Latin Square Design. Design of Experiments - Montgomery Section 4-2

Similar documents
Replicated Latin Square and Crossover Designs

Subject-specific observed profiles of change from baseline vs week trt=10000u

Statistical Consulting Topics. RCBD with a covariate

GLM Example: One-Way Analysis of Covariance

RANDOMIZED COMPLETE BLOCK DESIGN (RCBD) Probably the most used and useful of the experimental designs.

Mixed Models Lecture Notes By Dr. Hanford page 151 More Statistics& SAS Tutorial at Type 3 Tests of Fixed Effects

PROC GLM AND PROC MIXED CODES FOR TREND ANALYSES FOR ROW-COLUMN DESIGNED EXPERIMENTS

Modelling Intervention Effects in Clustered Randomized Pretest/Posttest Studies. Ed Stanek

Problem Points Score USE YOUR TIME WISELY USE CLOSEST DF AVAILABLE IN TABLE SHOW YOUR WORK TO RECEIVE PARTIAL CREDIT

Mixed Effects Models Yan Wang, Bristol-Myers Squibb, Wallingford, CT

RCBD with Sampling Pooling Experimental and Sampling Error

Mixed models in R using the lme4 package Part 2: Longitudinal data, modeling interactions

1'-tq/? BU-- _-M August 2000 Technical Report Series of the Department of Biometrics, Cornell University, Ithaca, New York 14853

Linear mixed models and when implied assumptions not appropriate

Block Block Block

Exercises. ASReml Tutorial: B4 Bivariate Analysis p. 55

I. Model. Q29a. I love the options at my fingertips today, watching videos on my phone, texting, and streaming films. Main Effect X1: Gender

Model II ANOVA: Variance Components

MANOVA/MANCOVA Paul and Kaila

Supplementary Figures Supplementary Figure 1 Comparison of among-replicate variance in invasion dynamics

Chapter 27. Inferences for Regression. Remembering Regression. An Example: Body Fat and Waist Size. Remembering Regression (cont.)

TWO-FACTOR ANOVA Kim Neuendorf 4/9/18 COM 631/731 I. MODEL

Do delay tactics affect silking date and yield of maize inbreds? Stephen Zimmerman Creative Component November 2015

Resampling Statistics. Conventional Statistics. Resampling Statistics

More About Regression

Paired plot designs experience and recommendations for in field product evaluation at Syngenta

MANOVA COM 631/731 Spring 2017 M. DANIELS. From Jeffres & Neuendorf (2015) Film and TV Usage National Survey

Master's thesis FACULTY OF SCIENCES Master of Statistics

K ABC Mplus CFA Model. Syntax file (kabc-mplus.inp) Data file (kabc-mplus.dat)

DV: Liking Cartoon Comedy

Bootstrap Methods in Regression Questions Have you had a chance to try any of this? Any of the review questions?

Moving on from MSTAT. March The University of Reading Statistical Services Centre Biometrics Advisory and Support Service to DFID

Multiple-point simulation of multiple categories Part 1. Testing against multiple truncation of a Gaussian field

Algebra I Module 2 Lessons 1 19

subplots (30-m by 33-m) without space between potential subplots. Depending on the size of the

SECTION I. THE MODEL. Discriminant Analysis Presentation~ REVISION Marcy Saxton and Jenn Stoneking DF1 DF2 DF3

COMP Test on Psychology 320 Check on Mastery of Prerequisites

For these items, -1=opposed to my values, 0= neutral and 7=of supreme importance.

TI-Inspire manual 1. Real old version. This version works well but is not as convenient entering letter

Sociology 7704: Regression Models for Categorical Data Instructor: Natasha Sarkisian

Normalization Methods for Two-Color Microarray Data

Reproducibility Assessment of Independent Component Analysis of Expression Ratios from DNA microarrays.

Lecture 5: Clustering and Segmentation Part 1

Discriminant Analysis. DFs

CS229 Project Report Polyphonic Piano Transcription

ASReml Tutorial: C1 Variance structures p. 1. ASReml tutorial. C1 Variance structures. Arthur Gilmour

HIGH-DIMENSIONAL CHANGEPOINT DETECTION

unbiased , is zero. Yï) + iab Fuller and Burmeister [4] suggested the estimator: N =Na +Nb + Nab Na +NB =Nb +NA.

K3. Why did the certain ethnic mother put her baby in a crib with 20-foot high legs? So she could hear it if it fell out of bed.

K3. Why did the certain ethnic mother put her baby in a crib with 20-foot high legs? So she could hear it if it fell out of bed.

K-Pop Idol Industry Minhyung Lee

Sensors, Measurement systems Signal processing and Inverse problems Exercises

Detecting Medicaid Data Anomalies Using Data Mining Techniques Shenjun Zhu, Qiling Shi, Aran Canes, AdvanceMed Corporation, Nashville, TN

a user's guide to Probit Or LOgit analysis

Comparison of Mixed-Effects Model, Pattern-Mixture Model, and Selection Model in Estimating Treatment Effect Using PRO Data in Clinical Trials

UPDATED STANDARDIZED CATCH RATES OF BLUEFIN TUNA (THUNNUS THYNNUS) FROM THE TRAP FISHERY IN TUNISIA

Blueline, Linefree, Accuracy Ratio, & Moving Absolute Mean Ratio Charts

1. Model. Discriminant Analysis COM 631. Spring Devin Kelly. Dataset: Film and TV Usage National Survey 2015 (Jeffres & Neuendorf) Q23a. Q23b.

BER margin of COM 3dB

AUTOREGRESSIVE MFCC MODELS FOR GENRE CLASSIFICATION IMPROVED BY HARMONIC-PERCUSSION SEPARATION

The Time Series Forecasting System Charles Hallahan, Economic Research Service/USDA, Washington, DC

HIGH-DIMENSIONAL CHANGEPOINT ESTIMATION

Restoration of Hyperspectral Push-Broom Scanner Data

Mixed Linear Models. Case studies on speech rate modulations in spontaneous speech. LSA Summer Institute 2009, UC Berkeley

STAT 503 Case Study: Supervised classification of music clips

MATH 214 (NOTES) Math 214 Al Nosedal. Department of Mathematics Indiana University of Pennsylvania. MATH 214 (NOTES) p. 1/3

Analysis of Packet Loss for Compressed Video: Does Burst-Length Matter?

AP Statistics Sampling. Sampling Exercise (adapted from a document from the NCSSM Leadership Institute, July 2000).

Box-Jenkins Methodology: Linear Time Series Analysis Using R

High Speed Optical Networking: Task 3 FEC Coding, Channel Models, and Evaluations

STAT 113: Statistics and Society Ellen Gundlach, Purdue University. (Chapters refer to Moore and Notz, Statistics: Concepts and Controversies, 8e)

Sociology 704: Topics in Multivariate Statistics Instructor: Natasha Sarkisian

8 Nonparametric test. Question 1: Are (expected) value of x and y the same?

Chapter 5. Describing Distributions Numerically. Finding the Center: The Median. Spread: Home on the Range. Finding the Center: The Median (cont.

MATH& 146 Lesson 11. Section 1.6 Categorical Data

A STATISTICAL VIEW ON THE EXPRESSIVE TIMING OF PIANO ROLLED CHORDS

Repeated measures ANOVA

Supplemental Material: Color Compatibility From Large Datasets

Multiple-Window Spectrogram of Peaks due to Transients in the Electroencephalogram

Detecting Musical Key with Supervised Learning

%CHCKFRQS A Macro Application for Generating Frequencies for QC and Simple Reports

Orthogonal rotation in PCAMIX

ECONOMICS 351* -- INTRODUCTORY ECONOMETRICS. Queen's University Department of Economics. ECONOMICS 351* -- Winter Term 2005 INTRODUCTORY ECONOMETRICS

Release Year Prediction for Songs

Optimum Frame Synchronization for Preamble-less Packet Transmission of Turbo Codes

Journal of Statistical Software

WEB APPENDIX. Managing Innovation Sequences Over Iterated Offerings: Developing and Testing a Relative Innovation, Comfort, and Stimulation

Predictability of Music Descriptor Time Series and its Application to Cover Song Detection

AP Statistics Sec 5.1: An Exercise in Sampling: The Corn Field

Modeling television viewership

LOCOCODE versus PCA and ICA. Jurgen Schmidhuber. IDSIA, Corso Elvezia 36. CH-6900-Lugano, Switzerland. Abstract

Tutorial 0: Uncertainty in Power and Sample Size Estimation. Acknowledgements:

Design and Analysis of New Methods on Passive Image Forensics. Advisor: Fernando Pérez-González. Signal Theory and Communications Department

Hidden Markov Model based dance recognition

Open Access Determinants and the Effect on Article Performance

Study of the Clocking Effect in the TRT Alignment

Selling the Premium in the Freemium: Impact of Product Line Extensions

arxiv: v1 [cs.dl] 9 May 2017

Placement Rent Exponent Calculation Methods, Temporal Behaviour, and FPGA Architecture Evaluation. Joachim Pistorius and Mike Hutton

The Great Beauty: Public Subsidies in the Italian Movie Industry

Transcription:

Latin Square Design Design of Experiments - Montgomery Section 4-2

Latin Square Design Can be used when goal is to block on two nuisance factors Constructed so blocking factors orthogonal to treatment Must have same the number of blocks and treatments y ijk = µ + α i + τ j + β k + ǫ ijk α i - ith Block 1 effect (row) τ j - jth treatment effect β k - kth Block 2 effect (column) ǫ ijk N(0, σ 2 ) i = 1, 2,..., p j = 1, 2,..., p k = 1, 2,..., p Completely additive model (no interaction) Latin Square 2

Latin Square Design Design commonly represented in p p grid There are now two randomization restrictions One trt per row (row = blocking factor 1) One trt per column (column = blocking factor 2) Can randomly shuffle rows, columns, and treatments of standard square to get other variations of layout Standard square has treatment levels written alphabetically in the first row and first column. Other cells are filled using the same alphabetic order Latin Square 3

Layout Examples C B A B A C A C B D B C A B A C C D A B A C B B A D C C B A A C B D Latin Square 4

Proc PLAN title Latin Square Design ; proc plan seed=12; factors rows=4 ordered cols=4 ordered / NOPRINT; treatments tmts=4 cyclic; output out=g rows cvals=( Day 1 Day 2 Day 3 Day 4 ) random cols cvals=( Lab 1 Lab 2 Lab 3 Lab 4 ) random tmts nvals=( 0 100 250 450 ) random; proc tabulate; class rows cols; var tmts; table rows, cols*(tmts*f=6.) / rts=8; run; Latin Square 5

Proc PLAN Output cols Lab 1 Lab 2 Lab 3 Lab 4 tmts tmts tmts tmts Sum Sum Sum Sum rows Day 1 450 100 0 250 Day 2 100 0 250 450 Day 3 0 250 450 100 Day 4 250 450 100 0 Latin Square 6

Partitioning the SS Rewrite observation as: y ijk = y... + (y i.. y... ) + (y.j. y... ) + (y..k y... ) + (y ijk y i.. y.j. y..k + 2y.. ) = ˆµ + ˆα i + ˆτ j + ˆβk + ˆǫ ijk p Partition SS T into (y i.. y... ) 2 + p (y.j. y... ) 2 + p (y..k y... ) 2 + ˆǫ 2 ijk SS Row + SS Treatment + SS Col + SS E Under H 0, all SS/σ 2 independent chi-squared RVs Usual F-test analysis Caution testing column and row effects Latin Square 7

Analysis of Variance Table Source of Sum of Degrees of Mean F 0 Variation Squares Freedom Square Rows SS Row p 1 MS Row Treatment SS Treatment p 1 MS Treatment F 0 Column SS Column p 1 MS Column Error SS E (p 2)(p 1) MS E Total SS T p 2 1 If F 0 > F α,p 1,(p 2)(p 1) then reject H 0 Latin Square 8

Comparisons of Treatments Multiple Comparisons/Contrasts Similar procedures as before with CRD Replace n with p in all standard error formulas Degrees of freedom error is (p 2)(p 1) y.j. = µ + ᾱ. + τ j + β. + ǫ.j. Var(y.j. ) = 0 + 0 + 0 + 0 + σ 2 /p y.j. y.j. = τ j τ j + ǫ.j. ǫ.j. Var(y.j. y.j.) = 0 + 0 + σ 2 /p + σ 2 /p Latin Square 9

Missing Values When missing (and not due to treatment) Design unbalanced Orthogonality lost Order of fit important Procedures 1 Regression approach Use Type III sum of squares 2 Estimate missing value Choose value to minimize SS E Take derivative and set equal to zero y ijk = p(y i.. +y.j. +y..k ) 2y... (p 2)(p 1) Latin Square 10

Using SAS Consider experiment to investigate the effect of 4 diets on milk production. There are 4 cows. Each lactation period the cows receive a different diet. Assume there is a washout period so previous diet does not affect future results. Will therefore block on lactation period and cow. data new; input cow period trt resp @@; cards; 1 1 1 38 1 2 2 32 1 3 3 35 1 4 4 33 2 1 2 39 2 2 3 37 2 3 4 36 2 4 1 30 3 1 3 45 3 2 4 38 3 3 1 37 3 4 2 35 4 1 4 41 4 2 1 30 4 3 2 32 4 4 3 33 ; proc glm; class cow trt period; model resp=trt period cow; means trt/ lines tukey; lsmeans trt / adjust=tukey lines; output out=new1 r=res p=pred; symbol1 v=circle; proc gplot; plot res*pred; plot res*cow; plot res*trt; plot res*period; proc univariate noprint; histogram res / normal (L=1 mu=0 sigma=est) kernel (L=2); run; Latin Square 11

ANOVA Table Dependent Variable: resp Sum of Source DF Squares Mean Square F Value Pr > F Model 9 242.5625000 26.9513889 33.17 0.0002 Error 6 4.8750000 0.8125000 Corrected Total 15 247.4375000 Source DF Type I SS Mean Square F Value Pr > F trt 3 40.6875000 13.5625000 16.69 0.0026 period 3 147.1875000 49.0625000 60.38 <.0001 cow 3 54.6875000 18.2291667 22.44 0.0012 Source DF Type III SS Mean Square F Value Pr > F trt 3 40.6875000 13.5625000 16.69 0.0026 period 3 147.1875000 49.0625000 60.38 <.0001 cow 3 54.6875000 18.2291667 22.44 0.0012 Latin Square 12

Multiple Comparisons Tukey s Studentized Range (HSD) Test for resp Alpha 0.05 Error Degrees of Freedom 6 Error Mean Square 0.8125 Critical Value of Studentized Range 4.89559 Minimum Significant Difference 2.2064 Mean N trt A 37.5000 4 3 A 37.0000 4 4 B 34.5000 4 2 B 33.7500 4 1 Latin Square 13

Latin Square 14

Latin Square 15

Latin Square 16

Using Proc Mixed Often at least one block is considered random Example: 4 cows randomly chosen from large herd Want the inference to extend to the herd Sometimes time is one of the blocking factors Example: Each cow measured over 4 lactation periods This is an example of a crossover design Could observations closer together be more correlated? Proc Mixed can incorporate both concepts into model Latin Square 17

Random Effects Similar approach and results as with the RCBD Must be careful if using Proc GLM Standard error for a mean: Proc GLM incorrect Standard error for a contrast: Proc GLM correct GLM very limited in terms of handling repeated measures Latin Square 18

Comparison of Approaches proc glm; class cow trt period; model resp=cow trt period; random cow; lsmeans trt / stderr tdiff lines; proc mixed; class cow trt period; model resp=trt period / ddfm=kr; ***recommended df adjustment option random cow; lsmeans trt/ diff; run; ****F test for treatment is the same for both models ***** Latin Square 19

GLM Selected Output Standard LSMEAN trt resp LSMEAN Error Pr > t Number 1 33.7500000 0.4506939 <.0001 1 2 34.5000000 0.4506939 <.0001 2 3 37.5000000 0.4506939 <.0001 3 4 37.0000000 0.4506939 <.0001 4 resp LSMEAN LSMEAN trt Number A 37.50 3 3 A A 37.00 4 4 B 34.50 2 2 B B 33.75 1 1 Latin Square 20

MIXED Selected Output Least Squares Means Effect trt Estimate Std Error DF t Value Pr > t trt 1 33.7500 1.1365 3.82 29.70 <.0001 trt 2 34.5000 1.1365 3.82 30.36 <.0001 trt 3 37.5000 1.1365 3.82 33.00 <.0001 trt 4 37.0000 1.1365 3.82 32.56 <.0001 Differences of Least Squares Means Effect trt _trt Estimate Std Error DF t Value Pr > t trt 1 2-0.7500 0.6374 6-1.18 0.2839 trt 1 3-3.7500 0.6374 6-5.88 0.0011 trt 1 4-3.2500 0.6374 6-5.10 0.0022 trt 2 3-3.0000 0.6374 6-4.71 0.0033 trt 2 4-2.5000 0.6374 6-3.92 0.0078 trt 3 4 0.5000 0.6374 6 0.78 0.4626 Latin Square 21

Correlated Errors Random effects induce correlations among observations Errors from same EU may also be correlated Errors closer in time may be more similar Can incorporate various correlation structures Given p obs per EU, consider a p p covariance matrix Main diagonal contains the variances Off-diagonal elements represent covariances Latin Square 22

Covariance Matrices Uncorrelated errors (for p = 4 obs/cow) σ 2 0 0 0 1 0 0 0 0 σ 2 0 0 0 0 σ 2 0 = σ 2 0 1 0 0 0 0 1 0 0 0 0 σ 2 0 0 0 1 1st order autoregressive (for p = 4 obs/cow) σ 2 1 ρ ρ 2 ρ 3 ρ 1 ρ ρ 2 ρ 2 ρ 1 ρ ρ 3 ρ 2 ρ 1 Latin Square 23

Covariance Matrices Compound symmetry (for p = 4 obs/cow) σ 2 + σ 1 σ 1 σ 1 σ 1 σ 1 σ 2 + σ 1 σ 1 σ 1 σ 1 σ 1 σ 2 + σ 1 σ 1 σ 1 σ 1 σ 1 σ 2 + σ 1 Toeplitz (for p = 4 obs/cow) σ 2 σ 1 σ 2 σ 3 σ 1 σ 2 σ 1 σ 2 σ 2 σ 1 σ 2 σ 1 σ 3 σ 2 σ 1 σ 2 Latin Square 24

Covariance Matrices Banded Toeplitz d = 2(for p = 4 obs/cow) σ 2 σ 1 0 0 σ 1 σ 2 σ 1 0 0 σ 1 σ 2 σ 1 0 0 σ 1 σ 2 Unstructured (for p = 4 obs/cow) σ1 2 σ 12 σ 13 σ 14 σ 12 σ2 2 σ 23 σ 24 σ 13 σ 23 σ3 2 σ 34 σ 14 σ 24 σ 34 σ4 2 Latin Square 25

Mixed Model Can be expressed Y = Xβ + Zδ + e X and Z describe the treatment and design structure β is a vector of the fixed effect parameters δ is a vector of the random effect parameters Typically assume δ and e are multivariate Normal (MVN) Mean 0 Covariance matrices G and R uncorrelated Latin Square 26

Conditional/Marginal Models Conditional model of Y δ is MVN E(Y δ) = Xβ + Zδ Cov(Y δ) = R Marginal model of Y is MVN E(Y ) = Xβ Cov(Y ) = ZGZ + R Can specify either model in MIXED. Random statement needed for conditional model. When dists Normal, both models give identical estimates, unless covariances negative Latin Square 27

SAS Code /* Fit a simple correlation structure for residuals */ /* Assuming cow is fixed - matches glm output on Slide 20 */ proc mixed covtest cl; class cow trt period; model resp=trt period cow / ddfm=kr outp=diag; repeated period / subject=cow type=simple r=1; lsmeans trt / diff; run; /* Assuming cow is random - matches mixed output on Slide 21 */ proc mixed covtest cl; class cow trt period; model resp=trt period / ddfm=kr outp=diag; random intercept / subject=cow v=1; repeated period / subject=cow type=simple r=1; lsmeans trt / diff; run; Latin Square 28

Simple - Fixed effects Estimated R Matrix for cow 1 Row Col1 Col2 Col3 Col4 1 0.8125 2 0.8125 3 0.8125 4 0.8125 Covariance Parameter Estimates Cov Standard Z Parm Subject Estimate Error Value Pr > Z Alpha Lower Upper period cow 0.8125 0.4691 1.73 0.0416 0.05 0.3374 3.9399 Fit Statistics -2 Res Log Likelihood 26.9 AIC (Smaller is Better) 28.9 BIC (Smaller is Better) 28.3 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F trt 3 6 16.69 0.0026 Effect trt Estimate Std Error DF t Value Pr > t trt 1 33.7500 0.4507 6 74.88 <.0001 Effect trt _trt Estimate Std Error DF t Value Pr > t trt 1 2-0.7500 0.6374 6-1.18 0.2839 Latin Square 29

Simple - Random effects Estimated V Matrix for cow 1 Row Col1 Col2 Col3 Col4 1 5.1667 4.3542 4.3542 4.3542 2 4.3542 5.1667 4.3542 4.3542 3 4.3542 4.3542 5.1667 4.3542 4 4.3542 4.3542 4.3542 5.1667 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr > Z Alpha Lower Upper Intercept cow 4.3542 3.7229 1.17 0.1211 0.05 1.3461 73.9887 period cow 0.8125 0.4691 1.73 0.0416 0.05 0.3374 3.9399 Fit Statistics -2 Res Log Likelihood 41.3 AIC (Smaller is Better) 45.3 BIC (Smaller is Better) 44.1 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F trt 3 6 16.69 0.0026 Effect trt Estimate Std Error DF t Value Pr > t trt 1 33.7500 1.1365 3.82 29.70 <.0001 Effect trt _trt Estimate Std Error DF t Value Pr > t trt 1 2-0.7500 0.6374 6-1.18 0.2839 Latin Square 30

SAS Code /* Fit Compound Symmetry - matches mixed output on Slide 21 */ proc mixed covtest cl; class cow trt period; model resp=trt period / ddfm=kr outp=diag; repeated period / subject=cow type=cs r=1; lsmeans trt / diff; run; /* Fit an Unstructured correlation structure */ proc mixed covtest cl; class cow trt period; model resp=trt period / ddfm=kr outp=diag; repeated period / type=un subject=cow; lsmeans trt / diff; run; Latin Square 31

Compound Symmetry Estimated R Matrix for cow 1 Row Col1 Col2 Col3 Col4 1 5.1667 4.3542 4.3542 4.3542 2 4.3542 5.1667 4.3542 4.3542 3 4.3542 4.3542 5.1667 4.3542 4 4.3542 4.3542 4.3542 5.1667 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr > Z Alpha Lower Upper CS cow 4.3542 3.7229 1.17 0.2422 0.05-2.9425 11.6508 Residual 0.8125 0.4691 1.73 0.0416 0.05 0.3374 3.9399 Fit Statistics -2 Res Log Likelihood 41.3 AIC (Smaller is Better) 45.3 BIC (Smaller is Better) 44.1 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F trt 3 6 16.69 0.0026 Effect trt Estimate Std Error DF t Value Pr > t trt 1 33.7500 1.1365 3.82 29.70 <.0001 Effect trt _trt Estimate Std Error DF t Value Pr > t trt 1 2-0.7500 0.6374 6-1.18 0.2839 Latin Square 32

Unstructured WARNING: Stopped because of too many likelihood evaluations. Covariance Parameter Values At Last Iteration Cov Parm Subject Estimate UN(1,1) cow 2.4607 UN(2,1) cow 1.9933 UN(2,2) cow 5.7153 UN(3,1) cow 4.3270 UN(3,2) cow 5.1926 UN(3,3) cow 9.6422 UN(4,1) cow 3.7877 UN(4,2) cow 3.8424 UN(4,3) cow 7.4442 UN(4,4) cow 6.1382 **** SOME COVARIANCE STRUCTURES ARE TOO COMPLEX FOR THE DATA **** Latin Square 33

SAS Code /* Fit an AR(1) correlation structure for residuals*/ proc mixed covtest cl; class cow trt period; model resp=trt period / ddfm=kr outp=diag; repeated period / type=ar(1) subject=cow r=1; lsmeans trt / diff; run; /* Fit an AR(1) correlation structure for residuals*/ /* Add cow random effect */ proc mixed covtest cl; class cow trt period; model resp=trt period / ddfm=kr outp=diag; random intercept / subject=cow v=1; repeated period / type=ar(1) subject=cow r=1; lsmeans trt / diff; run; Latin Square 34

AR(1) Estimated R Matrix for cow 1 Row Col1 Col2 Col3 Col4 1 4.6509 3.8900 3.2536 2.7213 2 3.8900 4.6509 3.8900 3.2536 3 3.2536 3.8900 4.6509 3.8900 4 2.7213 3.2536 3.8900 4.6509 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z Alpha Lower Upper AR(1) cow 0.8364 0.1277 6.55 <.0001 0.05 0.5861 1.0867 Residual 4.6509 3.0108 1.54 0.0612 0.05 1.7820 29.7337 Fit Statistics -2 Res Log Likelihood 42.0 AIC (Smaller is Better) 46.0 BIC (Smaller is Better) 44.8 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F trt 3 5.7 10.76 0.0091 Effect trt Estimate Std Error DF t Value Pr > t trt 1 33.6574 1.0414 4.53 32.32 <.0001 Effect trt _trt Estimate Std Error DF t Value Pr > t trt 1 2-0.7732 0.7289 5.7-1.06 0.3317 trt 1 3-4.0457 0.8397 5.84-4.82 0.0032 Latin Square 35

AR(1) with random cow effect Estimated V Matrix for cow 1 Row Col1 Col2 Col3 Col4 1 5.0751 4.3489 4.1903 4.1556 2 4.3489 5.0751 4.3489 4.1903 3 4.1903 4.3489 5.0751 4.3489 4 4.1556 4.1903 4.3489 5.0751 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z Alpha Lower Upper Intercept cow 4.1459 3.7154 1.12 0.1322 0.05 1.2331 88.2186 AR(1) cow 0.2184 0.5794 0.38 0.7062 0.05-0.9171 1.3540 Residual 0.9292 0.7343 1.27 0.1029 0.05 0.3061 11.3252 Fit Statistics -2 Res Log Likelihood 41.2 AIC (Smaller is Better) 47.2 BIC (Smaller is Better) 45.3 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F trt 3 5.04 8.65 0.0197 Effect trt Estimate Std Error DF t Value Pr > t trt 1 33.7306 1.1424 3.81 29.53 <.0001 Effect trt _trt Estimate Std Error DF t Value Pr > t trt 1 2-0.7200 0.7831 5.82-0.92 0.3943 trt 1 3-3.8257 0.8834 5.51-4.33 0.0060 Latin Square 36

SAS Code /* Fit an TOEP(2) correlation structure for residuals*/ proc mixed covtest cl; class cow trt period; model resp=trt period / ddfm=kr outp=diag; repeated period / type=toep(2) subject=cow r=1; lsmeans trt / diff; run; /* Fit an Heterogeneous CS correlation structure for residuals*/ proc mixed covtest cl; class cow trt period; model resp=trt period / ddfm=kr outp=diag; repeated period / type=csh subject=cow r=1; lsmeans trt / diff; run; Latin Square 37

Banded TOEP(2) Estimated R Matrix for cow 1 Row Col1 Col2 Col3 Col4 1 4.8110 2.7620 2 2.7620 4.8110 2.7620 3 2.7620 4.8110 2.7620 4 2.7620 4.8110 Covariance Parameter Estimates Standard Z Cov Parm Subject Estimate Error Value Pr Z Alpha Lower Upper TOEP(2) cow 2.7620 1.5679 1.76 0.0781 0.05-0.3110 5.8350 Residual 4.8110 2.4887 1.93 0.0266 0.05 2.1482 18.7489 Fit Statistics -2 Res Log Likelihood 45.0 AIC (Smaller is Better) 49.0 BIC (Smaller is Better) 47.8 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F trt 3 3.33 2.02 0.2751 Effect trt Estimate Std Error DF t Value Pr > t trt 1 33.5524 1.1236 8.86 29.86 <.0001 Effect trt _trt Estimate Std Error DF t Value Pr > t trt 1 2-1.5006 1.2047 7.06-1.25 0.2526 trt 1 3-4.2288 1.6494 8.18-2.56 0.0329 Latin Square 38

CSH Estimated R Matrix for cow 1 Row Col1 Col2 Col3 Col4 1 1.4288 2.1325 3.4799 2.8649 2 2.1325 3.6114 5.5323 4.5546 3 3.4799 5.5323 9.6162 7.4321 4 2.8649 4.5546 7.4321 6.5176 Covariance Parameter Estimates Cov Standard Z Parm Subject Estimate Error Value Pr Z Alpha Lower Upper Var(1) cow 1.4288 1.2819 1.11 0.1325 0.05 0.4246 30.5790 Var(2) cow 3.6114 3.0137 1.20 0.1154 0.05 1.1388 55.0752 Var(3) cow 9.6162 7.9587 1.21 0.1135 0.05 3.0525 141.54 Var(4) cow 6.5176 5.3805 1.21 0.1129 0.05 2.0731 94.8982 CSH cow 0.9388 0.05846 16.06 <.0001 0.05 0.8242 1.0534 Fit Statistics -2 Res Log Likelihood 34.8 AIC (Smaller is Better) 44.8 BIC (Smaller is Better) 41.7 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F trt 3 5.3 40.08 0.0005 Effect trt Estimate Std Error DF t Value Pr > t trt 1 33.3399 1.1103 3.21 30.03 <.0001 Effect trt _trt Estimate Std Error DF t Value Pr > t trt 1 2-0.9207 0.4999 5.28-1.84 0.1218 trt 1 3-4.8929 0.5084 5.34-9.62 0.0001 Latin Square 39

Summary When comparing models with a model selection criterion, REML fitting can only be used when fixed effects structure does not change. If different models with different fixed effects were compared, would have to use ML estimation, even though variance/covariance parameters are biased This is because REML uses a transformed set of data that takes into account loss of DF due to estimating fixed effects From the results here, heterogenous compound symmetry is the best choice provided residuals look ok Latin Square 40