Reference Design for DLP3010 Digital Micromirror Device

Application note. Materials. Introduction. Authors. Travis Burt, Huang ChuanXu*, Andy Jiang* Agilent Technologies Mulgrave, Victoria, Australia

Impact of DMD-SLMs errors on reconstructed Fourier holograms quality

Features. Applications

An Overview of the Performance Envelope of Digital Micromirror Device (DMD) Based Projection Display Systems

Taking Technology to the Marketplace. Aram Mooradian Founder & CTO Sunnyvale, CA, USA

Essentials of the AV Industry Welcome Introduction How to Take This Course Quizzes, Section Tests, and Course Completion A Digital and Analog World

Spatial Light Modulators XY Series

An Alternative Architecture for High Performance Display R. W. Corrigan, B. R. Lang, D.A. LeHoty, P.A. Alioshin Silicon Light Machines, Sunnyvale, CA

32O O. (12) Patent Application Publication (10) Pub. No.: US 2012/ A1. (19) United States. LU (43) Pub. Date: Sep.

(12) United States Patent

RCA UNVEILS LIQUID CRYSTAL ON SILICON HIGH-DEFINITION TELEVISION TO MAXIMIZE ENTERTAINMENT AND MINIMIZE SPACE

VARIOUS DISPLAY TECHNOLOGIESS

Lecture Flat Panel Display Devices

Coherent Receiver for L-band

Home Cinema Projector LPX-500

G-106 GWarp Processor. G-106 is multiple purpose video processor with warp, de-warp, video wall control, format conversion,

David Mrnak, International Sales Department, eyevis GmbH

Display Systems. Viewing Images Rochester Institute of Technology

These are used for producing a narrow and sharply focus beam of electrons.

Deep Dive into Curved Displays

VPL-VW5000ES. Technical Background VPL-VW5000ES

Lecture Flat Panel Display Devices

LEDs, New Light Sources for Display Backlighting Application Note

ID C10C: Flat Panel Display Basics

2.2. VIDEO DISPLAY DEVICES

The SmoothPicture Algorithm: An Overview

G-106Ex Single channel edge blending Processor. G-106Ex is multiple purpose video processor with warp, de-warp, video wall control, format

Lecture 8. Display Devices. Cathode Ray Tube (CRT) Liquid Crystal Displays (LCD) Light-Emitting Diode (LED) Gas Plasma DLP

Electrical & Electronic Measurements: Class Notes (15EE36) Module-5. Display Devices

Studies for Future Broadcasting Services and Basic Technologies

SmartCrystal Cinema Neo

SpatiaLight, Inc. Investor Presentation The AEA Classic Nasdaq: HDTV November 2005

Taking It To The Next Level

Novel film patterned retarder utilizing in-plane electric field

Advances in Liquid Crystal on Silicon (LCOS) Spatial Light Modulator Technology

Screens; media that use additive primaries

21 rue La Noue Bras de Fer Nantes - France Phone : +33 (0) website :

FUJISAWA Toru, HAYASHI Masanao, HASEBE Hiroshi, TAKEUCHI Kiyofumi, TAKATSU Haruyoshi, and KOBAYASHI Shunsuke

SmartCrystal Cinema Neo

Flat Panel Displays: LCD Technologies and Trends

High Resolution LED-Projector Stimulating Night Vision Devices Using Infrared Radiation

LED projection architectures for stereoscopic and multiview 3D displays

Paper Entered: March 10, 2014 UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD

Modulation transfer function of a liquid crystal spatial light modulator

Printed injapan XXX-0000

Electro-Optic Beam Deflectors

VISERA 4K UHD GET CLOSER. GET CLOSER Four Times the Resolution of Full HD.

HC9000D. Color : Midnight Black

INSTALATION PROCEDURE

Contents. xv xxi xxiii xxiv. 1 Introduction 1 References 4

LED PHONO SOLAR TECHNOLOGY CO., LTD.

A Review- on Different Types of Displays

PROJECTORS BRADLEY BRANAM

Display Technologies CMSC 435. Slides based on Dr. Luebke s slides

PLASMA DISPLAY PANEL (PDP) DAEWOO D I G I T A L DIGITAL TV DEVISION

Taking It To The Next Level

A Legacy of Digital Excellence

Nanostructured super-period gratings and photonic crystals for enhancing light extraction efficiency in OLEDs

Solid State Devices 4B6

Transcription:

Polarization Engineering for LCD Projection Michael G. Robinson, Jianmin Chen, and Gary D. Sharp Colorlink Inc., USA John Wiley & Sons, Ltd

Contents Series Editor's Foreword Preface XIII XV 1 Introduction 1 1.1 The Case for Projection 1 1.2 History and Projection Technology Overview 2 1.2.1 Cinema Film 2 1.2.2 CRT-based Projection Systems 3 1.2.3 Schlieren Optics-based Projector 5 1.2.4 Microdisplay-based Projection Systems 7 1.2.5 Other Projection Technologies 16 1.3 Scope of the Book 17 2 Liquid Crystal Projection System Basics 21 2.1 Introduction 21 2.2 Brightness and Color Sensitivity of the Human Eye 22 2.2.1 Brightness 22 2.2.2 Brightness Uniformity 24 2.2.3 Color 24 2.2.4 White 26 2.2.5 Color Distinction and Just Noticeable Differences (JNDs) 28 2.2.6 Contrast 28 2.2.7 Size, Resolution, Registration, and Distortion 29 2.2.8 Electronic and Panel-related Metrics 30 2.3 Photometrie Measurement 30 2.4 Summary of What Constitutes a "Good" RPTV Display in the Current Marketplace 30 2.5 System Engineering 30 2.5.1 Rear-projection Screens 31 2.5.2 Folding Mirrors 34

VIII CONTENTS 2.5.3 Projection Optics 35 2.5.4 Color Management and Modulation Subsystem 37 2.5.5 Illumination System 37 2.5.6 Light Source 40 2.6 Etendue Considerations 41 3 Polarizarion Basics 47 3.1 Introduction 47 3.2 Electromagnetic Wave Propagation 47 3.2.1 Polarization of Monochromatic Waves 48 3.2.2 Complex Number Representation 50 3.2.3 Jones'Vector Representation 51 3.2.4 Stokes' Parameters 53 3.2.5 Poincare Sphere 54 3.3 Interaction with Media 57 3.3.1 Reflection and Refraction of Plane Waves 57 3.3.2 Matrix Formulation for Isotropie Layered Media 60 3.3.3 Matrix Formulation for Anisotropie Layered Media 61 3.4 Index Ellipsoid Visualization 70 3.5 Modeling Techniques 72 4 System Components 77 4.1 Introduction 77 4.2 Retarders 77 4.3 Polarizers 83 4.3.1 Absorptive Polarizer 83 4.3.2 Reflective Polarizers 85 4.4 Interference Filters 88 4.4.1 Anti-reflection Coatings 88 4.4.2 Quarter-wave Stack 89 4.4.3 Normal Incidence Dichroic Filters 90 4.4.4 Dichroic Beam Splitters 92 4.5 Polarizing Beam Splitters (PBSs) 94 4.5.1 Dichroic Cube PBS 94 4.5.2 Multilayer Birefringent Cube PBS (MBC PBS) 97 4.5.3 Wire Grid Plate PBS 98 4.6 Other Components 100 4.6.1 Mirrors 100 4.6.2 Light-pipe 100 4.6.3 Substrates 101 5 Liquid Crystal Displays (LCDs) 105 5.1 Description and Brief History 105 5.2 Anisotropie Properties of Liquid Crystals 109 5.3 Frank Free Energy and Electromagnetic Field Contribution to Free Energy 110 5.4 Alignment Layer and LC Pretilt Angle 111 5.5 Rotational Viscosity 113 5.6 Electro-optical Effect of LCs 113 5.7 LC Modes for Projection 114 5.7.1 Electrically ControUed Birefringence (ECB) Mode 114 5.7.2 90 TN and VA 90 TN Mode 117

CONTENTS IX 5.7.3 45 Reflective TN Mode 120 5.7.4 63.6 Mixed TN (MTN) Mode 121 5.7.5 90 MTN Mode 123 5.8 FOV of LCDs 124 6 Retarder Stack Filters 129 6.1 Introduction 129 6.2 Principle and Background of RSFs 130 6.2.1 Single Stage Polarization Interference 130 6.2.2 Multilayer Polarization Interference 132 6.3 RSFs in LC Projection Systems 134 6.3.1 Optical Filters 134 6.3.2 Color Splitters/Combiners 136 6.4 Design of RSFs 137 6.4.1 Impulse Response of a Birefringent Network 137 6.4.2 Design Methodology 140 6.4.3 Impulse Response to RSF Angular Profile Mapping 140 6.5 Properties of Retarder Stacks 143 6.5.1 Unitary Jones'Matrix Representation 143 6.5.2 Properties of Symmetrie RSF Designs 143 6.5.3 General Properties of Symmetrie RSF Designs 145 7 System Contrast 153 7.1 Introduction 153 7.2 On-axis Contrast 154 7.2.1 Head-on Contrast of LC Mode 154 7.2.2 Normal Incidence Pre- and Post-polarizers 157 7.3 Off-axis Effects 159 7.3.1 Homeotropic Liquid Crystals 159 7.3.2 Off-axis Property of Sheet Polarizers 160 7.3.3 Geometrical PBS Compensation 166 7.4 PBS/LCOS Compensation 175 7.4.1 VALCOSMode 176 7.4.2 General LCOS Mode 178 7.4.3 Influence of the Reflections from Interfaces on System Contrast 182 7.5 ANSI Contrast Enhancement 186 7.6 Skew Ray Compensated Retarder Stack Filters 187 7.7 Alternative Projection Systems 191 7.7.1 Off-telecentric Wire Grid PBS System 191 7.7.2 Off-axis System 192 7.8 Overall System Contrast 194 8 Color Management 197 8.1 Introduction 197 8.2 System Color Band Determination 197 8.3 Color Management in Projection Systems 201 8.3.1 Spatial Color Separation and Recombination 202 8.3.2 Temporal Color Separation 209

X CONTENTS Transmissive Three-panel Projection System 217 9.1 Introduction 217 9.2 Brief System Description 217 9.3 System Throughput 219 9.3.1 Lamp Flux Output, <5 219 9.3.2 Illumination Efficiency, r) m 219 9.3.3 Color Management System Efficiency, r\ cm 220 9.3.4 Color Correction Efficiency, r\ cc 222 9.3.5 Modulation System Efficiency, v\ m 223 9.3.6 Imaging System Efficiency, TJ^, 224 9.3.7 Total System Lumen Output, <t> out 224 9.4 Contrast 225 9.4.1 Negative c-plate Compensation 227 9.4.2 Splayed Negative Birefnngent Film Compensation Scheme 227 9.4.3 Negative o-plate Compensation 230 9.4.4 Positive o-plate Compensation Scheme 230 9.4.5 Liquid Crystal Polymer (LCP) Compensation Scheme 233 10 Three-panel Reflective Systems 237 10.1 Introduction 237 10.2 3 x PBS/X-cube System 238 10.2.1 Description of Basic Operation 238 10.2.2 Comparison to Transmissive System 239 10.2.3 Brightness 240 10.2.4 Contrast 240 10.2.5 Systems Upgrades v 242 10.2.6 Alternative PBS Solutions 242 10.3 Polarization Color Filter Systems 247 10.3.1 The CQ3 Three-PBS Architecture 248 10.3.2 System Analysis 250 10.4 Three-panel LCOS System Comparison 255 11 Single and Dual Panel LC Projection Systems 257 11.1 Introduction 257 11.2 Generic Color Sequential Single Panel Reflective LC System 257 11.2.1 System Description 257 11.2.2 Single Panel LCOS System Throughput 258 11.2.3 System Contrast 261 11.2.4 Temporal System Issues 262 11.3 Example Single Panel Color Sequential Systems 267 11.3.1 Scrolling Color System 267 11.3.2 Field Sequential Single Panel System 267 11.4 Two-panel Systems 268 11.4.1 White Color Balance 269 11.4.2 Color Break-up 269 11.4.3 Two-panel Architectures 270

CONTENTS XI 11.5 Commercialized Single Panel Projection Systems Based on Spatial Color Separation 273 11.5.1 Angular Color Beam Separation with Panel-based Microlens Arrays 273 11.5.2 Holographie Micro-optic Color Separation 273 11.5.3 Flat-panel LCD Projection 274 Appendix A 277 Index 281 /